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Our purpose now is to understand the large-scale wind-driven circulation, including
the presence and location of western boundary currents such as the Gulf Stream and the
Kuroshio.

1 Momentum equations for the wind-driven circula-

tion, the beta plane

Consider now the following momentum balance,

accelaration + coriolils = pressure + friction

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
− ru (1)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
− rv (2)

The Coriolis force varies with latitude, and we need to approximate it around a latitude θ0
(e.g., for the North Atlantic, θ0 ≈ 40N) using a Taylor expansion,

f = 2Ω sin θ ≈ 2Ω sin θ0 + 2Ω cos θ0 (θ − θ0)

= 2Ω sin θ0 +
2Ω

R
cos θ0R(θ − θ0)

= f0 + βy

where R is the Earth radius, β = (2Ω/R) cos θ0, and y = R(θ − θ0) is the distance from the
reference latitude. Note that based on the above, β = df/dy.

2 Vorticity, planetary vorticity

Understanding the wind-driven circulation and western boundary currents requires using a
vorticity rather than momentum budget. The vorticity vector (denoted bold face zeta, ζ) is
defined as the curl of the velocity field,

ζ ≡ ∇× u = curl(u) =



∂w

∂y
− ∂v

∂z

∂u

∂z
− ∂w

∂x

∂v

∂x
− ∂u

∂y
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we note that the vertical component that is of interest to us in the present context is denoted
by a non-bold zeta,

ζ =
∂v

∂x
− ∂u

∂y
.

To obtain an intuition of what vorticity represents, consider a “solid body rotation” of water
in a bucket rotating at an angular velocity ω. In cylindrical coordinates, the velocity is,

v(r) = 0, v(θ) = ωr.

The vorticity is, therefore,

ζ = curl(v(r), v(θ)) =
1

r

∂

∂r
[rv(θ)]− 1

r

∂v(r)

∂θ
=

1

r

∂

∂r
[r(ωr)] = 2ω,

or

vorticity = 2 × rotation rate.

Planetary vorticity. If the ocean is at rest, it still has vorticity due to the Earth’s rotation,
which is a solid-body rotation for a resting ocean. At the north pole, ω = Ω and, therefore,
the planetary vorticity is 2Ω. At the south pole, it is −2Ω as the rotation is in the opposite
direction relative to the local vertical coordinate. In between,

planetary vorticity = 2Ω sin θ = f !

⋆⋆⋆

3 Vorticity equation

We can finally derive an equation for the vorticity as follows. Take the curl of the momentum
equations as

∂(eqn 2)

∂x
− ∂(eqn 1)

∂y
,

to find,

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ f

(
∂u

∂x
+

∂v

∂y

)
+ βv = −r

(
∂v

∂x
− ∂u

∂y

)
.

Use the continuity equation,

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
− f

∂w

∂z
+ βv = −r

(
∂v

∂x
− ∂u

∂y

)
. (3)
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Integrate from the ocean bottom to the base of the mixed layer,
∫ −50 m

−H
dz assuming that u, v

are depth independent and using the boundary condition that w vanishes at the bottom, to
find,

∂

∂t

(
∂V

∂x
− ∂U

∂y

)
− fw(−50 m) + βV = −r

(
∂V

∂x
− ∂U

∂y

)
,

where upper case letters represent the integrated velocities. Defining ζ = ∂V
∂x

− ∂U
∂y
, and using

the expression for the Ekman pumping velocity derived above, we find the vorticity equation,

∂ζ

∂t︸︷︷︸
(a)

+ βV︸︷︷︸
(b)

= −rζ︸︷︷︸
(c)

+ f curl

(
τ

ρ0f

)
︸ ︷︷ ︸

(d)

. (4)

Consider the interpretation of each term here.

(a) Rate of change of the vorticity.

(b) βV = V df/dy, meridional advection of planetary vorticity.

(c) −rζ dissipation of friction due to friction. This term leads to an exponential decay of
the vorticity in the absence of other forcings.

