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1 Energy balance and the greenhouse effect

Estimating Earth’s surface temperature based on an energy balance stating that the energy
absorbed from the sun equals that which escapes as heat to outer space. Start with the
relevant physical constants.

• S0 = 1388 watts/m2: top of the atmosphere insolation at the equator.

• σ = 5.66961× 10−8 W m−2K−4 Stefan-Boltzmann coefficient

• T globally averaged temperature of Earth

• α = 0.25 albedo

• ϵ = 0.75 the emissivity of the atmosphere

Incoming radiation equals outgoing radiation,

S0

4
(1− α) = σT 4

gives

T =

(
(S0/4)(1− α)

σ

)1/4

= 260K ≡ T0.

This is too cold! The reason is that we neglected the effect of the atmosphere.
Add the effect of the atmosphere, which absorbs all “long-wave” radiation and then

re-emits it at the atmospheric temperature θ both up and down.

S0

4
(1− α) + σθ4 = σT 4

σT 4 = 2σθ4.

Substitute the second eqn in the first one,

S0

4
(1− α) +

1

2
σT 4 = σT 4

to find,

T =

(
(S0/4)(1− α)

σ/2

)1/4

= T02
1/4 = 309K,

which is a bit better, although it’s too warm now.
Finally, the atmosphere is not a perfect black body and only absorbs some (most) of the

radiation from the surface, so the Stephan-Boltzmann constant needs to be multiplied by

2



an “emissivity” ϵ which is smaller than but close to one. The emissivity, also equal to the
absorptivity, is a function of the CO2 concentration among other things and implies that
not all the radiation emitted from the ground is absorbed by the atmosphere, but only a
fraction proportional to ϵ. The energy balances for the surface and atmosphere are now,

S0

4
(1− α) + ϵσθ4 = σT 4

ϵσT 4 = 2ϵσθ4.

Substitute the second eqn into the first one, ⋆⋆⋆

S0

4
(1− α) +

1

2
ϵσT 4 = σT 4

so that, using ϵ = 0.75

T =

(
(S0/4)(1− α)

σ(1− ϵ/2)

)1/4

= T0(1− ϵ/2)−1/4 = 289K,

which is reasonably close to the observed global mean surface temperature.

Anthropogenic warming. The mechanism of warming due to the addition of anthro-
pogenic greenhouse gases is somewhat different from the natural greenhouse effect discussed
above. As shown in the slides, anthropogenic greenhouse gas raises the emission level (level
of last absorption) so that the black body radiation comes from a colder temperature due
to the decrease in temperature with height (lapse rate). We can calculate the change in
emission height given the lapse rate and anthropogenic radiative forcing as follows.

First, calculate the temperature decrease required to lower the outgoing LW radiation by
∆F W/m2. For this purpose, calculate the emission height temperature before the addition
of anthropogenic CO2 using a balance of outgoing long-wave radiation from the emission
height and the incoming solar radiation minus the reflected part, or (S0/4)× (1−α) = σT 4.
This leads to T = ((S0/4) × (1 − α)/σ)1/4. Next, as the emission height increases by ∆h,
the temperature goes down by ∆T . The value of ∆T that leads to a ∆F W/m2 decrease in
LW is obtained using σT 4 −∆F = σ(T −∆T )4, or ∆T = ((σT 4 −∆F )/σ)1/4 − T . Finally,
assuming a lapse rate of 6.5 K/km, the change in emission height (m) implied by ∆T is
∆h = (∆T/6.5)× 1000. ⋆⋆⋆

For ∆F = 4 watts/m2, a typical value for the increase in emission height is ∆h = 150 m.
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2 A calculation of the expected sea-level rise due to

ocean warming

Given that the mass of ocean water is not changed by the warming, we can write an equation
stating that the mass (per unit area) before warming is equal to that after the warming. The
mass before the warming is equal to the depth of water being warmed (d0) times the density
at temperature T0 before the warming occurred, ρ(T0). The mass after the warming is the
product of the depth of the expanded water body (d) times the new density of the warmer
water, ρ(T0 +∆T ). Equating the mass before and after the warming, we have,

m = dρ(T0 +∆T ) = d0ρ(T0)

which implies that d = doρ(T0)/ρ(T0 +∆T ), or

∆d = d− d0 = d0

(
ρ(T0)

ρ(T0 +∆T )
− 1

)
= d0

ρ(T0)− ρ(T0 +∆T )

ρ(T0 +∆T )
= d0

−∆ρ

ρ(T0 +∆T )
≈ −d0

∆ρ

ρ0
,

so that sea level rise is proportional to the depth of penetration of the warming. Here, ρo is
a constant reference density, say 1025 kg/m3. Note that while the warming ∆T is positive,
the change in density, ∆ρ, is negative.

