Flows an the circle

* impossibility of oscillations in id systems: In a system in id $\dot{x}=f(x)$, the flows are either approaching atp. or oo cannot puerstoot a f.p. \& thus cannot have oscillations around de fop

The simplest systems in which oscillations are possible are flaws on a circle $\dot{\theta}=f(\theta)$
example: $\dot{\theta}=\sin (\theta)$

example: uniform oscillator: $\quad \dot{\theta}=a$

$$
\Rightarrow \theta(t)=\omega(t)+\theta_{0}
$$

* \rightarrow dearly $f(\theta)$ must be 2π periodic or a is not unique) defined
phase difference, beat phenomena: (eeg $\theta=\theta$ is wrong)
consider $\left.\begin{array}{rl}\dot{\theta}_{1} & =w_{1} \\ \dot{\theta}_{1} & =w_{2}\end{array}\right\}$ two oscillators

$$
\begin{aligned}
& \omega_{1}=2 \pi / T_{1} \\
& \omega_{2}=2 \pi / t_{2}
\end{aligned}
$$

phase difference is $\phi=\theta_{1}-\theta_{2}$
$\Rightarrow \dot{\phi}=\omega_{1}-\omega_{2}$, phases increase by 2π after a dime $2 \pi /\left(\omega_{1}-\omega_{2}\right)=\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)^{-1}$
so the closer are HL_{2} periods, the bier is the beat period. this example corresponds do two now interacting oscillators. it gets more interesting when they to interact.
nonmiform oscillator:

$$
\dot{\theta}=\omega-a \sin \theta
$$

$$
\begin{aligned}
& \text { neglected friction sprstant gravity } \\
& \text { acceptation }
\end{aligned}
$$

$a<\omega$

$a=\omega$

$a>a$
period: $T=\int_{\text {period }} d t=\int_{0}^{2 \pi} \frac{d t}{d \theta} d \theta=\int_{0}^{2 \pi} \frac{d \theta}{\omega-a \sin \theta}=\cdots=\frac{2 \pi}{\sqrt{\omega^{2}-a^{2}}}$

$$
\begin{array}{r}
\Rightarrow T=\frac{2 \pi}{\sqrt{\omega+a} \sqrt{w-a}} \approx \frac{2 \pi}{\sqrt{2 \omega}} \frac{1}{\sqrt{w-a}}=\frac{\text { square root }}{\text { scaling law }} \text { for } \omega \approx a
\end{array}
$$

square root scaling is typical of systems wear a saddle-node bifurcation: in a case like this:

slow flow, bottle neck, "ghost" of saddle $\theta \uparrow$ rode bifurcation.
$\rightleftarrows T_{\text {bot ll reek }} \rightarrow$
consider $\dot{x}=r+x^{2}$

He tine to poss via the bottle reck is $\int_{-\infty}^{\infty} \frac{d x}{\Gamma+x^{2}}=\frac{\pi}{\sqrt{\Gamma}}$ again sgaveroot
synchronization, nonlinear, phase baking:
example: Fireflies ($\mathrm{N} \| \hat{\mathrm{f} f \mathrm{f} z}$)
fireflies tend to flash on \& of together. why? how? Also, given an external periodic light, fifties dry to follows it, \& may not be able to do it if it's too fast \& then try again...
a specific model: let Θ be the phase of an external stimulation (flashlight) of a constant(rate: $\dot{\omega}=\Omega$. (flash occurs at $\Theta=0$).
Le fire fly increases / decreases it's rate of flashing depending on phase difference from external source:

$$
\dot{\theta}=\theta+A \sin (\theta-\theta)
$$

The phase deference between the stimulus \& the firefly satisfies $\dot{\phi}=\dot{\Theta}-\dot{\theta}=\Omega-\omega-A \sin \phi$

* $\mu=0 \Rightarrow$ fixed pr is $\phi=0$
\Rightarrow no phase difference
between flashlight \& firefly. $(\mu=0$ means natural firefly frey \equiv external frey $\Omega=\omega$).

$$
\text { * } \quad 0<\mu<1
$$

\Rightarrow a constant phase log, fireflies are "phase locked" to flashlight.

* $K \mu$
\Rightarrow phase difference $\phi=\Theta-\theta$ varies.
\Rightarrow "phase drift."
\rightarrow note that phase baking: (1) occurs because the nonlinear 1 firefly oscillator can change it's period to fit the A external one (Ω); (2) occurs over a specific
A range of parameters: $\quad \omega-A<\Omega<\omega+A$ ="range of entrain mat".
* (a linear oscillator cannot change its seeriod!!)

