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ABSTRACT

The behavior of the Cane—Zebiak ENSO prediction model is analyzed as a function of model parameters
measuring the strength of coupling between the model ocean and atmosphere and the amplitude of the back-
ground seasonal cycle specified in the model. As either of these two parameters is increased, the model undergoes
a transition from periodic to chaotic behavior according to the universal quasi-periodicity route to chaos. Thus,
the irregularity of model ENSO events and their partial locking to the seasonal cycle can both be explained as
low-order chaotic behavior driven by the seasonal cycle. The chaos is due to irregular jumping of the Pacific
natural ocean—atmosphere oscillator between different nonlinear resonances with the seasonal forcing.

The periodic seasonal forcing seems to be the main factor determining the chaotic behavior of the model.
However, the full irregularity of model ENSO events is only explained by considering additional factors, possibly
including the nonlinear interaction of different delay oscillator modes related to the different model ocean

Rossby modes.

1. Introduction

Recent work on the mechanisms of the El Nifio—
Southern Oscillation (ENSO) has significantly ad-
vanced our understanding of ENSO dynamics. The
body of work using various simple delay oscillator
models has provided quite a satisfactory explanation
for the onset, termination, and cyclic nature of ENSO
events (Suarez and Schopf 1988; Graham and White
1988; Battisti and Hirst 1989; Cane et al. 1990; Mun-
nich et al. 1991). Neelin et al. (1994) review the state
of ENSO theory, including extensions to the delay os-
cillator physics and work using various fuller ENSO
models. Two basic ENSO characteristics unexplained
by the delay oscillator mechanism are the irregular oc-
currence of ENSO events and their apparent partial
locking to the seasonal cycle (Rasmusson and Carpen-
ter 1982).

ENSO’s irregularity was suggested by Graham and
White (1988) to be the result of random forcing due,
for example, to atmospheric weather. Such ‘‘random”
forcing might be high-order chaotic behavior of the
ocean—atmosphere system due to deterministic dynam-
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ical processes that are characterized by timescales
much shorter than ENSO’s and that are external to the
basic ENSO mechanism. An alternative explanation for
ENSO’s irregularity was given by Vallis (1986, 1988)
and Munnich et al. (1991), both suggesting that the
irregularity is not a result of an external random force
but instead is due to the inherent nonlinearity of the
ENSO system, resulting in a low-order chaotic behav-
ior. While Vallis (1986, 1988) has used an ENSO
model that lacks the equatorial wave dynamics now
accepted as a crucial factor of ENSO dynamics, Mun-
nich et al. (1991) have used a nonlinear delay oscillator
model to show that irregular, and seemingly chaotic,
motion may occur without an explicit external noise
term.

The partial locking of ENSO to the seasonal cycle,
seemingly contradicting its irregularity, was attributed
to various factors. Zebiak and Cane (1987) suggested
that it might be due to a seasonal dependence of the
strength of the coupling between ocean and atmo-
sphere. Vallis (1988), although using a model that
lacks the essential equatorial wave dynamics, has
shown that with nonlinear dynamics and simple sea-
sonal forcing, one might obtain a locking of the sys-
tem’s response to the annual forcing frequency.

Recently, Tziperman et al: (1994, hereafter T94 ) and
Jin et al. (1994) have proposed that ENSO behavior is
consistent with low-order chaotic behavior driven by
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the seasonal cycle. It was found that the resulting cha-
otic behavior may provide a simple explanation for
both the irregularity of ENSO events and their locking
to the seasonal cycle. Chaos arises because the natural
oscillator of the equatorial Pacific coupled ocean—at-
mosphere system can enter into nonlinear resonance
with the seasonal cycle at several periods of the oscil-
lator (mostly 2-5 years). The coexistence (‘‘overlap-
ping’’) of these resonances results in chaotic behavior
due to the irregular jumping of the system between the
different resonances. In particular, it was shown by T94
using a simple delay model and by Jin et al. (1994)
using a simplified coupled model, that as the nonlin-
earity of the delay model is increased, the system’s
transition from simple periodic behavior to chaotic be-
havior is according to the so-called quasi-periodicity
route to chaos (Bohr et al. 1984; Jensen et al. 1984;
Bak et al. 1985: all three works hereafter referred to as
BBJ84] and follows the universal behavior of this class
of chaotic systems.

