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56 to 34 Myr ago: Eocene

EON _,ERAJ PERIOD EPOCH Ma
o Holocene | ,,, Gradual coollnq over past 55 Myr
Pleistocene Early 0.8 — 0 . .

lPlio.|,.

Pliocene

23.7 — 10

Miocene

I TR SN N N T T N

90— Warm
sio- ) climates 20
B Cretaceous amt?tt— i 1
‘ ‘_-_ s - 146-34 Myr ]

| Oligocene |

Phanerozoic

B
o

[ TN TN T N Y TR TR SN NN SN N DU |

[Pennsylvanian | | 290
Pensy vanian 323 —

Age (Myr

Eocene

-~
[
~N

|
u
o

wH

So

33

[

(@)

<
Paleocene |

4]
»
w
|

[ |

P PN T NN U W T W I O O T A O
900 I \ 1 1 1 I 1

0° 4° g° 12°

| 5500 - Deep ocean Temperature

38007 [Zachos et al., 2001]

lfrecambrian



Eli Tziperman, EPS 231, Climate dynamics

Equable Climates

Frost-intolerant species in high-latitude continental climate regions
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Cretaceous Coastal Environment

Hadrosaurus - Cretaceous
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Artist: Karen Carr
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Cretaceous Marine Environment

Artist: Karen Carr

| Artlé_t Charles R Knlght
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—ocene Mammals.
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“Equable” climate

Surface temperatures at the poles were closer to
surface temperatures at the equator.

The high latitude seasonal cycle was smaller:
winter and surface temperature were closer.
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“Hothouse/Equable” climates ~146-34 Ma

Cretaceous Paleocene Eocene
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Plant and animal fossils

\ Crocodiles & Alligators today
?«] need:

MAT: mean annual temperature
CMM: cold month mean

[Markwick, 1998]
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Eocene near living relative (NLR) Analysis

| -4000 km at Equator

[Greenwood and Wing, 1995]

- palms .~ - lowlands

/\ - cycads, gingers, tree ferns W - Uplands

O - no frost intolerant plants B - higher uplands



Eli Tziperman, EPS 231, Climate dynamics

Leaf Margin Analysis (LMA)
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0180 Temperature reconstruction
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Latitudinal temperature distribution
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Re-evaluating planktonic 6180 Data
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In-class workshop

Consider an energy balance model for the Arctic:

(1-a)Sy/4

T gol
Modern climate: | eo7 2
\
S (W/m?) H [PW] : o
200 3.5 0.60 0.55

HIA+(1-a)S=(1-¢/2)oT?

A=area north of 60N

1) Calculate the Arctic temperature from this energy balance.

2) Calculate the changes to the albedo, emissivity, and the mid-latitude heat
transport required to increase the high latitude temperature by 20 °C
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Energy balance for the Arctic: g —— --‘T
Back of the envelope...

Changes required to reduce equator-to-pole L & :
temperature gradient by increasing CO, or
meridional heat fluxes or albedo or long-wave o
emissivity (clouds!): (1-a)S/4 A | soT
Energy-balance | -
model
Modern climate: H | o7
A v
> AaTS4
T[C] H [PW] ¢ a |
-8.0 3.5 0.60 0.55

HIA + (1 — a)Sy/4 = (1 — e/2)oT*

Changes required to increase high latitude temperature:

AT [-C] AH [PW] Y [CO,ly,, [PPM] [CO,], e [PPM] Aa

10.0 1.1 0.20 X25=~9x103 x22:5=2x103 -0.15
15.0 1.7 0.28 x27.5=5x104 x2375=4x103 -0.23
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Proposed mechanisms

Equator-to-pole Hadley cell:
e S,

\\Z‘:.‘.“ey Giant

Today
V'd

(B. Farrell, 1990)
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Proposed mechanisms
Equator-to-pole Hadley cell:

. s A >
14
| o O b v
s o ¥’
R 2 P Hot = j &
) -5 g ”, ‘. v “.‘
- B o / 2 S
— Hadley

(B. Farrell, 1990)

Polar Stratospheric Clouds (PSCs,15-25 km)

PSCs at dusk over Arctic Sweden

due to methane: Sloan 1992, (2)
weakening Brewer-Dolbson circulation:
Kirk-Davidoff et al. 2002
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Proposed mechanisms
Equator-to-pole Hadley CeII'

Today
&

(B. Farrell, 1990)

Polar Stratospheric Clouds (PSCs,15-25 km)

PSCs at dusk over Arctic Sweden

due to methane: Sloan 1992, (2)
weakening Brewer-Dolbson circulation:
Kirk-Davidoff et al. 2002

Stronger hurricanes
stronger AI\/IOC

Warmer high
P =

TN latitudes
B T (K. Emanuel, 2002)
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Proposed mechanisms

Breakup of subtropical stratocumulus L
cloud decks at high SST S 4
Causing albedo decrease and .;::‘:,*":—r*“ s ( )

warming of mid-latitudes :
: = - R

Schneider et al 201 9, (Bretherton et 8.') https://www.shutterstock.com/image-photo/aerial-view-layer-stratocumulus-clouds-369408491
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Proposed mechanisms

Breakup of subtropical stratocumulus

cloud decks at high SST , e — T
— ~JV < 7‘;:'.'1‘.:‘,..":,\ = ‘-”;f:- ?