More generally, rather than taking the values of the density as a function of temperature,
we could use the appropriate “equation of state” relating density to temperature. A good
first approximation is that the density changes linearly with temperature according to

ρ(T ) = ρ0(1− α(T − T0)), α(T0) = − 1

ρ0

∂ρ

∂T

∣∣∣∣
T=T0

,

where α is the “thermal expansion coefficient”, itself a function of temperature, T0 is the
temperature before the warming and T the temperature after the warming. This is a lin-
earization of the equation of state using Taylor expansion. This allows us to calculate the
density change in terms of the temperature change as ∆ρ = −ρ0α∆T , so the sea level rise
becomes ∆d = d0α∆T . ⋆⋆⋆

Example: d0 = 500 m, ∆T = 3◦, T0 = 16◦, ρ(16 ◦C, 35 ppt) = 1025.75 kg/m3,
ρ(19 ◦C, 35 ppt) = 1025.022 kg/m3, and we find ∆d = 35 cm, which is not far from the
IPCC estimate of ∼50 cm.

Next, for an estimate of global sea level rise, let ∆T (x, y, z) = T − T0 be the warming as
a function of location and depth, divide the ocean into layers of thickness d = dz and apply
the above mass balance to each vertical layer dz in the ocean. Integrating over all such layers
from the ocean bottom at z = −H to the surface at z = 0, and over all horizontal locations
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(x, y), we find that the increase in ocean volume is,

∆V =

∫
dx

∫
dy

∫ 0

−H

− 1

ρ0
∆ρ(x, y, z)dz.

The change to GMSL is this change in volume divided by the ocean area A. Using the fact
that ∆ρ = ρ(T +∆T )− ρ(T ) ≈ −ρ0α∆T (x, y, z), we find,

∆GMSL =
1

A

∫
dx

∫
dy

∫ 0

−H

− 1

ρ0
∆ρ(x, y, z)dz =

1

A

∫
dx

∫
dy

∫ 0

−H

α∆T (x, y, z) dz,

where that α = α(T (x, y, z)) is a function of the local temperature, for example, α(2
◦
C) =

0.78 · 10−4 ◦C−1, while α(10
◦
C) = 1.6 · 10−4 ◦C−1, reflecting the sensitivity of the density to

the temperature: ρ(2
◦
C)− ρ(3

◦
C) = 0.09 kg/m3, while ρ(10

◦
C)− ρ(11

◦
C) = 0.18 kg/m3.
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3 On the exponential stratification of the deep ocean:

abyssal recipes

(based on Munk, 1966).
Consider a water parcel in the deep ocean, below 1 km depth, which is affected by

diffusion of heat from above and upwelling of cold water from below. The heat equation is,
schematically,

∂

∂t
heat in parcel = net flux due to upwelling + net flux due to diffusion. (1)

The time rate of change of heat inside the parcel is

∂

∂t
(cpρT∆x∆y2∆z).

The diffusive heat flux at the bottom and top of the parcel are given by

F (z −∆z) = −cpρκ
∂T

∂z

∣∣∣∣
z−∆z

∆x∆y

F (z +∆z) = −cpρκ
∂T

∂z

∣∣∣∣
z+∆z

∆x∆y

The net diffusive flux into the parcel is the difference,

F (z −∆z)− F (z +∆z) = − ∂F

∂z

∣∣∣∣
z

2∆z = − ∂

∂z
(−cpρκ

∂T

∂z
∆x∆y)2∆z

= cpρκ
∂2T

∂z2
∆x∆y2∆z.

