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ABSTRACT

Simple climate models employing diffusive heat transport and ice cap albedo feedback have equilibrium
solutions with no stable ice cap smaller than a certain finite size. For the usual parameters used in these
models the minimum cap has a radius of about 20 degrees on a great circle. Although it is traditional to
remove this peculiar feature by various ad hoc mechanisms, it is of interest because of its relevance to ice
age theories. This paper explains why the phenomenon occurs in these models by solving them in a physically
appealing way. If an ice-free solution has a thermal minimum and if the minimum temperature is just above
the critical value for formation of ice, then the artificial addition of a patch of ice leads to a widespread
depression of the temperature below the critical freezing temperature; therefore, a second stable solution will
exist whose spatial extent is determined by the range of the influence function of a point sink of heat, due
to the albedo shift in the patch. The range of influence is determined by the characteristic length in the

problem which in turn is determined by the distance a heat anomaly can be displaced by random walk

during the characteristic time scale for radiative relaxation; this length is typically 20-30 degrees on a great
circle. Mathematical detail is provided as well as a discussion of why the various mechanisms previously
introduced to eliminate the phenomenon work. Finally, a discussion of the relevance of these results to
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nature is presented.

1. Introduction

Since their introduction more than a decade ago
by Budyko (1968, 1969) and Seliers (1969), energy
balance climate models (EBMs) have been the subject
of many investigations (cf. the review by North et al.,
1981). Even with their mathematical and physical
simplicity, the models have continued to provide
interesting puzzles. One curiosity which has eluded a
simple interpretation over the years is the small ice
cap instability (SICI). Early on, several authors found
that in tuning models with discontinuous albedos at
the ice cap edge and with a diffusive type of transport,
ice caps smaller than a certain finite size are unstable.
Most investigators tended to think that the SICI was
an artifact of the idealized models and the usual
approach was to dismiss it or introduce additional
ad_hoc mechanisms that would remove it. For ex-
ample, Cahalan and North (1979) noted that if the
ice cap albedo were smoothed by say an arctangent
function SICI disappeared (cf. also Suarez and Held,
1979; Coakley, 1979; Ghil, 1976, who used the
Sellers-type albedo parameterization). Lin (1978)
showed that when certain nonlinear diffusive heat
transport mechanisms were introduced the SICI dis-
appeared. North (1975) noted that if the equinox
solar insolation distribution were used, no SICI oc-
curred. In short, many authors have considered the
phenomenon a nuisance and while it has been shown
to come and go with various assumptions little effort

has been devoted to determining its physical signifi-
cance. The purpose of this paper is to develop a
simple interpretation for SICI which explains all of
the preceding removal mechanisms and which pro-
vides enough understanding of it to ask if it is relevant
to climatology.

The most popular removal mechanism has been
the smoothed albedo at the ice edge because in
dealing with zonally symmetric models the lack of
longitudinal uniformity of the real earth’s ice caps
naturally suggested use of a smoothed zonal average
in a simulation (e.g., Oerlemans and Van den Dool,
1978). Coakley (1979) argued similarly that the sea-
sonal variation of the snow line justified use of a
smoothed albedo at the perennial ice edge. Recently,
a two dimensional EBM with longitudinal and sea-
sonal resolution has been developed, however, whose
solutions exhibit zonally asymmetrical ice caps (North
et al, 1983). The model employs a discontinuous
albedo at the local ice borders (the published version
unfortunately does not have a seasonal snow line).
As parameters are varied in the model, a phenomenon
reminiscent of SICI occurs in the solutions, namely,
abrupt transitions from no ice cap to finite unsym-
metrical ones. Moreover, transitions from finite un-
symmetrical caps to larger finite unsymmetrical caps
can occur as parameters are varied further. These
model results suggest that the smoothing argument
used in the earlier zonally averaged models was
inapplicable.
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In the two-dimensional model paper it was specu-
lated that the Laurentide ice sheet may have been
the result of the transition from a kind of no ice
situation (actually Greenland only) to a solution
having a finite stable ice cap extending across the
pole and well into North America. The transition
could be triggered by tiny orbital element changes.
The two-dimensional model also suggests that the
formation of the Greenland ice sheet might have
occurred by way of an abrupt transition induced by
the opening of the Norwegian Sea about 50 million
years ago (North and Crowley, 1985). Another appli-
cation of the two-dimensional model is to the incep-
tion of glaciation of Antarctica (North and Crowley,
1985). In that case the model solutions imply that as
the carbon dioxide loading of the air decreased from
several times higher than at present during the mid-
tertiary, there was an abrupt transition to an ice
covered land mass. In the results just cited the
influence of the seasonal cycle is crucial since it can
lead to strong longitudinal variation in summer tem-
perature distribution due to continentality effects. In
fact, the thermal minimum in summer may be dis-
placed from the pole and there may even be more
than one relative minimum.