Causing albedo decrease and e e St
warming of mid-latitudes ,«-—W‘E =
Schneider et al 2019, (Bretherton et al) - RRT——

(4)

https://vvww.shutterst(‘)ck.Com/image—photo/aérial—view—Iayer—stratocumulus—clouds—369408491

By low cloud forming due to

moisture arriving from over warmer
ocean

Arctic air suppression over high latitude land

Cronin & Tziperman 2015
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Proposed mechanisms

Breakup of subtropical stratocumulus

cloud decks at high SST ——
e e X = ety
Causing albedo decrease and e —
warming of mid-latitudes S e e
Schneider et al 2019, (Bretherton et al) st

(4)

https://vvww.shutferst(‘)ck.com/image—photo/aérial—view—Iayer-stratocumulus—clouds—369408491

By low cloud forming due to

moisture arriving from over warmer
ocean

Arctic convective cloud feedback

Arctic air suppression over high latitude land

Cronin & Tziperman 2015

(6)

i : high cloud
wintertime G0
deep Arctic | =) emissivity/ =) Warmer |
convection greenhouse winter Arctic

effect Abbot & Tziperman 2008
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Equator-to-pole Hadley cell:

)
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notes:
Equator-to-pole Hadley cell

2986 JOURNAL OF THE ATMOSPHERIC SCIENCES 1990 VoL. 47, No. 24

Equable Climate Dynamics

BRIAN F. FARRELL
" Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
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Equator-to-pole Hadley cell
N class workshop

Consider the radiative-convective equilibrium profile:

potential
temperature

latitude

Draw the profile after the effects of atmospheric heat transport
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In-class workshop

Use angular momentum conservation to calculate the subtropical jet
speed at 30N
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Polar Stratospheric Clouds (PSCs,15-25 km)

PSCs at dusk over Arctic Sweden

due to methane: Sloan 1992, (2)
weakening Brewer-Dolbson circulation:
Kirk-Davidoff et al. 2002
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Polar stratospheric clouds

PSCs form at very low temperatures, below —78 °C, at 15-30 km
height, during winter, in polar areas, within polar stratospheric vortex

:', ."" o

PSC, Elverum, Norway. A type Il (water) PSC showing iridescence

Due to their high altitude & Earth surface curvature, PSCs receive sunlight from below
the horizon & reflect it to the ground, shining brightly well before dawn or after dusk

Composition: water ice, sulfuric acid H2SO4; nitric acid (HNOa3)
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Polar stratospheric clouds in equable climate 1.0

Possible methane-induced polar
warming in the early Eocene

L. Cirbus Sloan, James C. G. Walker, T. C. Moore Jr,
David K. Rea & James C. Zachos 1992

The proposed feedback:

warmer climate

=» higher methane CH4 emissions by anaerobic bacteria from
swamps

= greenhouse effect in the troposphere & — unlike water — able
to make it to the stratosphere (liquid only at —161.5 °C at 1 atm)
» oxidizes into CO2 and HoO  (CH4 + 202 = CO2 + 2H20)

» H>O forms PSCs

= further warms the poles.


https://en.wikipedia.org/wiki/Degree_Celsius
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PSCs: stratospheric temperature & circulation
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PSCs: stratospheric temperature & circulation

Temperature Zonal Wind
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PSCs: stratospheric temperature & circulation

Temperature Zonal Wind
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Polar stratospheric clouds in equable climate 2.0

On the feedback of stratospheric clouds on polar climate

Daniel B. Kirk-Davidoff, Daniel P. Schrag, and James G. Anderson 2002

The propose feedback:

warmer climate,

= \wvarmer troposphere in polar areas

= |[ower equator-to-pole temperature difference
= \weaker mid-latitude weather systems

= \Wweaker wave propagation into the stratosphere
= Wweaker Brewer-Dobson circulation

= colder poles in Stratosphere

=» more PSC

= \warmer troposphere in polar areas
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Polar stratospheric clouds: TEM and B-D circulation

x B 5 9 f02 9
q"g”[v G (Nzaz)}”'

- 0q _ _ w2 _ 9y
8t+J(W,Q)—O, {-V ’W, b—foa—z,

Understanding the driving of
Vallis AOFED the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation

x B 5 9 f02 9
q‘ﬂ”[v G (Nzaz)}”'

L+ I(g) =0, £ =Yy, b= foa_f’