While the idea of ENSO as a seasonally driven chaos
seems quite appealing, one would like to see it dem-
onstrated using a more complete model than those used
in T94 and in Jin et al. (1994 ). This is the purpose of
the present manuscript. We show here that the same
basic chaos mechanism that was demonstrated in T94
using a highly simplified delay model is also at work
in the ENSO prediction model of Zebiak and Cane
(1987) (hereafter the CZ model). This more realistic
model allows some important refinements and correc-
tions to the original ideas derived using simpler models.

In the following sections we first describe the uni-
versal properties of the quasi-periodicity route to chaos
using the simplest model system that undergoes this
route to chaos: the circle map (section 2). Some as-
pects of the CZ model relevant to the numerical ex-
periments carried out in this work are described in sec-
tion 3. The diagnostic tools used to analyze the tran-
sition to chaos of the CZ model are explained in section
4, and the numerical experiments demonstrating this
transition scenario in the CZ model are given in section
5. We conclude in section 6.

2. Quasi-periodicity route to chaos, the circle map

The transition to chaos of a model system as its non-
linearity is increased can occur in one of several stan-
dard scenarios. The main ones are the period doubling
route, the intermittency route, and the quasi-periodicity
route to chaos, which will be shown to be the one rel-
evant here. Each of these transition scenarios has sev-
eral universal properties common to all physical sys-
tems undergoing it.

The quasi-periodicity route to chaos occurs in peri-
odically forced nonlinear physical systems. The sim-
plest model system for this scenario is the circle map,
which is an iterative map of the circle to itself. The
model equation is
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s = o0 = 6, + 9 = 3 _sin(2nd,), (1)
where 6, is the angle denoting the location of the nth
iteration on the circle, taken modulo 1 in this equation.
The circle map is nonlinear, with the nonlinearity mea-
sured by the parameter K. The quasi-periodicity route
to chaos is a two-parameter route; that is, both the non-
linearity parameter K and (2 are varied to obtain the full
behavior of the transition to chaos.

The circle map has been investigated in detail, as
were other simple physical systems undergoing the
same route to chaos, and there is a wealth of universal
properties of the quasi-periodicity route to chaos that
are now well understood (BBJ84). We will describe
only those properties essential for the following dis-
cussion of the transition to chaos of the CZ ENSO
model and refer the reader to the references for addi-
tional details.

An important parameter in diagnosing the transition
to chaos of the circle map is the ‘‘winding number’’ w.
It is the mean number of rotations around the circle per
iteration of the map (1). If, for example, w = 0.5, then
0, will require two iterations to complete a 360 degree
trajectory. For the circle map, the winding number is
defined as the limit
1
w = Ilviglo v (Ov — o), (2)
where 8, is not taken modulo 1 for this calculation. For
a more general physical system the winding number is
calculated in a slightly different way that is described
and demonstrated in the following sections.

Consider first Fig. 1 [based on Fig. 9 of Bak et al.
(1985)], schematically showing the transition of the
circle map to chaos as function of the two parameters
K and 2. The wedgelike areas beginning as a single
point on the horizontal axis and widening as K in-
creases are known as ‘‘Arnol’d tongues.”” These
tongues are areas in which the winding number w is a
rational number (given by the starting point of the
tongues on the horizontal axis), and the solution for 6,
is perfectly periodic. There is an infinite number of
such Arnol’d tongues, and only the main ones are
shown in the figure. These areas represent regions in
which the solution is in a state of nonlinear resonance.
Note that while a linear resonance occurs when the in-
ternal frequency of the system equals that of the exter-
nal forcing, a nonlinear resonance may occur when the
ratio of the two frequencies is a rational number P/Q.
The strong main resonances are characterized by small
P and Q (e.g., w = 1/4), while the weaker secondary
resonances are those with larger P and Q (e.g., w
= 3/10). Each of the two tongues P/Q and P'/ Q"' gives
rise to a next level tongue characterized by the ratio (P
+ P"Y/(Q + Q). The two largest tongues are at P/Q
=0/1and P/Q = 1/1. Hence, the second level consists
of the tongue (0 + 1)/(1 + 1) = 1/2, the next level
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FiG. 1. Schematic phase diagram for the circle map, based on Fig. 9 of Bak et al. (1985). The
main nonlinear resonances (Arnol’d tongues) are shown, and their overlapping in the chaotic

regime is seen above K = 1.

includes 1/3 and 2/3, and the next one consists of the
four tongues at 1/4, 2/5, 3/5, and 3/4.

The transition of the circle map to chaos as the non-
linearity is increased occurs as follows. For small non-
linearity K most of the solutions are not in nonlinear
resonance but are simply quasi-periodic; that is, the
map’s winding number w is not a simple rational
number.

