10 Review of nonlinear dynamics concepts covered in the course

1. One-parameter bifurcations:

(a) 1d: saddle node,

X =pu—x
transcritical,
% = pux — x°
pitchfork: super-critical and sub-critical.
X =ux— x>
X =ux—+ X —x

(b) Hysteresis in the case of two back-to-back saddle node bifurcations, and in the case of
a subcritical pitchfork.

(c) 1d bifurcations in higher dimensional systems
(d) 2d: Hopf, super-critical

F=ur— r
0=+ br

and sub critical.
F=ur+ PP
0=+ br’
(e) Hysteresis in subcritical Hopf.

2. Nonlinear phase locking via analysis of flows on a circle, firefly and flashlight.

3. Two-parameter bifurcation: quasi-periodicity route to chaos in circle map.
0 0, +Q in(270,,)
= — —sin
n+1 n m n

4. Relaxation oscillation, analysis via nullclines of the Van der Pol oscillator,
¥—u(1—x)i4+x=0

5. Saddle node bifurcation of cycles.
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(1) f(x) and g(x) are continuously @ntiable for all x;

(2) g(=x)=-g(x) forall x (i.e., g(x) is an odd function);
3) g(x)>0 forx>0;
(4) f(=x)= f(x) forall x (i.e., f(x) is an even function);

(5) The odd function F(x) =J f(u)du has exactly one positive zero at x =a,
0
is negative for 0.< x <a, is positive and nondecreasing for x>a, and
F(x) > as x = o0,
Then the system (2) has a unique, stable limit cycle surrounding the origin in the
phase plane.

This result should seem plausible. The assumptions on g(x) mean that the
restoring force acts like an ordinary spring, and tends to reduce any displacement,
whereas the assumptions on f(x) imply that the damping is negative at small |x|
and positive at large |x| Since small oscillations are pumped up and large oscilla-
tions are damped down, it is not surprising that the system tends to settle into a

self-sustained oscillation of some intermediate amplitude.

EXAMPLE 7.4.1:

Show that the van der Pol equation has a unique, stable limit cycle.

Solution: The van der Pol equation X + y1(x* —1) X+ x = 0 has f(x)=pu (x> -1)
and g(x) = x, so conditions (1)—(4) of Liénard’s theorem are clearly satisfied. To

check condition (5), notice that
F(x)=p(4x’ —x)=4px(x*-3).

Henceé condition (5) is satisfied for a =+/3 . Thus the van der Pol equation has a
unique, stable limit cycle. m

There are several other classical results about the existence of periodic solutions
for Liénard’s equation and its relatives. See Stoker (1950), Minorsky (1962), An-
dronov et al. (1973), and Jordan and Smith (1987).

7.5 Relaxation Oscillations

It’s time to change gears. So far in this chapter, we have focused on a qualitative
question: Given a particular two-dimensional system, does it have any periodic solu-
tions? Now we ask a quantitative question: Given that a closed orbit exists, what can
we say about its shape and period? In general, such problems can’t be solved exactly,
but we can still obtain useful approximations if some parameter is large or small.

7.5 RELAXATION OSCILLATIONS 211



We begin by considering the van der Pol equation
¥+pu(x*-Dx+x=0

for 1 >>1. In this strongly nonlinear limit, we’ll see that the limit cycle consists
of an extremely slow buildup followed by a sudden discharge, followed by another
slow buildup, and so on. Oscillations of this type are often called relaxation oscil-
lations, because the “stress” accumulated during the slow buildup is “relaxed” dur-
ing the sudden discharge. Relaxation oscillations occur in many other scientific
contexts, from the stick-slip oscillations of a bowed violin string to the periodic
firing of nerve cells driven by a constant current (Edelstein—Keshet 1988, Murray

1989, Rinzel and Ermentrout 1989).