' Ot

b
-+ J(W,b) + wN?* = J,

Understanding the driving of
Vallis AOFED the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation

x B ) 9 fOZ 9
e | () |

{a—q+J(w,q)=0, ¢ = V2, beO—W

0
| 01 dz

0b
EJrJ(w,b)erNz:J,

d d ( Jfo
Tl — g b
T =+ g (457

Understanding the driving of
Vallis AOFED the B-D circulation by wave flux



Eli Tziperman, EPS 231, Climate dynamics

Polar stratospheric clouds: TEM and B-D circulation

x B ) 9 fOZ 9
q‘ﬁ”[v G (Nzaz)}”'

{a—q+J(w,q)=0, ¢ = V2, beO—W

0
| 01 dz

0b

E‘F'j(wab)_l_wNz:J,
—_— ) ( fo

v'q = —@u’v’ + - (N2 v’b’)

‘ F=—-uvj+ %v’b’k
Ellassen-Palm
flux

Vg =V Fe

Understanding the driving of
Vallis AOFED the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation

x B ) 9 fOZ 9
e | () |

{a—q+J(w,q)=0, ¢ = V2, beO—W

0
| 01 dz

0b

E‘F'j(wab)_l_wNz:J,
B ) ( fo

v'q = —@u’v’ + - (N2 v’b’)

‘ F=—-uvj+ %v’b’k
Ellassen-Palm
flux

Vg =V Fe

. 0 |
s dy (N 2 vlb/) Understanding the driving of
Vallis AOFED the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation
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wh =w + TAE v Understanding the driving of

Vallis AOFED the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation
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Polar stratospheric clouds: TEM and B-D circulation

x a f2 a
— VZ 0
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b
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Vallis AOFD
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wave forcing
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Eliassen-Palm

Understanding the driving of
the B-D circulation by wave flux
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Polar stratospheric clouds: TEM and B-D circulation
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s dy (N 2 vlb/) Understanding the driving of
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In-class workshop

fo 0

+82

(

NZ2 0z

)

given the above, and the fact that the eddy flux of PV is from high tc

low values of g because it is a conserved quantity, what is the
direction of the Brewer-Dobson circulation
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In-class workshop

N IEAY 0L, __
q=By+ |V + o (]\;)282) V. Z/t: foU* + Vg +F

given the above, and the fact that the eddy flux of PV is from high tc

low values of g because it is a conserved quantity, what is the
direction of the Brewer-Dobson circulation
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Considering more carefully vertical wave propagation
in equable climate (Korty and Emanuel)
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Polar stratospheric clouds: vertical wave propagation
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vertical propagation

N class workshop

Consider the equation 2
2p —
@ —|— m @ = O,

N2
m2_ ( ,3 _K2_y2),

- f02 uUu—=c

y? = fo/(4N?H?) = 1/(2Lg)*

A. Analytically: for what values of u do we expect vertical
propagation, assuming stationary waves (@ = 0)

B. Suppose N =2 %X 1072 s~ H = 7 km, and i1 = 40 m/s, f, at
O60N. what values of k propagate”? We want that in units of n,
where n = kL /2m and L, is the length of the equator.
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Polar stratospheric clouds: vertical wave propagation

g Y’ = Re ¥/ (z) sin lyekx—et)
1/2
00) =76 (L) = e

Pr(0)
d?o

@4—7]42@:0,

N2 [ B
k=7 (e-xr)

y? = fo/(4N?H?) = 1/(2L4)*

g vertical propagation: if m? > 0

Vallis AOFD
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Polar stratospheric clouds: vertical wave propagation

g ¥’ = Re(z)sinlye’ 0, stationary waves: ¢ = 0

120

_ 1/2 N . . .
00) =76 (L) = e ® =ck =0 | 1228
Pr(0) :B =2
80F. 0<uc<
2 —_
d—q>+m2d5=0, £ K2 +y?
de ; Evanesce
.; N2 s 40
gmz = f02 (ﬁé C - K2 - )/2) ’ Tg Propagate;\\\
N
y: = J3/@GNH?) = 1/(2Ly)?
¥ | | . D Vallis AOFD
£ vertical propagation: if m= > 0 ~40; 5 Z : : ”
Wavenumber

Figure 13.7 The boundary between propagating and evanescent
waves as a function of zonal wind & wavenumber, using (13.61),
for N=2x10-2s-1, y = 1.6 (y = 2) corresponding to a scale height
of 7 km (5.5 km); deformation radius NH/f of 1,400 km (1,100 km).
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PSCs: surprising wave propagation into stratosphere in equable climate
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PSCs: surprising wave propagation into stratosphere in equable climate
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PSCs: surprising wave propagation
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INnto stratosphere in equable climate
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INnto stratosphere in equable climate
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Brewer-Dolbson circ. projected to strengthen in a future warmer climate

Trend in upwelling mass flux

Figure 8. Projected trends in tropical upwelling in
percent per decade based on a linear fit to the
years 2006-2099 from RCP8.5 scenario
simulations of eight stratosphere-resolving GCMs.
The black line is the multi-model mean with the
shading showing the inter-model standard error, 30
scaled to represent a 95% confidence interval.

o

Pressure (hPa)

0L NS S

Mass Flux trend (percent/decade)

1. Changes in the Brewer-Dobson circulation are mainly a response to the
tropospheric warming, including the concomitant SST changes, and not the
direct radiative effect of increasing GHG amounts cooling the stratosphere.