For larger nonlinearity, the Arnol’d tongues cover a
larger part of the (2 axis. At K = 1 they cover nearly
the entire axis, so that the total length of all the intervals
that are not within the Amol’d tongues is of measure
zero (zero total length), and practically all 2 values
result in mode-locked behavior.

For K > 1, some of the Armol’d tongues overlap.
(Figure 1 shows only the main resonances, and these
overlap only above the line K = 1.) When this occurs,

thata[n]

theta[n—1]

FIG. 2. The return map for the circle map.

several nonlinear resonant solutions are possible for a
single choice of the parameters 2 and K. The system,
now ‘‘frustrated’’ (BBJ84) by its inability to decide
which resonance to settle on, jumps irregularly between
the possible resonances. Between jumps, the system
still tends to be locked to the external frequency for
some interval of time. In the regime in which the 1/3
tongue overlaps that of the 1/4, for example, the time
series will not be completely random but will have dis-
tinct segments in which its frequency (i.e., the winding
number) is 1/4 and others in which it is 1/3.

A useful diagnostics of the transition to chaos of the
circle map is the ‘‘return map’’ of 6, versus 6,_, that
is shown in Fig. 2 for the quasi-periodic regime where
it is a monotonically increasing function. The transition
to chaos occurs at K = 1 when the monotonicity is lost
and 86,/00,-, = 0 at some point. For more complex
physical systems, the return map develops ‘‘wrinkles’’
at the transition to chaos (BBJ84).

We now proceed to describe the ENSO model used
here, and then examine its transition to chaos in the
light of the universal properties of the quasi-periodicity
transition to chaos described above for the circle map.

3. The model and relevant parameters

The version of the CZ model used here was de-
scribed by Zebiak and Cane (1987, section 4c). The
model state that is judged ‘‘optimal’’ in terms of fitting
to the observed ENSO characteristics was analyzed in
T94 and found to be consistent with a low-order chaotic
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behavior. This conclusion was based on a calculation
of the Grassberger—Procaccia correlation dimension
from a model time series (Grassberger and Procaccia
1983). The correlation dimension was used to distin-
guish between the two possible explanations for the
irregularity of the ENSO model time series: low-order
chaos (characterized by a low value for the correlation
dimension) and random noise (large correlation di-
mension ). However, it is difficult to differentiate low-
order chaos from random noise using time series anal-
ysis alone. While all known precautions were taken in
estimating the correlation dimension in T94, a final ver-
ification that the CZ model is indeed governed by a
low-order chaotic process requires more than a low es-
timate for the correlation dimension.

In order to demonstrate that the irregularity of ENSO
events in the CZ model results from a chaotic behavior,
we need to explore the model behavior as some of its
parameters are changed beyond the physically realistic
regime. Two model parameters are varied in this study:
the strength of the drag coefficient relating wind veloc-
ity to wind stress and the amplitude of the background
seasonal cycle. Given the wind velocity in the model,
u, = (u,, v,), the stress acting on the ocean (7., 7,) is
given by

(3)

where C, is the drag coefficient and p,; is the air den-
sity, assumed constant. The drag coefficient C, may be
regarded as a factor determining the strength of the
coupling between the ocean and the atmosphere in this
model (Cane et al. 1990). As it is reduced below some
critical level, the coupled instability responsible for the
ENSO events in the model is eliminated and the model
solution stops oscillating. The parameter r, is a relative
drag coefficient that is equal to 1 in the standard model
configuration and is varied in the experiments below.

The CZ model has five specified background fields
that are meant to reflect the climatological state of the
Pacific Ocean and atmosphere. There are the climato-
logical monthly SST, ocean surface currents, upwelling
velocity, surface winds, and surface wind divergence.
These fields are specified in the model as monthly val-
ues at each horizontal grid point in the model. Let
F denote any of the specified model background
fields at a horizontal location (i, j) and month /. In
order to vary the seasonal amplitude of the background
fields specified in the model, we write

(Tx» Ty) = pairrdcdlual(uay va)s

model _ frdata data I data
ijl = Fivj + aseasonal(Fi,j,I - Fi,j ’

(4)

where F¢ is the background field used in the model
run, F{4 represents the actual Pacific monthly clima-
tology (e.g., the climatological monthly SST), and
F{is a time-independent Pacific climatology taken in
our experiments to be either the July climatology or the
annual mean climatology. The parameter d.cusona SPEC-

ifies the amplitude of the seasonal cycle. When it is
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equal to 1, the background monthly state used by the
model is equal to the actual Pacific climatology. When
@easonal 18 Z€10, the background state reduces to the time-
independent climatology F{“*. In all the experiments
described below, the amplitude of the seasonal cycle is
varied uniformly for all five background fields specified
in the CZ model.