In addition to these model results which imply a
role for SICI in the theory of the inception of land
based ice sheets, various evidence implies that per-
ennial sea ice may exhibit SICI behavior. Budyko
(1974) has argued from surface heat balance consid-
erations that if Arctic sea ice is removed it may not
return; Hunt (1984), on the other hand, has argued
from GCM calculations that an ice-free Arctic sea
state would not exist under present conditions. The
question of an ice-free arctic ocean has interesting
paleoclimatic implications regarding the availability
of moisture and its potential impact upon glacier
growth rates; this and other related sea ice implications
are reviewed by Clark (1982). These potentially im-
portant model results involving SICI type phenomena
and their likely applicability to a variety of paleocli-
matic situations suggest that the phenomenon of SICI
deserves further investigation.

The intention of this study is to conduct a kind of
thought experiment in which a solution is found to
a simple EBM in a way that is intuitively appealing.
The resulting picture of the SICI is clear. Before
entering the mathematical detail we find it helpful to
preview the argument in words. Imagine an ice free
earth with a smooth temperature field falling from
about 31°C near the equator to about —9.0°C at the
poles. Actually this solution corresponds to the one
studied by North (1975) and Drazin and Griffel
(1977) for a solar constant/4 of 333.0 W m~2 and
with other model parameters as in those papers. Now
imagine placing a small patch of ice at the pole. The
resulting albedo change serves as a point sink of heat.
Diffusive transport and radiative damping (infrared
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to space) lead to a distortion of the temperature field
over a spatial scale proportional to the square root of
the ratio of the diffusion to radiative parameters (this
length scale was noted by Lindzen and Farrell, 1977).
The finite spatial extent of the thermal depression
leads to a finite sized patch of horizontal area which
falls below the critical temperature for the formation
of ice (—10°C) and therefore a finite sized ice cap
results. The size of the ice patch determines the
strength of the heat sink and this can be adjusted
self-consistently until the patch is in equilibrium, i.e.,
until its edge is at —10°C. Roughly speaking, the
finite ice cap has a size approximately that of the
length scale of the influence function.

Before passing to the body of the paper, we ac-
knowledge the intuitive arguments of Brooks (1949)
that small ice caps would not exist. His arguments
are similar to those presented here. Of course, they
predated the development of the simple EBM frame-
work, which makes the argument much easier to
understand. The present mathematical formulation
also gives the reader a much clearer basis for accepting
or rejecting the argument as it applies to nature.

2. Model
The class of models under consideration are the

diffusive zonally symmetric mean annual models
which may be defined by the energy balance equation:

dT
—Ddii-x(l -x? . + A + BT = QS(x)a(T), (1)
where
X sin(latitude)
T sea level temperature
A, B empirical radiation coefficients (201.4 W m 2,

145 Wm2Ch

D thermal diffusion coefficient (VD/B = 0.30)

a(T) coalbedo = 0.38 for T < —10°C, 0.68 for T
> —10°C

o solar constant/4

S(x) normalized mean annual sunlight distribution
(=1 — 0.482P5(x); Px(x) = (3x2 — 1)/2).

All lengths are in units of earth radius.

The preceding parameter values are taken from
North (1975) and are the same as those used by
Drazin and Griffel (1977). While these constants are
not the most up-to-date, they can be used for easy
comparisons with previous exact solutions and cer-
tainly serve our present purpose.