EXAMPLE 7.5.1:

Give a phase plane analysis of the van der Pol equation for u>>1.
Solution: Tt proves convenient to introduce different phase plane variables from
the usual “x =y, y=...”. To motivate the new variables, notice that

X+ ux(x*=1) =g;(x+ﬂ[_%x3 —x]).
So if we let
F(x)=1x’-x, w=x+UF(x), (1)
the van der Pol equation implies that
Ww=x+ux(x*=1)=-x. (2)
Hence the van der Pol equation is equivalent to (1), (2), which may be rewritten as

i=w—pF(x)
W=—x. (3)

One further change of variables is helpful. If we let

Y=
7]

then (3) becomes

x=p[y-Fx)]
y=—ux. (4)
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Now consider a typical trajectory in the (x,y) phase plane. The nullclines are
the key to understanding the motion. We claim that all trajectories behave like that
shown in Figure 7.5.1; starting from any point except the origin, the trajectory zaps
horizontally onto the cubic nullcline y = F(x). Then it crawls down the nullcline
until it comes to the knee (point B in Figure 7.5.1), after which it zaps over to the
other branch of the cubic at C. This is followed by another crawl along the cubic

y
y=F(x)
D
slow
X
C
fast
Figure 7.5.1

until the trajectory reaches the next jumping-off point at D, and the motion contin-
ues periodically after that.

To justify this picture, suppose that the initial condition is not too close to the
cubic nullcline, i.e., suppose .y — F(x) ~ O(1). Then (4) implies |x|~ O(u) >> 1
whereas |y|~ O(1™") <<1; hence the velocity is enormous in the horizontal di-
rection and tiny in the vertical direction, so trajectories move practically hori-
zontally. If the initial condition is above the nullcline, then y— F(x) >0 and
therefore x > 0 ; thus the trajectory moves sideways toward the nullcline. How-
ever, once the trajectory gets so close that y— F(x)~ O(1 ), then x and y be-
come comparable, both being O(u™'). What happens then? The trajectory
crosses the nullcline vertically, as shown in Figure 7.5.1, and then moves
slowly along the backside of the branch, with a velocity of size O(u™"), until it

reaches the knee and can jump sideways again. m

This analysis shows that the limit cycle has two widely separated time scales:
the crawls require At ~ O(i) and the jumps require At ~ O(u"'). Both time scales
are apparent in the waveform of x(#) shown in Figure 7.5.2, obtained by numerical
integration of the van der Pol equation for x4 =10 and initial condition

(xoayO) = (270)

7.5 RELAXATION OSCILLATIONS 213
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Figure 7.5.2

EXAMPLE 7.5.2:
Estimate the period of the limit cycle for the van der Pol equation for ,u'>> 1.
Solution: The period T is essentially the time required to travel along the
two slow branches, since the time spent in the jumps is negligible for large u .

B
By symmetry, the time spent on each branch is the same. Hence T =2| dr. To
Ia

derive an expression for df, note that on the slow branches, y= F(x) and

thus

dy , . dx ) dx
—_— F —_—= - 1 I
2 P = -by

But since dy/dt = —x /i from (4), we find dx/dt = —x /p(x* —1). Therefore

e
dt~——x—dx (5)

on a slow branch. As you can check (Exercise 7.5.1), the positive branch begins at
x, =2 and ends at x, =1. Hence

o 2 2
r=2f ZE i -nar=2u/ x| =u[3-2m2], ()
2 X 2

1
which is O(u) as expected. m

The formula (6) can be refined. With much more work, one can show that
T=u[3-2In2]+20u™"""+ ..., where or=2.338 is the smallest root of
Ai(—a) = 0. Here Ai(x) is a special function called the Airy function. This correc-
tion term comes from an estimate of the time required to turn the corner between
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the jumps and the crawls. See Grim (1990, pp. 161-163) for a readable de-
rivation of this wonderful formula, discovered by Mary Cartwright (1952). See
also Stoker (1950) for more about relaxation oscillations.

One last remark: We have seen that a relaxation oscillation has two time scales
that operate sequentially—a slow buildup is followed by a fast discharge. In the
next section we will encounter problems where two time scales operate concur-
rently, and that makes the problems a bit more subtle.

7.6 Weakly Nonlinear Oscillators
This section deals with equations of the form
X+x+é€h(x,x)=0 (1)

where 0 < €<<1 and A(x, x) is an arbitrary smooth function. Such equations repre-
sent small perturbations of the linear oscillator x + x =0 and are therefore called
weakly nonlinear oscillators. Two fundamental examples are the van der Pol

equation
it+x+e(x®-1)x=0, (2)
(now in the limit of small nonlinearity), and the Duffing equation
¥+x+ex’=0. (3)

To illustrate the kinds of phenomena that can arise, Figure 7.6.1 shows a com-
puter-generated solution of the van der Pol equation in the (x,x) phase plane, for
€ =0.1 and an initial condition close to the origin. The trajectory is a slowly wind-
ing spiral; it takes many cycles for the amplitude to grow substantially. Eventually

Figure 7.6.1
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regions of the phase plane rather thah\jus the neighborhood of a single fixed point.
Hence they are called global bifurcations. In this section we offer some prototypi-
cal examples of global bifurcations, and then compare them to one another and to
the Hopf bifurcation. A few of their scientific applications are discussed in Sec-

tions 8.5 and 8.6 and in the exercises.