4. Diagnostics used to examine model time series

The analysis of the transition to chaos of the CZ
model is done in this work by running the model with
various parameter values and examining the model
NINO3 time series (averaged sea surface temperature
over the model’s East Pacific: 5°S—5°N, 90°-150°W).
The model time series is obtained by running the CZ
model for 100 years to dissipate the transient response
to the model initial conditions, and then 1024 more
years in which the NINO3 time series is saved for later
analysis. The elimination of transients turns out to be
crucial. A model state that may seem irregular at the
beginning of a run, for example, could settle on a per-
fectly periodic solution after a while.

In this section we briefly describe the diagnostics we
have used to examine time series from the CZ model
and characterize its chaotic behavior.

a. Reconstructed phase space

The phase space coordinates for a collection of par-
ticles are simply the location and velocity of all parti-
cles. Given a time series from a complex observational
or model system, the concept of particle trajectories is
not always usable, but a ‘‘reconstructed’’ phase space
picture may be obtained by using ‘‘delay coordinates.’’
Let the time series be h(z). Then, an equivalent m-
dimensional phase space picture is obtained by using
the delay coordinates

h(t) =[h(t), h(t + 1), h(z + 27), - - -,
h(t+ (m—1)7)]. (5)

These delay coordinates can be shown to provide a pic-
ture equivalent to the actual phase space picture for the
system from which the time series is taken. The delay
time 7 is normally chosen to be the decorrelation time
for the time series A (¢), although sometimes more elab-
orate ways are needed to maximize the information
content of the phase space picture (Fraser and Swinney
1986). We have used 7 = 1 year. Note that the delay
time or delay coordinates are not related to the delay
oscillator concept for the ENSO system. For the quasi-
periodicity route to chaos, a two-dimensional phase
space picture (m = 2) is sufficient to extract the infor-
mation about the transition to chaos.

b. Power spectrum

The power spectrum of a model time series may be
most illuminating when examining the transition to
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FiG. 3. Calculating the return map from a general
quasi-periodic time series.

chaos of a nonlinear system. In the nonchaotic regime,
the spectrum is characterized by several very sharp
peaks, while in the chaotic regime, the spectral peaks
become fewer and wider. To calculate the spectrum,
we have used routine G13CBF from the Nag Library,
which calculates the smoothed sample spectrum of a
univariate time series using spectral smoothing by the
trapezium frequency (Daniell ) window (Numerical Al-
gorithms Group 1984).

c. Return maps

The return map has been introduced above in the
discussion of the circle map and may be extended for
any system undergoing the quasi-periodicity route to
chaos as follows. The model time series is embedded
in a two-dimensional phase space using the delay co-
ordinates described above. The phase space trajectory
of a quasi-periodic system lies on a two-dimensional
torus (the combination of two independent frequen-
cies). A section through this torus obtained by the an-
nual subsampling of the time series used in the phase
space reconstruction results in a simple closed curve in
phase space. An angle 8, is then defined from a point
(h(t,), h(z, + 7)) in phase space that is on this closed
curve (Fig. 3). Calculating 6, from this phase space
picture, we can obtain the return map numerically by
plotting 6, versus 6,,.

d. Histograms of ENSO events distribution

Apart from the above commonly used diagnostics for
examining the behavior of chaotic systems, we found
two additional diagnostics to be most useful for ana-
lyzing the ENSO model time series. The first is a his-
togram of the number of ENSO events per month of
the calendar year. This simple diagnostic provides a
measure of the locking to the seasonal cycle of the
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ENSO model at a given parameter regime. The second
diagnostic is a histogram of the distribution of separa-
tion between events. That is, we examine the time sep-
aration between adjacent model ENSO events and
count the number of occurrences of a separation of, say,
4 years. The resolution of this histogram was chosen
to be 3 months. The use of this diagnostic will become
more apparent in the following.

For both of these diagnostics, an ENSO ‘‘event’’ is
defined to be a local maximum in the time series over
a period of 3 years (i.e., 1.5 years before and 1.5 after
the event). Restricting events to be of a some minimum
amplitude did not seem to change the results signifi-
cantly. In addition, we have not examined the model
time series directly, but only the 12 months running
average of the time series. This eliminates the seasonal
cycle from the data, leaving only the interannual signal.
Note that although the CZ model is a perturbation
model for variations from the monthly climatology, the
model nonlinearity rectifies the seasonal background
fields so that the perturbation model fields have a non-
vanishing monthly mean seasonal cycle (Fig. 4). This
model seasonal cycle, when superimposed on the in-
terannual variability, may create artificial peaks in the
time series, and in particular shift the month at which
a given interannual peak occurs. The simple running
average seems to efficiently eliminate this problem.
The 12-month running average acts as a low-pass filter
but does not change the number of NINO3 time points
per year, so that it is still possible to use the resolution
of 3 months in the histograms discussed above.