(d) Wind curl changing the vorticity via Ekman pumping. To understand this, consider
a fluid column extending from the bottom to the base of the Ekman layer. The col-
umn spins due to either (or both) the relative vorticity ζ and the planetary vorticity
f = 2Ω sin θ. Now, if the Ekman pumping is upward, the fluid column is being stretched
and, therefore, its rotation (vorticity) should increase,

while if the Ekman pumping is downward, the fluid column is being compressed and,
therefore, its rotation (vorticity) should decrease,
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4 Vortex decay

Simplest vorticity balance: time rate of change and friction. The vorticity equation is,

∂ζ

∂t
= −rζ

and the solution is

ζ(t) = ζ0e
−rt,

explaining the decay of vortices

5 Rossby waves

We can derive the solution for Rossby waves in a shallow-water ocean. We assume the ocean
is shallow, in which case it can be shown that the horizontal velocities are depth-independent.
Our starting point is the vorticity equation plus geostrophy. We ignore winds and friction
for now in the vorticity budget, so we are left with a vorticity balance in which the time
rate of change balances the meridional advection of planetary vorticity. Consider, first, two
heuristic explanations for Rossby waves.

Panels a and b show that a high pressure or a low pressure would propagate westward
because of the difference in the zonal transport from the geostrophic balance, u = − 1

fρ0

∂p
∂y
,

at the south vs north edge of the high/ low.
Panels (c–g) show a fluid element being displaced northward and being restored to its

original location by the response of its neighboring columns. This shows that the planetary
vorticity gradient (beta effect) is the restoring force for these waves.
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Next, derive the dispersion relation. Because we ignore winds and friction for now, our
above vorticity balance becomes,

ζt + βV = 0.

We also use the geostrophic equations for a shallow-water ocean −f0v = −gηx and f0u =
−gηy. Integrating these two equations in depth from z = −H to z = 0 and remembering
that the velocities and surface elevation are both depth-independent, the equations become
−f0V = −gHηx and f0U = −gHηy. Plugging these integrated geostrophic equations into
the vorticity equation, we find

∂t(ηxx + ηyy) + βηx = 0.

Looking for a wave solution η = η0 cos(kx+ ly − ωt), we find

ω =
−βk

(k2 + l2)
.

Figure 1 shows a schematic of this dispersion relation. Because the signs of the frequency
and wavenumbers are arbitrary, and only their ratio matters, we choose the convention that
ω is positive. Under this convention, Rossby waves only involve negative wavenumbers.

The dispersion relation implies a westward phase propagation (ω/k < 0) for Rossby
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Figure 1: The Rossby wave dispersion relation.

waves. The group propagation velocities in the (x, y) directions are given by,

C(x)
g =

∂ω

∂k
= β

k2 − l2

(k2 + l2)2

C(y)
g =

∂ω

∂l
=

2βkl

(k2 + l2)2
.

Based on the slope of the dispersion relation as a function of k, we see that the group velocity
in the zonal direction (x) is eastward for short waves and westward for long waves.

6 Wind-driven circulation away from the western bound-

ary: the Sverdrup balance

Consider first the vorticity balance in a steady state away from horizontal boundaries. In
that case, the time rate of change term in (4) vanishes, and the friction term may be assumed
small so that the vorticity equation reduces to the Sverdrup balance,

βV = f curl

(
τ

ρ0f

)
≈ curl

(
τ

ρ0

)
. (5)

We can also write this transport by the wind-driven circulation in terms of the Ekman
pumping that drives it. Given that wE = curl (τ/ρ0f), the equation for the transport may
be written as,

βV = fwE, (6)

which we can now use to interpret this balance.
In the Northern Hemisphere subtropical gyres (e.g., North Atlantic, 20–50◦N), the Ekman
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pumping is downward, and the interior circulation is southward. This may be interpreted as
vortex compression applied to fluid columns by the Ekman pumping, which decreases their
vorticity. Given that the relative vorticity is negligible relative to the planetary vorticity away
from strong currents such as the Gulf Stream, the planetary vorticity needs to decrease. This
implies a southward motion of the fluid columns toward the equator. In the subpolar gyres in
the Northern Hemisphere, the Ekman pumping is upward, and the resulting interior velocity
is northward.

In the Southern Hemisphere, a downward (negative) Ekman pumping drives a northward
(positive, northward) flow V as can be seen in (6) given that f is negative there. The factor
f in front of the Ekman pumping indicates that the column has some planetary vorticity
f that is stretched or compressed by the Ekman pumping. In the southern hemisphere,
the planetary vorticity is negative. The compression of fluid columns leads to a decrease of
this negative vorticity and, therefore, to an increase in planetary vorticity. This requires a
northward motion.

In the subtropical gyre, the broad southward interior flow should return northward some-
where, which naively could occur in a narrow and fast boundary current either in the east
or west,

The next section considers the vorticity balance near the boundaries to determine which of
these two options makes sense.