Butchart 2014
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circulation in RCP-type model projections.
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1. Changes in the Brewer-Dobson circulation are mainly a response to the
tropospheric warming, including the concomitant SST changes, and not the
direct radiative effect of increasing GHG amounts cooling the stratosphere.

2. Both resolved & parameterized unresolved gravity waves drive a stronger BD
circulation in RCP-type model projections.

3. Currently, there is no consensus on the mechanism of the increase in
stratospheric wave drag from resolved planetary & synoptic-scale Rossby waves.
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Brewer-Dobson circ. projected to strengthen in a future warmer climate

Trend in upwelling mass flux

Figure 8. Projected trends in tropical upwelling in
percent per decade based on a linear fit to the
years 2006-2099 from RCP8.5 scenario
simulations of eight stratosphere-resolving GCMs.
The black line is the multi-model mean with the
shading showing the inter-model standard error, 30
scaled to represent a 95% confidence interval.
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1. Changes in the Brewer-Dobson circulation are mainly a response to the
tropospheric warming, including the concomitant SST changes, and not the
direct radiative effect of increasing GHG amounts cooling the stratosphere.

2. Both resolved & parameterized unresolved gravity waves drive a stronger BD
circulation in RCP-type model projections.

3. Currently, there is no consensus on the mechanism of the increase in
stratospheric wave drag from resolved planetary & synoptic-scale Rossby waves.

4. The mechanism may be related to a shift in critical layer where wave breaking
occurs, due to eastward acceleration & upward movement of the subtropical jets

Butchart 2014



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea

e P flux into the stratosphere may not decrease even for very weak
meridional surface temperature gradient, although synoptic-scale
wave forcing is weaker



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea

e P flux into the stratosphere may not decrease even for very weak
meridional surface temperature gradient, although synoptic-scale
wave forcing is weaker

® The reason is that wavenumber #3 may be able to propagate
vertically



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea

e P flux into the stratosphere may not decrease even for very weak
meridional surface temperature gradient, although synoptic-scale
wave forcing is weaker

® The reason is that wavenumber #3 may be able to propagate
vertically

= B-D circulation would then not weaken.



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea

e P flux into the stratosphere may not decrease even for very weak
meridional surface temperature gradient, although synoptic-scale
wave forcing is weaker

® The reason is that wavenumber #3 may be able to propagate
vertically

= B-D circulation would then not weaken.

e Also: future warm climate projections show a strengthening of the
Brewer-Dobson circulation.



Eli Tziperman, EPS 231, Climate dynamics

Summary of obstacles for Polar Stratospheric Clouds dynamical
feedback idea

e P flux into the stratosphere may not decrease even for very weak
meridional surface temperature gradient, although synoptic-scale
wave forcing is weaker

® The reason is that wavenumber #3 may be able to propagate
vertically

= B-D circulation would then not weaken.

e Also: future warm climate projections show a strengthening of the
Brewer-Dobson circulation.

= Dynamical feedback that was proposed to cool the Arctic polar
stratosphere and allow PSCs to develop is running into difficulties.
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Stronger hurricanes
strongir AMOC

QT D ' Warmer high
) latitudes

o (K. Emanuel, 2002)
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Hurricanes and ocean mixing

The proposed feedback:

warmer climate, stronger Hurricanes

= stronger internal waves forced at the ocean surface
= propagate into deep ocean interior and break

= stronger deep ocean diapycnal mixing

=» Stronger meridional overturning circulation

=» Higher meridional heat flux into arctic

= \Narmer Arctic, tropics warm less due to high COo

K. Emanuel 2002
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notes
Potential intensity:
Estimating hurricane strength from SST
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Hurricanes and ocean mixing

Entropy reminder

Consider a container with fluid, divided into two equal parts with
temperatures Tn > Tc . Removing the divider, the temperature will eventually

be homogenized to (T + Ty )/2. During the process, the infinitesimal
change in entropy due to the transfer of an infinitesimal amount of heat dQ

> 0 between the two systems leads to a gain dQ for the cold system and a
loss of dQ for the hot system (gain of —dQ); thus the entropy change is

d0 —d T,—T
gs=L 79 _ ol
T. T, T T,

SO the increase in entropy is because temperature flows from the hot
reservoir to the cold one.