5. Transition to chaos of the CZ model

We now describe a set of experiments in which either
the strength of the background seasonality or the drag
coefficient is varied and examine the model behavior
as function of these parameters. A summary of all the
experiments is given in Table 1.

averaged SST

.28 " . - N i ? R L .
1 2 3 4 656 6 7 8 9 10 11 12

time (months)

F1G. 4. Monthly averaged East Pacific SST (degrees Celsius) from
a 1024-year run of the Cane—Zebiak model (thick line), and a fitted
cosine function with a one-year period (thin line).
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TABLE 1. Summary of model runs used in this study.

JOURNAL OF THE ATMOSPHERIC SCIENCES

Drag

coeff.  Seasonality
Run ry Ayeasonal Model state Comments  Figure
al 1.0 1.0 chaotic standard run 5
a2 0.8 1.0 mode locked 6
a3 0.9 1.0 chaotic 7
b 1.0 0.0 Zero state annual avg —
c 1.0 0.0 chaotic perpet. July 8
dil 0.9 0.0 periodic perpet. July 9
d2 0.9 0.2 mode locked 10
d3 0.9 1.0 chaotic same as a3 7

a. Varying the drag coefficient

As explained above, the drag coefficient is one of the
factors determining the coupling strength between the
ocean and the atmosphere in this model. Therefore, fol-
lowing T94 in which an effective coupling strength pa-
rameter was varied in the simple delay model, we begin
our experiments by varying the drag coefficient r; in
the CZ model.

Consider first the model run we consider *‘standard’’
(run al) with an unreduced drag coefficient. A similar
run was analyzed in T94 and was found to be consistent
with low-order chaotic behavior of the model. The
present analysis of the NINO3 time series from this
standard model run is shown in Fig. 5. This model state
is aperiodic (Fig. 5a), characterized by a wide spec-
trum (Fig. 5b), with evidential partial locking to the
seasonal cycle (Fig. 5e).

In the next experiment, the relative drag coefficient
is reduced from 1.0 to 0.8 (run a2, Fig. 6). In this case
the model NINO3 time series is very regular once all
initial transients have dissipated. The spectrum has a
sharp main peak at 1/4 yr~' (plus many subharmonics
due to the model nonlinearity ), and the reconstructed
phase space structure is simply four dots with some
scatter around each of them. This is clearly a solution
that is mode locked to the seasonal cycle at a 1 to 4
nonlinear resonance. The histograms also indicate that
this is a mode-locked state: the distance between peaks
is always 4 years, and the peaks always occur at the
same two months of the calendar year. It is important
to emphasize that the mode-locked parameter regime
does not consist of a single value of the drag coefficient
resulting in this behavior but extends over a significant
range of this parameter. ,

Further decreasing the drag coefficient leads to the
elimination of the ENSO oscillations in the model. The
model solution for the perturbations to the background
state are zero at all times (again, after initial transients
have dissipated).

The above picture is very satisfying, showing that
the CZ model behavior is, in fact, consistent with the
quasi-periodicity route to chaos: as the effective model
nonlinearity (now measured by the r,) is increased, the
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model is first mode locked and then aperiodic. Addi-
tional experiments show that the degree of aperiodicity
depends on the value of the drag coefficient; an inter-
mediate value between the model standard solution and
the mode-locked solution is shown in run a3 of Table
1 and in Fig. 7.

Clearly we have not exhausted the entire parameter
regime, and there are many more interesting experi-
ments that can be envisioned, such as taking finer steps
in parameter space of further increasing the drag co-
efficient beyond r, = 1. In any case, the experiments
shown here seem to be more than sufficient to establish
the transition to chaos scenario in the model, so we may
now refer to the aperiodicity regime in the CZ model
as chaos. We further strengthen this case by showing
that varying the amplitude of the background season-
ality results in the same route to chaos.

b. Varying the background seasonality

The relevant runs in Table 1 are now b, ¢, dl, d2,
and d3. Our purpose in this set of runs was to find a
more complete quasi-periodicity route to chaos that
contains not only the mode-locked and chaotic regimes,
but also the periodic or quasi-periodic regime that is
neither mode locked nor chaotic (see discussion of the
circle map in above section and T94). While looking
for a complete transition scenario, we will also learn more
about the factors leading to aperiodicity in the CZ model.

