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1 Geostrophy - introduction

Geostrophy is an approximation of the horizontal momentum balance represented by F = ma
where the LHS is the force and a is the (vector) acceleration. The full momentum balance
for a fluid element in the ocean is given by

ma = pressure force + Coriolis + gravity + friction.

At a steady state, currents do not accelerate, and therefore a = ∂u/∂t = 0 (more formally, we
also need to assume that currents are not too strong so that nonlinearities can be neglected,
more on that later). Gravity is acting in the vertical direction and can be ignored when
dealing with the horizontal direction, and friction is weak in most of the ocean, leaving us
with the geostrophic balance,

0 = pressure force + Coriolis.

Here is an example of this balance, showing a high pressure, low pressure, the direction of
the velocity, the pressure force, and the Coriolis force:

2 Geostrophy - derivation of equations

From the following two examples,

⋆⋆⋆
we deduce that the Coriolis force in the x-direction (eastward) is given by ∆x∆y∆zρfv,
while from the next two examples,
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we deduce that the Coriolis force in the y-direction (northward) is given by −∆x∆y∆zρfu.
The pressure force in the x direction is derived considering a slice of fluid,

Noting that the net forced on the slice is given by the difference in the pressure force applied
to both of its sides,

pressure force = p(x)∆y∆z − p(x+∆x)∆y∆z

= −∂p

∂x
∆x∆y∆z.

Combining the Coriolis and pressure forces in the x direction derived above, and then re-
peating in the y direction, moving the Coriolis force to the LHS, and dividing by the density,
we find the geostrophic equations, ⋆⋆⋆

−fv = −1

ρ

∂p

∂x
x (east) direction

fu = −1

ρ

∂p

∂y
y (north) direction
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3 Example of geostrophic balance: weather map

Consider the relationship between the pressure low on a weather map and its corresponding
wind velocity.

Our objective is to calculate the wind just west of the low center, on the 992 hPa contour.
Start from the geostrophic equation, ⋆⋆⋆

v =
1

fρ

∂p

∂x
≈ 1

fρ

∆p

∆x

≈ − 1

10−4s−1 × 1kg/m3

1000− 988mb

250Miles

= − 1

10−4s−1 × 1kg/m3

1200 pascals

400, 000m

= − 1

10−4s−1 × 1kg/m3

1200 kg m−1 s−2

400, 000m

= 30m/s = 67miles per hour.

This is a reasonable estimate compared with the wind velocity shown on the weather map.
We ignored friction, which does play a significant role near the surface, introducing the angle
between velocity directions and pressure contours on the map, as we will see later.
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4 The hydrostatic balance

Consider the vertical component of the momentum balance F = ma, acting on a fluid ele-
ment in a resting ocean. The relevant forces are gravity and pressure, as follows

The upward gravity force is −mg = −∆x∆y(2∆z)ρg. The net upward pressure force on
the fluid element is that acting from below minus that acting from above,

net upward pressure force = [p(z −∆z)− p(z +∆z)]∆x∆y

=

[(
p(z) +

∂p

∂z
(−∆z)

)
−
(
p(z) +

∂p

∂z
(∆z)

)]
∆x∆y

=
∂p

∂z
(−2∆z)∆x∆y.

At a steady state, the acceleration vanishes, and the sum of forces must vanish so that

0 = pressure force + gravity,

or

∂p

∂z
= −ρg,

which is the hydrostatic balance.
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5 Boussinesq approximation: why is it OK to replace

ρ by ρ0 in − 1
ρ0
∇p but not in −gρ?

Density varies in the ocean roughly in the range 1024 < ρ < 1045, so it seems that replacing
it always with a constant may not be a bad approximation.

However, write the density as a sum of a constant reference density, a horizontal average
of the remaining density, and a variable part,

ρ(x, y, z, t) = ρ0 + ρ̄(z) + ρ′(x, y, z, t),

where

ρ0 = 1025

ρ̄(z) =
1

area

∫ ∫
(ρ(x, y, z, t)− ρ0) dx dy.

Next, use the hydrostatic equation
pz = −gρ

to divide the pressure as well into two components that satisfy,

∂

∂z
p = −g(ρ0 + ρ̄(z)),

∂

∂z
p′ = −gρ′

The sum of these two equations is the original hydrostatic equation. The first of these can
be solved, resulting in,

p(z) = pa +

∫ η

z

g(ρ0 + ρ̄(z′)) dz′

where z = 0 is the ocean surface when there are no currents, z = η(x, y) is the sea surface
height when there are currents, and pa is the atmospheric pressure at the ocean surface.
Note that in the last equation, when z = η, the integral vanishes, and the pressure is equal
to the atmospheric one, pa, as expected.

Note that p(z) is a function of z only. As a result, it does not contribute to the horizontal
momentum equations,

∇hp =

(
∂

∂x
,
∂

∂y

)
p = ∇h(p+ p′) = ∇hp

′.