Equation (1), together with the boundary conditions
that no heat flux cross the equator or go into the
pole, can be solved by a variety of techniques. The
usual form of displaying the solution is to plot x;,
the sine of the latitude of the ice edge as a function
of solar constant. Figure 1 shows a portion of the
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FIG. 1. A plot of the north-south symmetric equilibrium ice cap
sine of latitude x; vs solar constant/4, Q, adapted from Fig. 2 of
Drazin and Griffel (1977); cf. also Fig. 1 of North (1975).

equilibrium curve as adapted from Drazin and Griffel
for the north-south symmetric solutions. Note that
the segments of the curve with negative slope (dashed)
can be demonstrated to represent unstable solutions
(Cahalan and North, 1979). According to this figure,
values of the ice edge x; greater than about 0.955 are
unstable. Hence, for the solar parameter values in
the range shown in the graph only ice caps extending
more equatorward than about 73 degrees latitude are
stable. This is what is meant by the small ice cap
instability.

3. Perturbation of an exact ice-free solution

Now we wish to study the perturbation of the ice-
free solution corresponding to a value of Q@ = 333.0
W m? due to a source or sink of heat uniformly
distributed around the pole. This particular ice-free
solution is the solution to a linear model since 7 is
everywhere greater than —10°C. The solution is given
by

- Tp(x) = 17.3 — 26.3Py(x), )

which can be demonstrated by insertion into (1). We
can find the perturbed solution due to adding a heat
source whose density is g(x). The shift in temperature,
denoted by T'(x), is the solution of a linear inhomo-
geneous ordinary differential equation with no-flux
boundary conditions at the poles or at one pole and
the equator if g(x) = g(—x):

d

dar’ .
-D ZX [(1 - x2) a:l + BT' = q(x). (3)

The function 7° will now be shown to have a

length scale of order VD/B if the length scale of ¢ is
small. First it is useful to digress to a short discussion
of Green’s functions for operators such as that in (3).
To simplify the mathematics by using more familiar
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special functions we choose to work in a plane
tangent to the pole, although the relevant spherical
solution is available (see Appendix of North et al.,
1981, or Salmun et al,, 1980). In these plane polar
coordinates let r be the distance from the pole. A
response function H(r) for the source distribution g(7)
is the solution of

14, d 1 HO g0
rdr [r drH(r):I L D’

where the length scale is defined as L = VD/B. Con-
sider the Green’s function G(r, r') defined by

1d[ d G(r, r')
—_ —_— G 4 —_—_—
rdr [r dr rr ):I L

Here G(r, r') may be interpreted as the response to a
ring of heat source at radius »' and with strength g;

H(r) may be recovered for any source density g(r')
by the quadrature

=go(r—r)/r'. (5)

H(r) = —J:o r'g(r"YG(r, r')dr'/D. 6)

A solution for G(r, r') is given by Jackson (1962):

G(r rr) — {iIO(r’/L)KO(r/L)’
’ To(r/L)Ko(r'/ L),

where Iy(z) and K(z) are modified Bessel functions.
For values of r > r' it is clear that the dependence of
the Green’s function has the form of the familiar K
Bessel function, sketched for reference in Fig. 2. It
might be recalled that asymptotically K(z) ~ (7/2z)'/?
exp(—z) for large z. It follows that the physically
relevant length scale of the thermal response to a
point source of heat is indeed Y D/B which we defined
as L. By approximating I, by unity for z small (cf.

r>r

(7

r<r,

F1G. 2. The Modified Bessel functions Ky(z) and I(z).
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Fig. 2), and cutting off the integral (6) at R the ice
cap edge, we can obtain H{(r) from (6):

H(r) ~ gR*K(r/L)/2. ®
The strength g of the anomalous heat source is
determined by the product of the discontinuity of
albedo @ = 0.30 and the solar heating at the pole
0S(1) = 333.0 X 0.518 divided by the dimensional
diffusion coefficient 1.45 X 0.30; therefore, g = 396.5.
Note also that the thermal depression is proportional
to the area of the ice cap, R?/2 (a factor of 2= has
been divided out of the energy balance equation).