We begin by setting the seasonality amplitude
[@seasonat In (4)] to zero, looking for the natural oscil-
latory mode of the model ENSO system that is not
forced by the seasonal cycle. The first attempt is run b,
in which all background model fields were set to their
annual mean values [F{** = 312, F{/12in (4)]. Un-
fortunately, this background state does not seem to be
sufficient to support any ENSO oscillations, and the
model solution vanishes after transients are dissipated.

Noting that Zebiak and Cane (1987) found July to
be the most unstable month in their simulations, we
next try to set all background fields to their July value
(F{¥ = F{*: run c, Fig. 8). This run turns out to be
very interesting : the model time series is characterized
by ENSO events that are irregular, seemingly chaotic.
This is quite surprising as we anticipated that the reason
for the chaotic behavior in this model is the periodic
(seasonal) forcing, and that is completely missing in
this run. Evidently, the model nonlinearity is sufficient
to cause aperiodic behavior even in the absence of sea-
sonal forcing. Note (Fig. 8e) that the distribution of
ENSO events is no longer locked to the seasonal cycle
(which is now absent in the model); rather, they occur
all over the calendar year.

We proceed to run dl, in which all background
model fields have been set to their July values, as in
run c, but this time the drag coefficient is also reduced
to 0.9. This finally results in regular periodic ENSO
events (Fig. 9) with a frequency that is not a simple
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FIG. 5. Run al: the standard case. Shown are various analyses of the model NINO3 index time series; see
section 4 for more details. (a) A 30-year portion of the model time series being analyzed. Shown are the
actual monthly NINO3 index from the model (thin line) and its 12-month running average (thick line). (b)
The power spectrum of the model time series. (c) The reconstructed phase space picture. (d) Return map
plotted from the time series. (e) A histogram of the number of ENSO events (vertical axis) per month of the
calendar year (horizontal axis). (f) A histogram of the distribution of separation between model ENSO events.
Horizonta] axis: separation between events in years; vertical axis: number of times a given separation is seen
in the time series. See section 4d for details concerning (e) and (f).

integer ratio of the annual frequency. The events are
spread all over the calendar year, with separation of
about 4.25 years between events. The power spectrum
has a sharp peak at this frequency, with many subhar-
monics seen as well. This run is the starting point for
the route to chaos we now follow. This run also seems
to be in the same regime as the one run by Zebiak and
Cane (1987) with perpetual July conditions. They have

used a full-strength drag coefficient but a slightly dif-
ferent algorithm for computing the atmospheric heat-
ing, amounting to a weaker coupling strength, and also
found a periodic solution (see their Fig. 18).

The next run (d2) has the amplitude of the back-
ground seasonality increased to 0.2 while keeping r,
= 0.9. Because F{** in (4) is set to the July climatol-
ogy, the model background fields are now a weighted
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FiG. 6. Run a2. Mode-locked solution using fully seasonal model background with relative
drag coefficient reduced to 0.8 (see caption of Fig. 5).

average of the July climatology and the fully seasonal
climatology. At this point the model is again mode
locked (Fig. 10). Further increasing the seasonality
to 1.0 (run d3, which is identical to run a3; Fig. 7)
results in chaotic behavior, as expected from the
quasi-periodicity route to chaos scenario. Note, how-
ever, that the ENSO events at this parameter setting
(r; = 0.9) are less irregular than in the standard model
run (compare Figs. 5a and 7a) as is the spacing be-
tween events (compare Figs. 5f and 7f). Increasing
the drag coefficient from 0.9 to 1.0 restores the param-
eter regime of the standard model run with its fully
chaotic behavior.

c. Discussion

The above. numerical experiments have confirmed
that the basi¢ characteristics of the CZ model ENSO

-events are dominated by a low-order chaotic behavior

driven by the seasonal cycle and consistent with the
universal properties of the. quasi-periodicity route to
chaos.

This explanation clearly accounts for the model EN-
SO’s irregularity, but how does it explain the partial
locking to the seasonal cycle? Note that each of the
main nonlinear resonances, that is, those with a wind-
ing number of 1/Q where Q is-an integer, corresponds
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FiG. 7. Run a3. Chaotic solution using fully seasonal model background with relative
drag coefficient reduced to 0.9 (see caption of Fig. 5).

to a perfectly periodic solution of a period of exactly
Q years. The ENSO events in this parameter regime
will occur, of course, always at the same month of the
calendar year. When two or more of these main reso-
nances overlap and the system irregularly jumps be-
tween them, the ENSO cycle could be thought of as
spending several years at a given resonance, then jump-
ing to another, etc. Because each of these resonances
is locked to the seasonal cycle, the ENSO events in the
chaotic regime still tend to be locked to the seasonal
cycle, although only partially now, due to the inability
of the system to remain at a given resonance for a long
time.