The “dynamical” pressure p′(x, y, z) may, therefore, be smaller than the hydrostatic ref-
erence pressure p(z), but it is the only part of the pressure that drives the horizontal momen-
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tum equations and the horizontal velocities. It must, therefore, be retained. If we neglected
the perturbation density ρ′ in the hydrostatic equation, the dynamical pressure would also
vanish. This implies that the density perturbation must be kept in the hydrostatic equation.

On the other hand, when we calculate the pressure gradient term, replacing the density
with the reference density involves a very small correction, so that we can write −1

ρ
∇p ≈

− 1
ρ0
∇p.
We can now drop the primes, so that p and ρ refer to p′ and ρ′, so that our geostrophic

and hydrostatic momentum equations become,

−fv = − 1

ρ0
px

fu = − 1

ρ0
py

pz = −gρ.

Neglecting density variations except when they affect the vertical momentum balance is
referred to as the “Boussinesq approximation”.
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6 Sea level vs stratification in a geostrophic flow such

as the Gulf Stream
⋆⋆⋆

Consider an east-west section across the northward-flowing Gulf Stream, and estimate first
the effect of sea-level variations across the stream vs. the effect of density variations, evalu-
ated at a depth of 1 km.

z=0, sea level in the 
absence of ocean currentsEastWest

1 m

sea level

dense water light water
⇢ = 1027⇢ = 1028 z=-1 km

First, evaluate the effect of sea level while assuming that the density is constant, p(x) =
ρ0gh(x) (the pressure at the surface is assumed zero). This implies that the pressure differ-
ence across a horizontal distance ∆x across the Gulf Stream is equal to ∆p = ρ0g∆h. The
pressure difference across the Gulf stream is, therefore,

∆x
∂p

∂x
= ∆p = ∆xρ0g

h2 − h1

∆x
= ρ0 × g × (1 m) = 104 Pa.

Here, ∆h = h2 − h1, and h1, h2 are the sea surface heights at the two horizontal locations
on two sides of the Gulf Stream.

As for the effects of density variations, evaluated again at a depth of 1 km, using p(x, z =

H) = −
∫ H

0
ρ(x, z)g dz =

∫ 0

H
ρ(x, z)g dz, and assuming the density is only a function of

horizontal location, not of depth. The difference in pressure across the two sides of the
Gulf Stream is now the difference between two such vertical integrals, or ∆p(z = H) =∫ 0

H
∆ρ(x, z)g dz. This may be estimated as,

∆x
∂p

∂x
= ∆p = ∆ρ× g ×H = (1028− 1027)× g × (1 km) = 104 Pa,

so that the effects of sea level and density variations on the pressure difference across the
two sides of the stream are comparable.

Next, what do these effects look like as a function of depth in a stratified Gulf Stream?
Consider the following schematic,
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z=0: sea level in the 
absence of ocean currentsEastWest

1 m

sea level

z=-1 km: Level of no motion

⇢ = 1024

⇢ = 1025

⇢ = 1026

⇢ = 1027

⇢ = 1028

pressure isolines
isopycnals

up

East
which shows how the density differences gradually weaken and eventually reverse the east-
west pressure gradient set near the surface by the sea level height difference. We, therefore,
expect the flow, in this case, to be northward in the upper km and southward below.
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7 Thermal wind equations and the level of no motion

So far, we derived and discussed the geostrophic and hydrostatic balances, together repre-
senting the three-dimensional momentum balance F = ma for a fluid element in the ocean,

−fv = − 1

ρ0

∂p

∂x

fu = − 1

ρ0

∂p

∂y
∂p

∂z
= −gρ

We now wish to derive equations that allow us to calculate currents from observed tem-
perature and salinity in the ocean. Start by taking the vertical derivative of the first two
momentum equations and then using the third,

−f
∂

∂z
v = − 1

ρ0

∂

∂z

∂p

∂x
= − 1

ρ0

∂

∂x

∂p

∂z
= − 1

ρ0

∂

∂x
(−gρ)

f
∂

∂z
u = − 1

ρ0

∂

∂z

∂p

∂y
= − 1

ρ0

∂

∂y

∂p

∂z
= − 1

ρ0

∂

∂y
(−gρ)

which we can then write as the final thermal wind equations,

f
∂v

∂z
= − g

ρ0

∂ρ

∂x

f
∂u

∂z
=

g

ρ0

∂ρ

∂y
.

Why are these useful? Integrating these equations from some level z = −H, which we
term the “reference level,” we find,∫ z

−H

∂v

∂z
dz = v(z)− v(−H) =

∫ z

−H

−g

fρ0

∂ρ

∂x
dz∫ z

−H

∂u

∂z
dz = u(z)− u(−H) =

∫ z

−H

g

fρ0

∂ρ

∂y
dz.

or,

v(x, y, z) = v(x, y,−H) +

∫ z

−H

−g

fρ0

∂ρ

∂x
dz

u(x, y, z) = u(x, y,−H) +

∫ z

−H

g

fρ0

∂ρ

∂y
dz.
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Now, if we know the temperature and salinity (from ship or float observations), we can
calculate the density ρ, and evaluate the integrals on the RHS. If we also know the reference
level velocities v(x, y,−H), u(x, y,−H) or can find a level at which they may be assumed to
vanish, then the above equations can be used to calculate the velocity at all levels!