http://galileoandeinstein.phys.virginia.edu/more_stuff/Applets/carnot_cycle/carnot_cycle.html
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Hurricanes and ocean mixing

notes: Carnot engine

P
T

Adiabatic Expansion

No heat exchange

http://galileocandeinstein.phys.virginia.edu/more stuff/Applets/carnot cycle/carnot cycle.html
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Hurricanes and ocean mixing

notes: Carnot engine

P
T

Adiabatic Expansion

No heat exchange

http://galileocandeinstein.phys.virginia.edu/more stuff/Applets/carnot cycle/carnot cycle.html
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Hurricanes and ocean mixing

ot . .
) isothermal compression

¢ | - =TT T T T T T T I and radiative cooling
adiabafic/expansion ,~ ,,1
} and cdofing g 0
{

Hurricane as a heat
; adialpftic engine, used to estimate

1 copfipression

iy wind strength as a
%;7;2 function of SST

ay
/////////
- 7 ///_LL.LII -

isothermal expansion, gaining energy from suface” —

Figure 1 The hurricane Carnot cycle. Air begins spiraling in toward the storm center at point
a, acquiring entropy from the ocean surface at fixed temperature T. It then ascends
adiabatically from point ¢, flowing out near the storm top to some large radius, denoted
symbolically by point 0. The excess entropy is lost by export or by electromagnetic to
space between o and o’ at a much lower temperature To. The cycle is closed by integrating
along an absolute vortex line between o’ and a. The curves c-0 and 0’-a also represent
surfaces of constant absolute angular momentum about the storm’s axis. Emanuel 1991
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Efficiency of a Carnot cycle

The first law of thermodynamics, energy conservation dU = dQ — dW
dU: change in the internal energy

dQ: heat gain due to exchange of heat with an outside reservoir;

dW: is the work done by the system

Therefore:

for a Carnot engine
W = fI;dW = ﬂgpdv = <J‘>(dQ —dU) = <JE(TdS — a;[f) = (Ty — T.)(Sz — S,

Now, integrate dQ = TdS to find that

The total amount of thermal energy transferred between the hot reservoir and the system will be

Qu = Tu(Sp — Sa)

and the total amount of thermal energy transferred between the system and the cold reservoir will be

Qc = Tc(Sp — Sa) b
The efficiency 7} 1is defined to be: T W= Qc
w_, T Iy —1¢ 2
=—=1-—— orn = o
7 Qn TH ;7 Ty
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Hurricanes and ocean mixing
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FIG. 8. Dependence of meridional overturning streamfunction
on vertical diffusivity.

Frank Brian 1987

AMOC depends on vertical diapycnal mixing to the third power
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Hurricanes and ocean mixing
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FIG. 2. Total ocean heat fluxes f ASST (C)

simulations with uniformly weak , ,
mixing and 338 ppm CO, (dotted), FIG. 4. Change in SSTs for runs with 3380 ppm

CO, between (a) a simulation with elevated

tropical mixing to 220 m and the control (uniformly
weak mixing) and (b) a simulation with elevated

. tropical mixing to 360 m and the control. ()

CO, (dashed), and elevated tropical Change in zonally averaged SST for the

mixing to 360 m and 3380 ppm simulations shown in panels (a) (solid) and (b)
CO, (dashed—-dotted). (dashed).

uniformly weak mixing and 3380
ppm CO, (solid), elevated tropical

mixing to 220 m and 3380 ppm

Korty and Emanuel 2008

BUT: Enhanced vertical diapycnal mixing has a negligible effect on SST
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Breakup of subtropical stratocumulus
cloud decks at high SST

Causing albedo decrease and
warming of mid-latitudes

. o R
Schneider et al 201 9, (Bretherton et al) https://www.shutterstock.com/image-photo/aerial-view-layer-stratocumulus-clouds-369408491
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Breakdown of subtropical stratocumulus decks

Stratocumulus clouds at present:

® (Cover broad regions (6.5% of Earth
area) over the subtropical oceans.

® (Characterized by lines, waves, and
cellular structures.

Stratocumulus clouds from a plane

http://www.pilotfriend.com/training/flight_training/met/clouds.htm

® Radiative cooling from the cloud
tops drives convection to surface,
that replenishes liquid water in
these clouds.

® (Can often be seen out of an
airplane window while flying.

e Large SW albedo, strong
cooling effects on climate.



http://www.pilotfriend.com/training/flight_training/met/clouds.htm
https://visibleearth.nasa.gov/images/98570/clouds-in-eastern-south-pacific-ocean?size=small

Stratocumulus cloud model bias leads to significant SST errors

mean =-1.19 rms =9.14

-50 40 -30 20 -15 .10 5 0 5 10 15 20 30 40 50

shortwave CRF: model'minus observations

5 4 321012 3 45
Model SST minus observations (°C)

G. Danabasoglu et al 2020,
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001916

Stratocumulus cloud cover [annual mean] Insufficient data

[

0 5 10 15 20 25 30 35 40 45 50 55 60

observed stratocumulus cloud fraction (%)