Saddle-node Bifurcation of Cycles

A bifurcation in which two limit cycles coalesce and annihilate is called a fold
or saddle-node bifurcation of cycles, by analogy with the related bifurcation of
fixed points. An example occurs in the system

r=pur+ P =

0 =w+br’
studied in Section 8.2. There we were interested in the subcritical Hopf bifurcation
at i =0; now we concentrate on the dynamics for y <0.

It is helpful to regard the radial equation 7= pr+r’ — r’ as a one-dimensional
system. As you should check, this system undergoes a saddle-node bifurcation of
fixed points at y =—1/4. Now returning to the two-dimensional system, these
fixed points correspond to circular limit cycles. Figure 8.4.1 plots the “radial phase

portraits” and the corresponding behavior in the phase plane.

= o v
© &

p< g, w= g, 0>pu>p,

Figure 8.4.1

At u, a half-stable cycle is born out of the clear blue sky. As i increases it splits
into a pair of limit cycles, one stable, one unstable. Viewed in the other direction, a
stable and unstable cycle collide and disappear as 1 decreases through (. Notice
that the origin remains stable throughout; it does not participate in this bifurcation.

8.4 GLOBAL BIFURCATIONS OF CYCLES 261



4

For future reference, note that at birth the'\cyclehas O(1) amplitude, in contrast
to the Hopf bifurcation, where the limit cycle has small amplitude proportional to

(u—p)"
Infinite-period Bifurcation

Consider the system

r=r(l—- r2)

0 =p—sinb
where = 0. This system combines two one-dimensional systems that we have
studied previously in Chapters 3 and 4. In the radial direction, all trajectories (ex-
cept r* =0) approach the unit circle monotonically as t — . In the angular direc-
tion, the motion is everywhere counterclockwise if ©>1, whereas there are two

invariant rays defined by sin6 = if p <1.Hence as y decreases through u, =1,
the phase portraits change as in Figure 8.4.2.

5

u>1 u<l1
Figure 8.4.2

As u decreases, the limit cycle r =1 develops a bottleneck at 8 =/2 that be-
comes increasingly severe as [ — 1*. The oscillation period lengthens and finally
becomes infinite at g, =1, whena fixed point appears on the circle; hence the term
infinite-period bifurcation. For p<1, the fixed point splits into a saddle and a

node.
As the bifurcation is approached, the amplitude of the oscillation stays O(1) but
the period increases like (1 - p,)"™2, for the reasons discussed in Section 4.3.

Homoclinic Bifurcation

In this scenario, part of a limit cycle moves closer and closer to a saddle point.
At the bifurcation the cycle touches the saddle point and becomes a homoclinic or-
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bit. This is another kind of infinite-period bifurcation; to avoid confusion, we’ll
call it a saddle-loop or homoclinic bifurcation.
It is hard to find an analytically transparent example, so we resort to the com-
puter. Consider the system

i=y
y=uy+x—x> +xy.

Figure 8.4.3 plots a series of phase portraits before, during, and after the bifurca-
tion; only the important features are shown.

Numerically, the bifurcation is found to occur at y, = —0.8645. For u < p_, say
1 =-0.92, a stable limit cycle passes close to a saddle point at the origin (Figure
8.4.3a). As U increases to 1, the limit cycle swells (Figure 8.4.3b) and bangs into
the saddle, creating a homoclinic orbit (Figure 8.4.3c). Once u>pu,, the saddle
connection breaks and the loop is destroyed (Figure 8.4.3d).