Another example of mode locking ($=$ phase locking = nonlinear resonance)
(1) 17 th century Dutch Physicist Huyghens: smecronisation between docks:

(2) Glacial cycles \& Milankovitch forcing

Another view at phase backing: The circle map [Schuster, chapter 62]

$$
\theta_{n+1}=f\left(\theta_{n}\right)=\theta_{n}+\Omega+\frac{k}{2 \pi} \sin \left(2 \pi \theta_{n}\right)[\bmod 1]!
$$

\Rightarrow a simple model for a periodically forced oscillator:

$$
\Omega=\text { forcing }
$$

$\frac{k}{2 \pi} \sin \left(2 \pi \theta_{n}\right) "="$ gravity, nonlinear

$$
[m r \ddot{\theta}=-b \dot{\theta}+m g \sin \theta+c \sin (\Omega \cdot t)]
$$

when $k=0, \quad \theta_{n}$ rotates uniformly;

* if Ω is rational, θ_{n} is periodic
egg. $\Omega=\frac{1}{2} \Rightarrow$ period $2 \quad \theta_{n}=0, \frac{1}{2}, 0, \frac{1}{2} \ldots$

$$
\Omega=\frac{3}{4} \Rightarrow \theta_{n}=0, \frac{3}{4},\left(\frac{1}{2}=\frac{1}{2}\right), 1 \frac{1}{4}\left(-\frac{1}{4}\right), 1(=0) .
$$

\Rightarrow period 4, 3 rotations per period.

* if Ω is irrational, θ_{n} never repeats, $\&$ eventually covers all points on the circle. \Rightarrow "quasi- periodic"
when $k>0$ (nonlinear regina), can have periodic solutions even for irrational Ω

If we choose k, Ω values with ir the it tongue, for example, then any initial conditions θ_{0} will eventually converge to a specific u-period solution, such as

\Rightarrow unequal jumps (due to nonlinearity), but stilluperiodic.

* There are ∞ Anode tongues, each corresponding do a domineer penance between the forcing $I \&$ the nonlinear os rillator, each for a different rational $P / Q E=E^{\prime W} W$ winding $\left.A^{\prime \prime} \equiv \frac{\theta^{n}-\theta_{0}}{n}(1 \rightarrow 20)\right]$
* [describe non linear resonance for an actual pendulum forced by periodic forcing, us a linear resonance.]

Devil's staircase
At $k=1$, the tongues of periodic solutions cover the entire $\Omega=[0,1]$ interval, besides a fractal set of dimension $<1 \Rightarrow$ zero total length.
winding
number

$$
\left[\begin{array}{c}
\frac{p}{Q} \\
\operatorname{ar} k=1
\end{array} \prod_{0}^{1} \prod_{0}^{\frac{1}{2} \quad D_{1} \quad} \quad\right. \text { Devils Staircase! }
$$

Farey tree for the Devil's staircase

* note that width of steps is smaller if the
denominator in the winding \neq of each step is larger.
* also, given tho shops $\frac{p}{q}, \frac{p}{q^{\prime}}$ the largest step in between is $\left(p+p^{\prime}\right) /\left(q^{+}+q^{\prime}\right)^{+}$. this is because this is the rational \neq with the largest denominator between $p / q, p^{\prime} / q^{\prime}$.
[examples: $0 / 1<1 / 2<1 / 1$

$$
\begin{aligned}
& 1 / 2<2 / 3<1 / 1 \\
& 1 / 2<3 / 5<2 / 3]
\end{aligned}
$$

\Rightarrow can order the steps using a Farey tree, which orders rationals $\frac{p}{q}$ by denominator q :

Center manifold theory [time permitting...]
It's important to understand that the saddle-noce, dranscritical \& pitchfork bit's can occure in larger dimensional dynamical systems $\dot{x}=f(x, \mu), x \in \mathbb{R}^{n}$. When this occurs, there is a systematic theory for how to reduce the 1 -dim system into an equivalen 1 -d system via a nonlinear change of coordinates. to ged a feeling for this: consider a $2-d$ system: $\dot{x}=\mu-x^{2} \quad(\Delta)$

$$
\dot{j}=-y
$$

behavior in y is very simple: $y(t) \rightarrow 0$ as $\rightarrow \infty$. behavior in x depends on μ_{i} egg. $\mu>0 \Rightarrow\left(x^{*}, y^{*}\right)=(\pm \sqrt{a}, 0)$

* He x-avis is the "Center manifold" where all tho interesting stuft happens. note that it is "invariant", a solution with $y\left(t_{0}\right)=0$ will remain on the x-axis for all t. y is a"stable menitdd". Here can do be "unstable manifold".
* Center manifold theory is a systematic method for finding such an invariant center manifold on which the interesting things occur...
example (strogatz p.243)

$$
\begin{align*}
& \dot{x}=-a x+y \\
& \dot{y}=\frac{x^{2}}{1+x^{2}}-b y
\end{align*}
$$

can show that phase space behavior is like this of

[and this picture varies like a page 85 when a, b are varied...]
so that along the line, behavior is like on x-axis in simpler previous example. Hus this line is dye "enter manifold."