SST error (difference between model and observations) is large, ~2.5C in regions with
underestimated stratocumulus cloud cover


https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001916
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Breakdown of subtropical stratocumulus decks

400 ppm

Cloud
resolving
simulation:

decks break

at high CO2  reoopem

ARl

Possible climate transitions from breakup of stratocumulus decks

under greenhouse warming
Tapio Schneider '2*, Colleen M. Kaul' and Kyle G. Pressel' 2020 Schneider et al 2020
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Kdown of subtropical stratocumulus decks
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Possible climate transitions from breakup of stratocumulus decks

under greenhouse warming
Tapio Schneider '#*, Colleen M. Kaul' and Kyle G. Pressel

2020 Schneider et al 2020



Breakdown of subtropical stratocumulus decks

Tropical column Subtropical LES domain

Insolation
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Schneider et al 2020



Breakdown of subtropical stratocumulus decks

Tropical column Subtropical LES domain

Fig. 1 | Simulated subtropical clouds for 400 ppm CO,, 1,200

ppm, and after breakup (1,300 ppm). In stratocumulus clouds, LW
cooling of cloud tops propels air parcels downward, convectively
coupling clouds to surface moisture source. Turbulence entrains
warm & dry air across the inversion, counteracting radiative cooling
& convective moistening of cloud layer. At high CO, (& H,O) LW

cooling of cloud tops weakens, bec downwelling LW arrives from
lower levels/ higher temperatures = decks break up into cumulus
clouds, leading to dramatic albedo change & surface warming.
Evaporation increases & LW cooling at cloud tops drops to < 10%.

‘ Short- an ensible Evaporation ‘ Evaporation I:vaporaflon

iiiiiiiiiiiiiiiiiiii

Tropical temperature Subtropical temperature Subtropical temperature ~ Subtropical temperature
300 K 290 K 294 K 305K
306 K ' |
315K

Schneider et al 2020
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Breakdown of subtropical stratocumulus decks

Mechanism of breakup at high CO::
Higher CO2: » downwelling LW toward cloud tops 1 (increased

atmc emissivity » ¢ L\W coming from lower/warmer altitudes)

= decreased cloud top cooling = decoupling from surface
= clouds dissipate

Schneider et al 2020
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Breakdown of subtropical stratocumulus decks

Mechanism of breakup at high CO::
Higher CO2: » downwelling LW toward cloud tops t (increased

atmc emissivity » ¢ L\W coming from lower/warmer altitudes)

= decreased cloud top cooling = decoupling from surface

= clouds dissipate

[paper mentions a 2nd mechanism: high T = enhanced evaporation
= more turbulence at cloud level due to latent heat release = more
entrainment = warming/drying & decoupling;

But: with clouds gone, is there still latent heat release?]

Schneider et al 2020
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Breakdown of subtropical stratocumulus decks

Mechanism of breakup at high CO::
Higher CO2: » downwelling LW toward cloud tops 1 (increased

atmc emissivity » ¢ L\W coming from lower/warmer altitudes)

= decreased cloud top cooling = decoupling from surface

= clouds dissipate

[paper mentions a 2nd mechanism: high T = enhanced evaporation
= more turbulence at cloud level due to latent heat release = more
entrainment = warming/drying & decoupling;

But: with clouds gone, is there still latent heat release?]

Consequences of stratocumulus breakup:
Subtropical SST jumps by 10K. Subtropical marine stratocumulus clouds cover ~6.5%

of Earth’s surface & reduce absorbed SW by ~110 W m™, compared to ~10 Wm™ by
scattered cumulus. With climate sensitivity of 1.2 K (Wm™)"" (4.8 K/CO2 doubling; high

for current GCMs) implies (110-10) Wm™ x 6.5% x 1.2 K (Wm™)™' = 8 K global-mean
surface warming (stratocumulus clouds cover ~6.5% of Earth area). This seems to

assume an infinitely efficient heat transport to the rest of the globe. Schneider et al 2020
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Arctic air suppression over high latitude land

B338888a32

By low cloud forming due to
moisture arriving from over warmer

ocean Cronin & Tziperman 2015
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Arctic air suppression

Arctic air formation

800 A

Single-column model (WRF) simulation of
polar air formation with initial 2-m air
temperature T,(t=0) = 0° C. Simulating an

air column going from ocean to over high-
latitude land during winter, no solar forcing.

Results: surface temperature cools by
about 60C in two weeks, strong inversion
develops.