Why couldn’t we calculate the velocities based on the geostrophic equations by calculating
∂p/∂x and ∂p/∂y? Because the pressure depends on both the density and sea surface height,
which was not known before the satellite age.

If we do know the sea surface height h(x, y) from satellite altimetry we can find the
velocity at any depth in the ocean by using z = 0 as our reference level. That is, set
H = 0. At that depth, the pressure is simply given by p(x, y, z = 0) = pa+gρ0h(x, y), where
p(z = h) = pa is the atmospheric sea level pressure with we can take to be a constant. To
see that, integrate the hydrostatic equation from z = 0 to the SSH h,∫ h

0

∂p

∂z
dz′ = −

∫ h

0

gρdz′ ≈ −
∫ h

0

gρ0dz
′ = −gρ0h

or ∫ h

0

∂p

∂z
dz′ = p|hz=0 = pa − p(z) = −gρ0h,

which results in p(x, y, z = 0) = pa + gρ0h(x, y). The surface velocities at z = 0 are then
given by geostrophy fu(z = 0) = −(∂p/∂y)/ρ0 = −g∂h/∂y. Writing this for both directions,

−fv(z = 0) = −g
∂h

∂x

fu(z = 0) = −g
∂h

∂y
(1)

We can therefore write the velocities at some arbitrary depth z in the ocean as functions of
the density and sea surface height,

v(x, y, z) =
g

f

∂h

∂x
−
∫ z

0

g

fρ0

∂ρ

∂x
dz

u(x, y, z) = − g

f

∂h

∂y
+

∫ z

0

g

fρ0

∂ρ

∂y
dz. (2)
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7.1 Example

Suppose the temperature and sea surface height are given by,

T (x, z) = T0 +∆T (ez/H + δ
x

L
),

h(x) = a
x

L
,

where L is the horizontal size of the domain. The following figure shows the temperature to
be increasing with x, indicating that ∆T is positive.

T (shading), v (contours)
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Use ∆ρ = −αρ0∆T , and the northward velocity is therefore given via (2) by

v(x, z) =
ag

fL
+

gα∆Tδ

fL
z.

This means that the level of no motion is at

z = − a

δα∆T
.
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8 Dynamic height/topography derived from geostro-

phy

Start with geostrophy,

u(x, y, z) = − 1

fρ0

∂p

∂y

v(x, y, z) =
1

fρ0

∂p

∂x

In pressure coordinates,

∂p

∂x

∣∣∣∣
z

=
∂p

∂z

∂z

∂x

∣∣∣∣
p

= −gρ
∂z

∂x

∣∣∣∣
p

= −ρ
∂Φ

∂x

∣∣∣∣
p

where dΦ ≡ g dz is the geopotential height, such that

∂Φ

∂p
= g

∂z

∂p
= g/pz = −1/ρ.

Writing the geostrophic equations in pressure coordinates,

u(x, y, p) = − 1

fρ0
ρ
∂Φ

∂y
≈ − 1

f

∂Φ

∂y

v(x, y, p) =
1

fρ0
ρ
∂Φ

∂x
≈ 1

f

∂Φ

∂x
.

Taking the derivative with respect to pressure to find the thermal wind equations in pressure
coordinates,

∂

∂p
u(x, y, p) = − 1

f

∂

∂y

∂Φ

∂p
=

1

f

∂

∂y

(
1

ρ

)∣∣∣∣
p

∂

∂p
v(x, y, p) =

1

f

∂

∂x

∂Φ

∂p
= − 1

f

∂

∂x

(
1

ρ

)∣∣∣∣
p

Integrate these equations between two pressure levels and take the horizontal derivatives out
of the integral (can do this because they are taken at constant pressure),

u(x, y, p2)− u(x, y, p1) =
1

f

∂

∂y

∫ p2

p1

(
1

ρ

)
dp

v(x, y, p2)− v(x, y, p1) = − 1

f

∂

∂x

∫ p2

p1

(
1

ρ

)
dp.
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Let α≡1/ρ, and δ(S, T, p)≡α(S, T, p) − α(35, 0, p), we define “dynamic height” difference
between two pressure levels as

∆D =

∫ p2

p1

δ dp,

which satisfies,

u(x, y, p2)− u(x, y, p1) =
1

f

∂

∂y
∆D

v(x, y, p2)− v(x, y, p1) = − 1

f

∂

∂x
∆D.

This shows that the dynamic height is a stream function for the geostrophic velocities.
Numerous oceanographic papers, therefore, analyzed dynamical height maps between any
number of pairs of pressure levels, especially assuming that one of the two levels is a level of
no motion, where the velocities vanish.
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