But this explanation ignores the secondary reso-
nances. These are the resonances with winding number
P/Q with both P and Q being integers, such as 2/3,
2/5, 3/5, etc. Note that a resonance such as 2/5 will
have ENSO events every 2.5 years. As a result, these
events will occur in two distinct parts of the calendar
year, separated by 6 months. Thus, the system seems
to lose its locking to the seasonal cycle when these
secondary resonances dominate the solution. When
even higher-order resonances are considered (e.g.,
7/15), the locking to the seasonal cycle is even further
degraded. We have clearly seen that the ENSO events
in the chaotic regime of the CZ model (as well as in
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FiG. 8. Run c. Aperiodic solution using perpetual July model background with the relative drag
coefficient set to its standard value of 1.0 (see caption of Fig. 5).

the simple delay model of T94) do tend to be locked
to the seasonal cycle. This leads to the conclusion that
the secondary resonances do not dominate the solution.
But why? We cannot offer a complete answer but can
provide two alternative explanations for the weaker in-
fluence of the secondary resonances between the ENSO
cycle and the seasonal cycle.

The first explanation is simply that the secondary
resonances are weaker than the main ones for the fol-
lowing reason: ENSO events in the nonlinear resonance
772, for example, happen every 3.5 years. Assume, for
example, that the events occur in January and July. Pre-
sumably, the seasonal cycle is such that it forces the
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ENSO events in the right way in only one of these two
months. This means that the ENSO events in the 7/2
resonance are forced only every second event, that is,
every 7 years. Clearly, such a resonance will be weaker
than 1/3 or 1/4, which are forced every event, that is,
every 3 or 4 years.

A second possible explanation for the dominance of
the main resonances may be that the secondary reso-
nances are less stable than the main ones in the chaotic
regime. In the chaotic regime all resonances (i.e.,
mode-locked solutions ) are clearly unstable, as the sys-
tem does not remain at any of them for too long. But
consider the possibility that the secondary resonances
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FiG. 9. Run dl. Quasi-periodic regime; solution obtained using perpetual July model background
with the relative drag coefficient set to 0.9 (see caption of Fig. 5).

are less stable than the main ones. Then, even if the
ENSO system happens to be trapped by one of the sec-
ondary resonances for some time, it will leave this res-
onance much faster than it would leave a main reso-
nance.

Distinguishing between the two explanations would
require nontrivial mathematical analysis we leave to
future work. For the present, we simply note the em-
pirical evidence that the main resonances between
ENSO and the seasonal cycle are more dominant in the
chaotic regime, which results in the observed locking
of model ENSO events to the seasonal cycle.

While the quasi-periodicity route to chaos seems to
be able to provide an attractive explanation for ENSO’s

irregularity and locking to the seasonal cycle, there are
some additional observations we can make based on
our experiments. The most interesting observation is
that the explanation of the fully chaotic behavior of the
CZ model requires, in fact, more than the forcing by
the seasonal cycle. This was seen in two of the above
experiments: First, run ¢, when the model background
state is a perpetual July state and the drag coefficient
is set to its standard value, the model solution is ape-
riodic in spite of the absence of the background sea-
sonality. Some aspects of the background seasonal cy-
cle are still important, as the annual average back-
ground run resulted in a zero solution (run b). Still,
this aperiodic solution is not explicitly forced by a pe-
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Fic. 10. Run d2. Mode-locked regime; solution obtained using model background seasonality amplitude
of 0.2 with the relative drag coefficient set to 0.9 (see caption of Fig. 5).

riodic seasonal forcing as implied by the quasi-perio-
dicity scenario.