-40 -20
Temperature ( C)

(following Judith Curry 1983)

Cronin and Tziperman 2015



Arctic air formation - mechanism

Arctic air formation for present-day initial conditions - mechanism

C Single-column simulation of polar air

formation with initial 2-m air
temperature T,(t=0) = 0° C
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Arctic air formation for present-day initial conditions - mechanism

C o Single-column simulation of polar air
pYR——— 5 formation with initial 2-m air
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Arctic air formation for present-day initial conditions - mechanism

C o Single-column simulation of polar air
o — o < formation with initial 2-m air
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Arctic air formation - mechanism

Arctic air formation for present-day initial conditions - mechanism

C Single-column simulation of polar air

formation with initial 2-m air
temperature T,(t=0) = 0° C
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Arctic air suppression

Suppression of Arctic air formation for
warmer initial conditions (warmer ocean)

B
. \\\\ | Single-column
. wl - simulation of polar air

5 ™ - formation with initial

—
o
<
=

© 800 -

2m air temperature
_ T,(t=0) = 20° C instead
| of 0° C

1000 A

o
S 850

i

-20 0 20
Temperature (°C)

Day-1 cooling similar to cold initial conditions, but further
surface cooling suppressed by LW effects of a liquid low
cloud cloud layer!

Cronin and Tziperman 2015
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Arctic air suppression

Suppression of Arctic air formation for warmer initial conditions -

mechanism
C
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Day-1cooling similar to cold initial conditions, but further surface
cooling suppressed by LW effects of a liquid low cloud cloud layer!

Cronin and Tziperman 2015
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Arctic air suppression

Suppression of Arctic air formation for warmer initial conditions -
mechanism
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Day-1cooling similar to cold initial conditions, but further surface
cooling suppressed by LW effects of a liquid low cloud cloud layer!

Cronin and Tziperman 2015
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Arctic air suppression

Suppression of Arctic air formation for warmer initial conditions -
mechanism

C
Temperature f
plateau, coolir]
surpassed
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Single-column simulation of polar
air formation w/initial 2-m air
temperature T,(t=0) = 20° C
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Day-1cooling similar to cold initial conditions, but further surface
cooling suppressed by LW effects of a liquid low cloud cloud layer!

Cronin and Tziperman 2015
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Arctic air suppression

Suppression of Arctic air formation for warmer initial conditions -

Temperature f
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cooling suppressed by LW effects of a liquid low cloud cloud layer!

Cronin and Tziperman 2015
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Arctic air suppression

Time-to-freezing increases nonlinearly w/initial (ocean) temperature
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Initial 2-m air temperature, T5(0) (°C)

Cronin and Tziperman 2015



Time-to-freezing increases nonlinearly w/initial (ocean) temperature
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Arctic air suppression
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Time-to-freezing increases nonlinearly w/initial (ocean) temperature

Cold initial T
conditions e
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Arctic air suppression
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Time-to-freezing increases nonlinearly w/initial (ocean) temperature

Cold initial T
conditions e
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Arctic air suppression
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Arctic air suppression

Time-to-freezing increases nonlinearly w/initial (ocean) temperature
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Time-to-freezing increases nonlinearly w/initial (ocean) temperature
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cooling due to
low clouds
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Arctic air suppression
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Initial 2-m air temperature, T5(0) (°C)

0 5 10

Time-to-freezing increases rapidly for T,(t=0)>10C because plateau
occurs above freezing point then and keeps T,>0 for a few days.

Cronin and Tziperman 2015



Arctic air suppression in a 3-dimensional atmospheric GCM
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Arctic air suppression in a 3-dimensional atmospheric GCM

Pl T2m_1%min degC

|d ’[ 0 1 T2rTl1 PDF at 615N 100W 1
Ccolaes T
1€) ;
2m T for 8 -
Pl S 3
a 4 L
coldest a ;
2m T for ° g
warm o . - < K i -60 -40 20 0 25

SST 0 90E 180 90w 0 C
-45 -30 -15 0 15 30 45
Warmer SST
Coldest temperatures warm (mean&pdf), Hu, Cronin,

Tziperman, 2018



Arctic air suppression in a 3-dimensional atmospheric GCM
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more low clouds over land,



Arctic air suppression in a 3-dimensional atmospheric GCM

SST

Warmer SST“:

90S = T T T
0 90E 180 20w

-30-20-10 0 10 20 30

coldest
2m T for
Pl

coldest
2m T for
warm
SST

0

T2m_1%min degC

90E 180 90W 0

NN T [ T T [T
-45 -30 -15 0 15 30 45

Coldest temperatures warm (mean&pdf),
more low clouds over land,

T profile without inversion

PDF (%)

Pressure (hPa)

T2m PDF at 65N 100W
R T R S

200

400

600

800

1000 -

Tziperman, 2018

1C) :
: :—
-60 -40 OC-ZO 0 20
Temperature at 65N 100W (°C)
L 1 PR L 1 L L L 1 L L L 1 L L L
] e)

T T T X

-60 -40 -20 0 20
Hu, Cronin,



Arctic air suppression in a 3-dimensional atmospheric GCM
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Arctic convective cloud feedback

i : high cloud

tert 1 CIO
‘éve"e‘peﬁrgﬂf =) cMISSIVity/ = Warmer | (6)
convection greenhouse winter Arctic

effect Abbot & Tziperman 2008
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Arctic convective cloud feedback: idea & outline

Idea:
~In a warm climate, deep convection—which today occurs mostly
in the tropics—may occur in the Arctic during polar night (&)

o Convective cloud greenhouse effect keeps winter Arctic ice-free.
oWarmer Arctic warms temperature minima at nearby continents.
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Arctic convective cloud feedback: idea & outline

Idea:
~ln a warm climate, deep convection—which today occurs mostly

- =~

in the tropics —may occur in the Arctic during polar night (&)

o Convective cloud greenhouse effect keeps winter Arctic ice-free.
o Warmer Arctic warms temperature minima at nearby continents.