* mathematically, center manifold is parallel do poigenvectors of jacobian with zero real $\stackrel{\text { voratat }}{\text { regin }}$ value. more on this later...
* stable manifold is spanned by eigen vectors with negating real part of vifenvalues * tastable memiflold: by ...positive real part...
\Rightarrow the simplor31d normal forms ne have discussed last time are generic \& occur in larger dimensional systems as well
* center manifold the orem provides the reeopie for transforming (y\#) to a different coordinate system in which are get a id egn on the center manifold, eynivaleat to \& P.85 \&ia non lix. dransfor.
normal forms:
once we have redied the dynamics to
the center manifold (say a id center manifold if bifurcation is are of the 3 we have discussed), the eg'n way still be complicated. normal form theorem gives us a recepie for transforming (again, a nonlinear transformation) do the standard normal forms we have discussed. $\frac{\text { example }}{\text { (strogatz p. 52) }}$

$$
\dot{x}=\Gamma \ln x+x-1
$$

$\begin{aligned} x & =1 \text { is fixed } p \mid \text {. shift problem by } 6 \text { ting } u \equiv x-1 \\ & \Rightarrow \dot{u}=r \ln (1+u)+u\end{aligned}$

$$
\begin{aligned}
\Rightarrow \dot{u} & =r \ln (1+u)+u \\
& =\Gamma \cdot\left\{u-\frac{1}{2} u^{2}+o\left(u^{3}\right)\right\}+u \\
& =(r+1) u-\frac{1}{2} r u^{2}+o\left(u^{3}\right)
\end{aligned}
$$

\longrightarrow looks like transcritical biff.
Let $u=a \cdot v$ where v is the new variable, subst in egn for u :

$$
v=(r+1) v-\left(\frac{1}{2} r a\right) v^{2}+o\left(v^{3}\right)
$$

let $R=r+1, a=2 / r \Rightarrow \dot{v}=R v-v^{2}+O\left(v^{3}\right)$
\Rightarrow inced transcritical.
more normal form: getting rid of $O\left(U^{3}\right)$ normal form theorem tells us we can dranstoin to normal form up to arbitrary accuracy, not just do $O\left(r^{3}\right)$. do see how
exaurphe, strogatz p.80-81

* spae we have $\left\{\begin{array}{l}(n \geq 3) \\ \dot{x}=R x-x^{2}+a_{n} x^{n}+O\left(x^{n+1}\right), \notin\end{array}\right.$ we want to eliminate the $x^{\prime \prime}$ term to improve accuracy of this approximation to the normal form $\dot{x}=r x-x^{2}$.
* use "near identity" transformation:
note: this is $y_{n \text { not }} X+\underbrace{b_{n} x^{n}+O\left(x^{n+1}\right)}_{\text {an }}$ (small correction)
correct. The
transformation here
leads to for invert draustofmation: write $X=x+\operatorname{cn}_{n} x^{n}+O\left(x^{n-11}\right)(\sqrt{2})$,
expression that is expression that is
singular at $R=0$. Subst (2) in (1) \& find that
need to include terns $\left[x+C_{n} x^{n}\right]+b_{n}\left[x+c_{n} x^{n}\right]^{n}+O\left(x^{n+1}\right)$
such as $\mathrm{R} \times \mathrm{x}$ etc. see
notes and link in the $=$
lectures directory $\Rightarrow c_{n}=-b_{n}$

$$
\Rightarrow x \approx x-b_{n} x^{n}
$$

* Let now $\left[\frac{\partial}{a t}\right.$ of $\left.(1)\right] \Rightarrow \dot{x}=\dot{x}+n \cdot b_{n} \cdot x^{n-1} \cdot \dot{x}$

$$
\begin{aligned}
\Rightarrow \dot{x}= & \dot{x} \cdot\left(1+n \cdot b_{n} x^{n-1}\right) \\
= & \left(R X-x^{2}+a_{n} x^{n}\right)\left(1+n b_{n} x^{n-1}\right) \\
= & \left.\left(R\left[x-b_{n} x^{n}\right]-\left[x-b_{n} x\right]^{n}\right]^{2}+a_{n}\left[x-b_{n} x^{n}\right]^{n}\right) * \\
& *\left(1+n b_{n} \cdot\left[x-b_{n} x^{n}\right]^{n-1}\right)
\end{aligned}
$$

* Whlect all terms in x^{n}, \& choose b_{x} such that these demo vanish \& we have

$$
\dot{x}=R x-x^{2}+O\left(x^{n-1}\right)
$$

\Rightarrow improved approx to normal form by one power... Camproced save Egaix...