The second occasion in which the basic quasi-peri-
odicity scenario seems to be an incomplete explanation
for ENSO’s behavior (at least in this model) is in runs
d1-d3. Increasing the seasonal forcing in these runs
resulted in a transition from periodic to mode-locked
to chaotic regimes, yet the final chaotic regime (run
d3) did not szem sufficiently irregular in terms of both
amplitude and separation of model ENSO events until
the drag coefficient was raised to its standard value (run
al). It seems that while the seasonal forcing is a major
contributor to the model’s irregularity, the model non-

linearity can result in irregular behavior without the
seasonal forcing and can supplement the chaos mech-
anism due to the seasonal forcing. Note that the sea-
sonal forcing mechanism also requires the model to be
nonlinear in order to allow for chaotic behavior.
These observations reinforce the findings of Mun-
nich et al. (1991), who showed that a simple delay
model with more than a single Rossby wave may result
in chaotic behavior even in the absence of seasonal
forcing. It seems that the nonlinear interaction of the
different possible delay oscillators due to the different
Rossby modes included in the model is capable of am-
plifying the chaotic mechanism due to the seasonal
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forcing. Munnich et al. (1991) have also shown that
when an annual forcing is included in their model
(through a seasonal dependence of a parameter roughly
representing the coupling strength between the ocean
and atmosphere), their delay model behavior is made
irregular much more easily. This observation may now
be understood to be a direct result of the seasonally
driven chaos mechanism given in T94 and Jin et al.
(1994).

6. Conclusions

We have examined the hypothesis that the irregular-
ity of ENSO events in the CZ model and their partial
locking to the seasonal cycle may be explained as low-
order chaotic behavior driven by the seasonal cycle. We
have varied model parameters that determine the
strength of the seasonal cycle and the strength of the
coupling between the ocean and atmosphere in the CZ
model and examined the model behavior as a function
of these parameters. The analysis of the model transi-
tion to chaos as a function of these parameters results
in a clear demonstration that the basic behavior of the
CZ model is most probably dominated by low-order
chaos.

An important conclusion of this study concerns the
chaos mechanism in the CZ model. This mechanism
seems to be chiefly due to the forcing by the seasonal
cycle as suggested by Tziperman et al. (1994) and by
Jin et al. (1994): the natural oscillator of the equatorial
Pacific coupled ocean—atmosphere system can enter
into nonlinear resonance with the seasonal cycle at sev-
eral periods of the oscillator (mostly 3—5 years). The
coexistence of these resonances results in chaotic be-
havior due to the irregular jumping of the system be-
tween the different resonances. The behavior of the CZ
model as the above parameters are changed is consis-
tent with the universal properties of the quasi-periodic-
ity route to chaos (BBJ84). This route to chaos implies
that a nonlinear oscillator may become chaotic due to
periodic forcing. It seems that this route to chaos is
shared by other models as well, as recently reported by
Chang et al. (1994 ), using a different coupled ocean—
atmosphere model.

We found here that the nonlinearities in the CZ
model seem to be sufficient to support chaotic behavior
even without the periodic seasonal forcing. When both
the periodic forcing and the fully coupled dynamics
(i.e., relative drag coefficient equal to 1 in our experi-
ments) are present, the model irregularity is enhanced
as compared to that due to the periodic forcing alone
or the fully coupled case without the seasonal forcing.
Following Munnich et al. (1991), we suggest that the
enhancement of the chaos mechanism by model non-
linearity may be partially explained by the nonlinear
interaction of different delay oscillator modes that cor-
respond to the many Rossby modes existing in the CZ
model.
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The careful reader has no doubt noticed that no
claims have been made here about the actual ENSO
system. This work has been offered as an explanation
of the irregular behavior of the CZ model only. Of
course, we do feel that our findings are relevant to the
behavior of the coupled Pacific ocean—atmosphere sys-
tem because we have some confidence that the model
captures the principal physics of the real world ENSO.
However, a more definite demonstration that low-order
chaos and not random noise is responsible for the actual
ENSO variability may require experimentation with
models that also include random noise due to atmo-
spheric weather. Obviously, it would be more satisfy-
ing to work directly with observations of ENSO and
show that they bore the signature of a low-order chaotic
system following the quasi-periodic route. However,
we have little more than 100 years of instrumental data,
and it is well known that this is far too short a record
to unequivocally distinguish between low-order chaos
and random noise by any of the standard dynamical
systems techniques for analyzing time series (e.g., Eck-
mann and Ruelle 1992).

While this work is a further step toward a fuller un-
derstanding of ENSO chaos as compared to the simpler
models of Tziperman et al. (1994), Jin et al. (1994),
and Munnich et al. (1991), our understanding of the
chaos meéchanism is still incomplete. What is needed
now is a better understanding of the spatial and tem-
poral physical mechanisms of chaos from further model
studies. In particular, one would like to know which of
the seasonal fields (i.e., ocean upwelling, winds over
the ocean, etc.) is the major forcing of the nonlinear
resonances and therefore of the chaotic behavior in the
model. A better structural description can then be tested
against the richer array of ENSO observations available
only for recent decades.
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