⋆⋆⋆
Orders of magnitude for Ekman transport vs Sverdrup transport. Suppose the
wind stress τ (x)(y) at 40N is westward at an amplitude 0.1 N/m2, reducing to zero fur-
ther north over a distance of 1000 km. Let the basin width be L = 2500 km. The
maximum northward Ekman transport over the entire east-west width of the basin is then
LM (y) = Lτ (x)/(ρf) = 2500 × 103×0.1/(1025×10−4) = 2.4 × 106 m3/s = 2.4 Sv. The curl
is curl(τ) ≈ 0.1/(106 m) so that the Sverdrup transport integrated over the width of the
basin is L curl(τ)/(ρβ) = (2500× 103)×(0.1/106)/(1025×10−11) = 24 Sv. Clearly, the Sver-
drup transport driven by vortex stretching is much larger than the Ekman transport driven
directly by the wind.

Why are there both a subtropical gyre and a subpolar gyre in the North Atlantic?
The North Atlantic is characterized by a subtropical gyre involving a northward flow in the
Gulf Stream balanced by a southward flow in the interior (roughly 15–45N). There is also a
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subpolar gyre with a southward flow in the Labrador current, again compensated by a return
northward flow in the interior in the northern part of the North Atlantic (north of 45N). To
see why there are two gyres in the North Atlantic, consider the following schematic of the
winds in the North Atlantic (similarly in the North Pacific, etc.), where we approximate the
wind as being in the zonal directly only, τ⃗ = (τ (x), 0).

weftawdard UP
winds Eastward westward

a

surfa I
-som#¥¥ Forth

15N 45N GON
downward upward

T North

Goif #Easterlies
① upward North zeal

usa - #westerliesT.tn#iwm::ni.⇒t÷i÷÷÷÷÷÷:(westward trade)winds

Note that in the subtropical gyre, roughly 15N–45N, the wind increases with latitude
so that the wind curl −∂τ (x)/∂y is negative, implying a downward Ekman pumping. The
wind over the subpolar gyre, 45N-60N, decreases with latitude, implying an upward Ekman
pumping. The downward subtropical Ekman pumping leads to vortex compression and,
therefore, to a southward movement of fluid elements. Mathematically, the curl of the wind
is balanced by βv, and the velocity v must be negative or southward. The Ekman pumping
drives a northward interior Sverdrup flow in the subpolar gyre. Each of the two gyres is
closed by a western boundary current, as discussed next.

7 Wind driven circulation: Boundary currents

As seen in the last figure, V must be large near the boundary regardless of whether it is in
the east or west. As a result, we expect βV and the −r∂V/∂x part of −rζ are expected to
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dominate other terms, giving the approximate vorticity balance,

βV = −r
∂V

∂x
.

This is a balance between changes in planetary vorticity due to the meridional movement
and friction. The solution is, therefore,

V = V0e
−β

r
x.

This solution decays with increasing x. Taking x = 0 at the western boundary thus leads
to an exponential decay of the current away from the boundary, which is a Gulf-Stream-
like acceptable solution. Alternatively, consider placing the boundary current at the eastern
boundary, choosing x = 0 there. In this case, the current grows exponentially eastward,
away from the boundary, because x becomes more strongly negative, and the exponential
part in the solution increases. Such exponential growth is not an acceptable solution, leaving
the western boundary as the only possible way to close the circulation. This explains why
the Gulf Stream, Kuroshio, and other such strong boundary currents are on the western side
of their basins.

8 Heuristic explanation of western boundary currents

Consider two different heuristic explanations for the observation that narrow and fast bound-
ary currents are located on the west side of ocean basins. The first is based on Rossby waves.
We found previously that long Rossby waves have a westward group (energy) propagation,
while short Rossby waves have an eastward group propagation. The wind-forced motions
within ocean basins are large-scale, as do the weather systems that produce these winds
(thousands of km) and thus excite westward propagating waves. When these waves reach
the western boundary region and are reflected back eastward, they are characterized by short
scales because only short Rossby waves have eastward energy propagation. We also found
previously, when discussing scale-selective friction, that short waves are dissipated faster
than long waves. So when the short waves are reflected, they are dissipated before getting
far from the western boundary. One, therefore, expects to see short scales near the western
boundary and longer scales in the rest of the basin, consistent with the existence of the
narrow Gulf Stream there.