Next, consider the heat flux due to the upwelling velocity, w,
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In this case, the fluxes at the top and bottom of the parcel are

Fupwelling(z −∆z) = cpρTw(z −∆z)∆x∆y

Fupwelling(z +∆z) = cpρTw(z +∆z)∆x∆y,

where w(z−∆z) is the upwelling velocity at the bottom of the parcel being considered. The
net flux is,

Fupwelling(z −∆z)− Fupwelling(z +∆z) = −cpρ
∂(wT )

∂z
∆x∆y2∆z

writing the final heat budget equation (1) using the terms we have developed, dropping the
cpρ∆x∆y2∆z factor that appears in all terms, leads to,

∂T

∂t
+

∂(wT )

∂z
= κ

∂2T

∂z2
.

Next, in a steady state, the first term on the left vanishes, and assuming for simplicity that
the vertical velocity is constant, we find

w
∂T

∂z
= κ

∂2T

∂z2
. (2)

The solution is exponential, T = T0 + aebz, and substituting it into the equation, we find ⋆⋆⋆

T = T0 + ae
w
κ
z,

where b = w/κ. Substituting typical numbers, κ = 10−4 m2/s, w = 10−7 m/s, so that
κ/w = 1 km. The balance represented by (2) is described schematically in the following
figure,
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That is, a water parcel at mid-depth is being heated from above via diffusion of heat from
the warmer upper ocean and is being cooled due to the upwelling of cold water from below.
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4 Evaporation−precipitation and ocean salinity changes

Consider how salinity changes due to evaporation minus precipitation and the concept of a
“virtual salt flux”. For this purpose, consider a bucket of salt water of salinity S (defined
as the mass fraction of salt in a unit mass of water), volume V , and surface area A. Mass
conservation for the bucket states that,

dV

dt
= −EA,

where E is the net evaporation rate per unit surface area and A is the surface area of the
bucket. Salt conservation is,

d

dt
(SV ) = 0,

which we can expand, using the mass conservation into

V
dS

dt
= −S

dV

dt
= SEA ≈ S0EA.

That is, salinity changes are proportional both to the evaporation rate and to the salinity
of the water body undergoing the evaporation. This makes sense, as freshwater (S = 0)
undergoing evaporation will not have its salinity increase. We term S0E the “virtual salt
flux” per unit area, as it represents a salinity increase equivalent to that which would have
occurred due to the injection of salt into the bucket.

9



5 Density and the equation of state

Density is a function of both temperature and salinity, and at a constant pressure, this may
be approximately expressed as

ρ(T, S) = ρ0 (1− α(T − T0) + β(S − S0)) .

α is a strong function of temperature, varying (at surface pressure, p = 0) from 254E−7
at T = −2◦C to 3413E−7 at T = 31◦. That’s a factor of more than 10 in the effect of
temperature on density. . .β = 1

ρ0

∂ρ
∂S

is pretty much constant, with ∂ρ/∂S around 0.8 for all
temperatures.

A typical range of densities in the ocean is ρ = 1024 to 1045 kg/m3, and it is therefore
convenient to use: σ = ρ− 1000.

A more accurate approximation needs to include nonlinearities (e.g., Mamaev, 1964;
Friedrich and Levitus, 1972),

ρ(T, S) = ρ0
(
1− α(T − T0) + β(S − S0) + γ(T − T0)

2 + δ(T − T0)(S − S0)
)
.

In addition, all coefficients (α, β, γ, δ) are a function of pressure. The nonlinearities and
different pressure dependence of the temperature and salinity coefficients lead to interesting
phenomena: ⋆⋆⋆
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1. Consider σθ, the density of a parcel brought adiabatically to the surface (a typical
range of 24–26). Note that deep North Atlantic ocean regions that seem to be unstably
stratified at depth based on σθ, are stably stratified. The seeming unstable stratification
is due to the nonlinearity involved in pressure dependence of the equation of state (see
density_demo.m). To address this, one may use, instead, σ4, the density of a parcel
brought adiabatically to a depth of 4 km, as a better measure of deep stability and
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stratification.

2. Cabbeling: two water masses of different T and S yet of equal densities at a given
pressure or depth mix and lead to a water mass that has a higher density. This would
not happen with a linear equation of state: assuming two water masses mix at equal
ratios, the density of the averaged temperature and salinity is equal to the average of
the densities of the two parcels. See density_demo.m.
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