Possible ice cap edge solutions can be found by
adding the ice free solution Tx(r) to (6) and equating
the sum to the critical temperature T, = —10°C:

Te(r) + H(r, R) = T;. )

The roots of (9) for which » = R are the possible ice
edge solutions. By setting r = R in (9), we may write
the condition

T+R) + HR, R) = T,. (10)

The solid curve in Fig. 3 contains a graph of the two
sides of (10) with roots R determined by the intersec-
tions of the two curves. In converting from x to r
(sphere to tangent plane) the approximate relation r2
= 1 — x? was used. There are two roots, one very
small (R = 0.15) and a larger one (R = 0.28). The
smaller root corresponds to the small unstable solution
at about x; = 0.985 in Fig. 1, while the larger
corresponds to the stable root at x, = 0.875 of that
figure. The vertical arrows in Fig. 3 indicate the roots
that should be expected from Fig. 1. The dashed
curve shows the improved approximation when the
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F1G. 3. Right and left sides of Eq. (10) vs argument r. The two
smooth curves represent two different approximations to H(r, r):
the solid curve takes the ice-cap strength proportional to its area,
whereas the dashed curve uses a higher order approximation.
Intersections with the —10°C line (open circles) give the planar
model roots for ice caps. The vertical arrows show the exact roots
from the spherical solution.
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integrand containing 7, and S(x) is allowed to have r
dependence up to terms of order r2 In this case the
resulting roots lie much closer to the exact solution.
The residual error is the result of the distortion of
the spherical versus plane geometry as well as the
quality of this first approximation. As a final check,
the spherical case was integrated numerically and
both roots were essentially indistinguishable from the
exact ones; the reason for the close agreement in this
last case is that this solution is actually exact, and
the procedure actually does represent yet another
method of solving EBMs with precisely this form.
The technique is not especially useful in other cases
and hence we shall not dwell upon it here. We can
conclude that this perturbation algorithm is valid as
a device for interpreting SICI, since even the tangent
plane approximation leads to roots rather close to
the exact solutions for the ice cap edge.

4. Remarks

After this simple derivation (summarized at the
end of the Introduction) we can explain why the
removal mechanisms work. Let us consider them one
by one:

1) The smoothing mechanism introduces a new
length scale, the smoothing length, which process
diminishes the strength of the point sink; the net
result is that the curve of Fig. 3 never goes below the
critical temperature. While smoothing is effective in
removing the cusp by diminishing the strength of a
small patch of ice, it seems to persist under some
rather drastic applications. For example, Coakley’s
(1979) seasonal smoothing mechanism does not al-
ways remove the cusp. This point is also made by
Saltzman and Vernekar (1983).

2) If the diffusion coefficient is proportional to the
gradient of temperature, then the local diffusion
coefficient is vanishingly small near the pole because
it is forced to be so by the no flux boundary condition
at the pole. Since the local diffusion coefficient is
forced to be so small near the pole an anomalous
heat sink (ice patch) will only be able to spread
(negative) heat a very short distance before it is
radiated away to space. The length scale L is essentially
zero. Lin’s (1978) removal of the cusp by this mech-
anism is now clearly understandable. Its validity as
regards nature is an open question centered around
whether the atmosphere can support discontinuities
in surface temperature. It is interesting that Saltzman
and Vernekar (1983) find the cusp to be a very robust
feature of their fairly detailed EBM which included
the effects of mean meridional motions and latent
heat transport.

3) Equinox heating distributions have S(1) equal
to zero and a small hypothetical patch of ice can
have no heat sink value, since there is no incident
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radiation to be affected. Therefore, we expect no cusp
as was found by North (1975).

4) The climate model having no horizontal heat
transport has no SICI as indicated by the figures in
North et al. (1981); this is easily explained by the
fact that the response function to a point source in
such a model is a spike (delta function), and therefore
no finite sized deformation is to be expected. Again
the associated length scale of the influence function
is zero.

5) The Budyko transport model (horizontal heat
flux divergence proportional to the difference between
local and global average temperatures) has a response
(Green’s) function which has strong spike and a weak
long range part (cf., the Appendix of Cahalan and
North, 1979, for its analytical form); in most cases
the Budyko model does not exhibit the SICI because
of the dominance of the spike in the influence
function. It is important to realize that in these last
two nondiffusive cases, where discontinuous temper-
ature fields are permitted by the transport mechanism,
the situation is more complicated because of the
possibility of a continuous multiplicity of solutions,
as has been studied by Held and Suarez (1974).