For the second explanation, consider the following two scenarios where the western bound-
ary current (WBC) of a sub-tropical gyre is in the east (A) or west (B),
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we have −rζ ≈ −r∂v/∂x. And then,

In (A) −r∂v/∂x > 0 so that the fluid gains vorticity (or loses negative vorticity) as it flows
northward.

In (B) −r∂v/∂x < 0 so that the fluid loses vorticity as it flows northward.

The only relevant vorticity in the interior is the planetary one, as the relative vorticity is
small. Fluid moves southward in the interior and, therefore, loses planetary vorticity. In
scenario (A), the boundary current allows the fluid to gain vorticity as it travels northward.
Thus, the fluid can re-join the interior in the north with appropriately high vorticity to
match the value of the planetary vorticity there. In scenario (B), the fluid loses vorticity as
it flows south in the interior and loses some more as it travels north in the boundary current,
so there can be no steady state.
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9 Abyssal circulation, Stommel-Arons

Following Stommel and Arons (1960), consider the circulation of the abyssal ocean — say
the lower 2–3 km, below a depth of 1–2 km or so. It is driven by vortex stretching due
to the upward velocity at the upper part of the abyssal ocean, which is assumed uniform
in space and which compensates for bottom water formation, say some 20 Sv. Divide by
ocean area to find that the vertical velocity driving the abyssal circulation is of the order of
wabyssal ≈ 20 Sv/ ((2/3)4πR2

E) ≈ 2 m/yr.
We found above (3) that taking the curl of the momentum equation, one finds

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
− f

∂w

∂z
+ βv = −r

(
∂v

∂x
− ∂u

∂y

)
,

where f = 2Ω sin θ0 and β = 2Ω cos θ0/RE, with θ0 being the center latitude of the basin.
Assuming a steady state and neglecting friction to be small away from western boundary
currents,

βv = f
∂w

∂z
,

representing a balance between vortex stretching and meridional advection of planetary
vorticity. In spherical coordinates, this takes the form,

2Ω

RE

cos θv = 2Ω sin θ
∂w

∂z
.

Integrating from the ocean bottom to the top of the abyssal ocean, this gives

V = RE tan θwabyssal.

Note that this velocity is always poleward because the vertical velocity is positive (upward).
Now consider the schematic on the left of the following figure from Stommel and Arons
(1960), representing a northern hemisphere ocean basin where the deep-water formation
occurs in the north (North Atlantic, although note that the NADW is a deep rather than
an abyssal water source. . . ). The schematic on the right shows the component in the mass
balance of an ocean sector.
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The basin is bounded by two meridians, at longitudes ϕ1 and ϕ2, and extends from the
equator to the north pole. The mass source for the abyssal water is assumed at the north
corner of the domain, yet as we have seen, the interior transport per unit east-west distance,
V , is poleward everywhere, toward the source rather than away from it. This suggests that
there must be a western boundary current that carries the source water equatorward, where it
feeds the interior flow and upwells to the upper ocean. We can use a mass balance calculation
for the abyssal layer to find the transport of the implied western boundary current. The area
of the basin is R2

E(ϕ2 − ϕ1), and the source volume rate is related to the uniform upwelling
as S0 = wabyssalR

2
E(ϕ2 − ϕ1). The interior meridional transport may, therefore, be written as

V =
S0

RE(ϕ2 − ϕ1)
tan θ.

Consider the mass budget of the equatorward part of the basin, from θ = 0 to θ. The surface
area of this part is,

A(y) =

∫ ϕ2

ϕ1

dϕ

∫ θ

0

R2
E cos θ′ dθ′ = R2

E sin θ(ϕ2 − ϕ1),

while the longitudinal extent of its northward boundary is given by Lx(θ) = RE cos θ(ϕ2−ϕ1).
Letting the transport of the deep boundary current be Q(y) (positive southward), the mass
balance of the basin balances the entering WBC transport with the exiting interior flow and
upward velocity,

Q(y) = wabyssalA(θ) + V Lx(θ)

=
S0

R2
E(ϕ2 − ϕ1)

R2
E sin θ(ϕ2 − ϕ1) +

(
S0

R2
E(ϕ2 − ϕ1)

tan θ

)
(RE cos θ(ϕ2 − ϕ1))

= 2S0 sin θ.

This suggests that the deep WBC transport vanishes at the equator and is twice the value
of the source at the pole. The factor two results from the need for the WBC to balance both
the upwelling and the northward interior flow.
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