Outline:

1. Moist Static Energy, calculating MSE conserving T profile.

2. Moist convection: Lift Condensation Level, Level of Free
Convection, Level of Neutral Buoyancy.

3. Condition on stability to convection between the surface (z=0)
and a height z based on MSEs vs MSE'(2):

MSEparcel(Z) _ MSE*,parcel(Z) — ]wSEwparcel(Z — O)
4. 2-level model formulation.

5. The solution, multiple equilibria, and hysteresis.
6. GCM verification.
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Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)

A 2-level energy balance model with convective heat flux:
CSdTS/dt = FS — Fc —+ EUT;L — O'T;l’
CodT,/dt = Fy + F, + eo (T, — 2T,). 200mb

Fe

1000 mb T
S

Ocean and Land
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Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)
foT? 52
Free Troposphere % Ta

A 2-level energy balance model with convective heat flux:
CSde/dt = FS — Fc —+ EUT;L — O'T;l’
CodT,/dt = Fy + F, + eo (T, — 2T,). 200mb

convection occurs when moist static
Energy (MSE) satisfies

Fe

MSE; = CpTs + gzs + Lrg
MSE, =C,T, 4+ gz, + Lr;
MSE, > MSE; 1000 mb T,

Ocean and Land
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Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)
{oT? gif
Free Troposphere % Ta

A 2-level energy balance model with convective heat flux:
CSdTS/dt = FS — Fc —+ eo'Ta4 — O'T;l’
CodTy/dt = Fy + F. + eo(Ty — 2T,,). 200mb

convection occurs when moist static
Energy (MSE) satisfies

Fe

MSE; = CpTs + gzs + Lrg
MSE, =C,T, 4+ gz, + Lr;
MSE, > MSE; 1000 mb T,

Ocean and Land

Without convection, find two
temperatures from:

0=F,+eoT? — 0T,
0= F, +eo(Ty — 2T,5),



Eli Tziperman, EPS 231, Climate dynamics

Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)

A 2-level energy balance model with convective heat flux:
CSdTS/dt = FS — Fc —+ eo'Ta4 — O'T;l’
CodTy/dt = Fy + F. + eo(Ty — 2T,,). 200mb

convection occurs when moist static
Energy (MSE) satisfies

F

, T,

Free Troposphere

foT? §in
R

Fe

vl

MSE; = CpTs + gzs + Lrg
MSE, =C,T, 4+ gz, + Lr;
MSE, > MSE; 1000 mb T,

Ocean and Land

With convection: cloud emissivity increases: &

found from
€ = €0 ‘|’A€ FcyTaaTs
0=F,—F,+éT: —oT5,
0=F,+ F,.+éo (T —2T75,),
CpTso+ Lrso = Cpylys + Lo + g2,

Without convection, find two
temperatures from:

0=F,+eoT? — 0T,
0= F, +eo(Ty — 2T,5),
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Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)

Results for surface temperature: multiple equilibrial

300

290

280

270

(a )T [K] »
F
convecting = UT4 .
200 mb
Free Troposphere %
F
. F,
on-convecting
< = 1000 mb
Multiple-equiliorial oceananatana L g
02 04 06
€ < ~CO,

Note: must check self-consistency of sol’n with/without convection
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Multiple equilibria due to convective cloud feedback

(Abbot & Tziperman 2009)

Show reviews & then the following slide with GCM results supporting
this mechanism



Sack to the future




Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial
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Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial
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Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial

Sea ice gone/
unchanged
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Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial

Srfc Temp up/
unchanged

Sea ice gone/
unchanged
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Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial

Sea ice gone/ Srfc Temp up/
unchanged unchanged

Cloud CRF up/

unchanged
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Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial
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Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) models, at x4 CO,; anomaly from pre-industrial

Srfc Temp up/ Cloud CRF up/

unchanged

Convection up/
unchqnged

Sea ice gone/

unchanged unchanged

§ "'0 n% 7
& 7 7
oy ‘u‘. il
& N g o) : -
0 o°
| 0 R | L R
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- [PCC NCAR 3d model behaves like toy model!!



Enticing 3D IPCC Model Simulations

Consider the NCAR & GFDL 3d coupled ocean-atmosphere state-of-
the-art (2009...) mpodels, at x4 CO,; anomaly from pre-industrial
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Equable climate summary

back to two initial overview slides with 6 mechanisms
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The End