@) s ®)

(©) (d)

=

Figure 8.4.3

The key to this bifurcation is the behavior of the unstable manifold of the sad-
dle. Look at the branch of the unstable manifold that leaves the origin to the north-
east: after it loops around, it either hits the origin (Figure 8.4.3c) or veers off to one
side or the other (Figures 8.4.3a, d).
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Scaling Laws

For each of the bifurcations given here, there are characteristic scaling laws that
govern the amplitude and period of the limit cycle as the bifurcation is approached.
Let u denote some dimensionless measure of the distance from the bifurcation,
and assume that y << 1. The generic scaling laws for bifurcations of cycles in two-
dimensional systems are given in Table 7.4.1.

Amplitude of
stable limit cycle Period of cycle
Supercritical Hopf ou'’?) oQ)
Saddle-node bifurcation o) o)
of cycles
Infinite-period oW ow™?
Homoclinic o) O(In )
Table 7.4.1

All of these laws have been explained previously, except those for the homo-
clinic bifurcation. The scaling of the period in that case is obtained by estimating
the time required for a trajectory to pass by a saddle point (see Exercise 8.4.12 and
Gaspard 1990).

Exceptions to these rules can occur, but only if there is some symmetry or
other special feature that renders the problem nongeneric, as in the following

example.

EXAMPLE 8.4.1:

The van der Pol oscillator ¥ + €x (x> —=1)+x =0 does not seem to fit anywhere
in Table 7.4.1. At € =0, the eigenvalues at the origin are pure imaginary (A = £i),
suggesting that a Hopf bifurcation occurs at £ = 0. But we know from Section 7.6
that for 0 < £ << 1, the system has a limit cycle of amplitude r = 2. Thus the cycle is
born “full grown,” not with size O(g"'?). as predicted by the scaling law. What’s the
explanation?

Solution: The bifurcation at € =0 is degenerate. The nonlinear term gxx’ van-
ishes at precisely the same parameter value as the eigenvalues cross the imaginary
axis. That’s a nongeneric coincidence if there ever was one!

We can rescale x to remove this degeneracy. Write the equation as X +x
+ex’i—ex=0.Let u® = ex? to remove the £-dependence of the nonlinear term.

Then u = £'"?x and the equation becomes
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Now the nonlinear term is not destroyed when the eigenvalues become pure imag-
inary. From Section 7.6 the limit cycle solution is x(z,€) = 2cost for 0 <& <<1.1In
terms of u this becomes

u(t, €) = (2\/E)cost.

Hence the amplitude grows like £, just as expected for a Hopf bifurcation. m

The scaling laws given here were derived by thinking about prototypical exam-
ples in two-dimensional systems. In higher-dimensional phase spaces, the corre-
sponding bifurcations obey the same scaling laws, but with two caveats: (1) Many
additional bifurcations of limit cycles become possible; thus our table is no longer
exhaustive. (2) The homoclinic bifurcation becomes much more subtle to analyze.
It often creates chaotic dynamics in its aftermath (Guckenheimer and Holmes
1983, Wiggins 1990).

All of this begs the question: Why should you care about these scaling laws?
Suppose you’re an experimental scientist and the system you’re studying exhibits
a stable limit cycle oscillation. Now suppose you change a control parameter and
the oscillation stops. By examining the scaling of the period and amplitude near
this bifurcation, you can learn something about the system’s dynamics (which are
usually not known precisely, if at all). In this way, possible models can be elimi-
nated or supported. For an example in physical chemistry, see Gaspard (1990).

8.5 Hysteresis in the Driven Pendulum and
Josephson Junction

This section deals with a physical problem in which both homoclinic and infinite-
period bifurcations arise. The problem was introduced back in Sections 4.4 and
4.6. At that time we were studying the dynamics of a damped pendulum driven by
a constant torque, or equivalently, its high-tech analog, a superconducting Joseph-
son junction driven by a constant current. Because we weren’t ready for two-
dimensional systems, we reduced both problems to vector fields on the circle by
looking at the heavily overdamped limit of negligible mass (for the pendulum) or
negligible capacitance (for the Josephson junction).

Now we’re ready to tackle the full two-dimensional problem. As we claimed at
the end of Section 4.6, for sufficiently weak damping the pendulum and the
Josephson junction can exhibit intriguing hysteresis effects, thanks to the coexis-
tence of a stable limit cycle and a stable fixed point. In physical terms, the pendu-
lum can settle into either a rotating solution where it whirls over the top, or a stable
rest state where gravity balances the applied torque. The final state depends on the
initial conditions. Our goal now is to understand how this bistability comes about.
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