It is interesting that the characteristic length scale
VD/B is a number of the order of 0.40 to 0.60 earth
radii (20 to 40 degrees on a great circle; usually the
smaller value applies near the poles) depending upon
the parameter choices (cf. North et al, 1983, for
more up-to-date values of D and B). This makes the
length scale large for some applications such as the
one discussed here in connection with the possibility
of stable tiny ice caps. However, in some other
applications we see that this same value for the length
scale may be considered rather small. For instance,
" if we.ask about whether the albedo of an ice cap at
one pole can have much influence at the other, we
see that the answer is no. For example, the effects of

a cooling anomaly at one pole are diminished by a .

factor of the order of 10™* of the values near the
source. It is no wonder that Drazin and Griffel (1977)
were able to find climate solutions with an ice cap at
only one pole, quite independently of whether there
was one at the other pole.

Now we come to the relevance of the inferred
instability of small ice caps to the real world. First
we must question the validity of the diffusive approx-
imation in this context. Since the horizontal heat
transport near the poles is dominated by transient
eddy fluxes (Oort, 1974) it may be that at least in
ensemble average, diffusion is a reasonable first ap-
proximation. The arguments presented here, of course,
do not depend precisely upon diffusion but rather
upon the random walk nature of eddy transport and
its square root of time propagation characteristic.
Recall that the cusp phenomenon persists even when
some poloidal motion is présent (Saltzman and Ver-
nekar, 1983).
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Some general circulation model results, that I am
aware of, suggest that in the polar regions the model
solution fields (in ensemble average) react to localized
heating anomalies only over a distance of roughly the
length scale introduced here. For example, Herman
and Johnson (1978) in their investigation of the
effects of sea ice anomalies found that the thermal
effects were considerably diminished beyond a distance
of about 20 degrees on a great circle. Hunt (1984)
also suggests that the effects of local albedo changes
near the poles are confined to latitudes poleward of
70 degrees. Similarly, Phillips and Semtner (1984)
studied a simplified GCM’s response to sea surface
temperature anomalies and also found a similar lim-
ited but finite range of influence. Of course, as is
apparent in the recent literature (e.g., Simmons et
al., 1983, or Phillips and Semtner, 1984) heat sources
in the tropics can excite long stationary waves ex-
tending well into the midlatitudes, suggesting that
diffusion would be a poor approximation in that case.

As alluded to in the Introduction, the SICI becomes
much more interesting in the context of seasonal
models including geography. In this case the mor-
phology of the unperturbed field, as well as the
influence function, will determine the precise shape
of the smallest possible stable ice cap. If the health
of nascent or thin ice caps is governed by summer
temperatures, the placement of land masses can re-
locate the position of the thermal minimum away
from the pole during seasonal extremes and therefore
lead to asymmetrical SICI in some cases; presumably
this is precisely what happened in the two-dimensional
model of North er al. (1983). Small ice cap instability
may then play some role in the formation of such
large ice sheets as the Antarctic, Greenland, and the
Laurentide. It would be premature to take such a
theory too literally at present, however, since our
model is highly schematized and the effects presenting
themselves here as dramatic bifurcations may well be
smooth but steep segments of the curves in a more
realistic formulation. It is likely that the discontinuous
albedo, diffusive transport and pinning the existence
of perennial ice to a late summer isotherm all conspire
to exaggerate the behavior. On the other hand, such
simplified views can provide useful working hy-
potheses for experimentation with the more compre-
hensive models of the future.

The plausibility of SICI as inferred from diffusive
models suggests that its existence in more advanced
models be investigated. For general circulation model
experiments this order is a tall one since these systems
are not ordinarily at their best near the poles for a
variety of reasons, both numerical and physical. In
addition, if the small ice cap instability is indeed real
in these more complicated models, it will be necessary
to make extremely long runs to obtain equilibrium
statistics because the characteristic time (equivalent
to autocorrelation time usually) is proportional to the
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slope of the curve in Fig. 1, and at the bifurcation
this slope is, of course, infinite. However, recent
developments especially in spectral models and a
continuing improvement in our collection and un-
derstanding of polar data suggest that this kind of
detailed modeling of the polar regions is not far away.
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