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A            El Niño conditions

B               La Niña conditions

El Niño:

La Niña:

The major players: 

Easterly Trade Winds à Thermocline; 

Thermocline à sea surface temperature.

Eastward propagating Kelvin waves, westward Rossby Waves

Mechanism: transitions between two states: 
El Niño & La Niña
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Transitions between 
two states


Period: 3–6 years

128 Chapter 8. Hurricanes

series of this quantity is referred to as the power dissipation index (PDI).
The work done by the hurricane wind friction force on the surface is also a
measure of the destructiveness of the hurricane, making the PDI a useful
measure of the destructiveness of hurricanes.

Climate background box 8.1 El Niño, La Niña.
These are the warm (panel a) and cold (b) phases of the El Niño–Southern
Oscillation (ENSO) climate variability mode in the equatorial Pacific,
which occurs due to a large-scale interaction between the ocean and
atmosphere. “Southern oscillation” refers to a variability of the sea
level atmospheric pressure difference between Tahiti (in the Pacific) and
Darwin, Australia, which co-varies with the sea surface temperature
in the eastern equatorial Pacific. The time series in (c) shows the SST
anomaly (deviation from monthly mean) averaged over the NINO3.4
index region, 120W–170W, 5S–5N, shown by the green box in panels
(a,b). Panel a (b) shows the SST anomaly averaged over all months
during which the index is above 1 std (below minus 1 std). The time
series shows warm events in red and cold events in blue, with warm
events occurring irregularly every 2–7 years. The vectors show the wind
anomaly composites.

The two phases of ENSO have significant and different effects on
weather, affecting precipitation, temperature and winds over large areas
of the globe. In spite of their irregular occurrence, these events can now
be predicted a few months in advance, providing advance warning to
farmers, fisherman and other sectors that are affected by this variability
around the equatorial Pacific. The simulation of ENSO by climate models

Mechanism: transitions between two states: 
El Niño & La Niña
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A longer record:

Decadal variability of El Nino 
Characteristics, possibly due 
to interaction with mid-
latitudes

Mechanism: transitions between two states: 
El Niño & La Niña
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El Nino is a coupled ocean-atmosphere phenomenon

“ENSO”: El Nino (warming 
of ocean) and the 
Southern Oscillation (in 
atmospheric pressure 
difference between 
Darwin and Tahiti) are well 
correlated

SST (blue) and atmospheric pressure difference (green)
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While irregular, all El Nino episodes still look similar,  

and tend to peak at end of calendar year

Sea surface temperature 
averaged over the eastern 
equatorial pacific during 
several El Nino events, as 
function of month (over 
two years): 
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ENSO is the largest inter-annual signal in global climate

La NiñaEl Niño
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Floods 
Lakeport, California (1998)

Fires 
Australia (1998)
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Satellites: 
SST (infrared),  
wind speed 
(scatterometer),  
SSH (altimeter)
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Moored buoys 
temperature 
profile, wind 
speed, currents

Satellites: 
SST (infrared),  
wind speed 
(scatterometer),  
SSH (altimeter)
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Moored buoys 
temperature 
profile, wind 
speed, currents

Satellites: 
SST (infrared),  
wind speed 
(scatterometer),  
SSH (altimeter)

Drifting buoys 
SST & surface 
currents 
“Lagrangian drifters”

Argo floats
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Making Observations: TAO array

Large observational buoy 
array, dedicated research 
vessel, international 
consortium

NOAA 
KA’IMIMOANA
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Making Observations: TAO array

Large observational buoy 
array, dedicated research 
vessel, international 
consortium

NOAA 
KA’IMIMOANA

Equatorial Sea Surface 
Temperature (SST) as 
function of longitude & 
time  [from TAU data]

Same, but deviation of 
SST from mean
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“El Niño’s Benefits: 
In recent weeks, El Niño has contributed much-needed 
precipitation to many parched areas of the country. For example, 
fall and winter storms along the Gulf and East Coasts have nearly 
ended the drought from Texas to Georgia, and along the entire 
East Coast.” 		 	 http://www.noaanews.noaa.gov/stories/s1080.htm 

Why do we care: El Nino Impacts, it’s not all bad news



Eli Tziperman, EPS 131/231, Physical oceanography/Climate dynamics

West Pacific: 
Deep 
thermocline, 
warm pool

East Pacific: 
Shallow 
thermocline, cold 
tongue

State of the ocean during normal conditions:

Walker 
circulation

Mechanism, Normal background conditions first:  
Zonal wind ➔ Thermocline slope ➔ Warm pool/ cold tongue
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Notes: 

1. Kelvin wave reminder

2. Notes: equatorial Kelvin wave

3. Rossby wave reminder

4. Ekman pumping reminder

5. Delayed oscillator mechanism (next few slides)

undergraduate level
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graduate level

Notes: 

1. Shallow water equations and the equatorial beta plane (section 

1.2.1, equations 1–3)

2. Equatorial Kelvin wave (section 1.2.3)

3. equatorial Rossby/Poincare/Yanai waves (section 1.2.3)
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Equatorial wave modes

Next is the derivation of the full set of equatorial waves, where we now do not assume that the meridional
velocity v vanishes. Substitute h(x,y, t) = h(y)ei(kx−ωt) dependence, and similarly for (u,v), and derive a single
equation for h to find the parabolic cylinder equation (Gill, [20], section 11.6.1)

d2v
dy2

+
(
ω2

c2
− k2− βk

ω
− β2

c2
y2

)
v= 0.

The solutions that vanish at y→±∞ occur only for certain relations between the coefficients, and these relations
serve as the dispersion relation

ω2

c2
− k2− βk

ω
= (2n+1)

β
c
. (4)

Note that the Kelvin wave dispersion relation is formally a solution of this dispersion relation for n=−1 (simply
check that ω = ck satisfies (4) for n = −1). The meridional structure of the waves in this case of equatorially
trapped solutions is expressed in terms of the Hermit polynomials

v= 2−n/2Hn((β/c)1/2y)exp(−βy2/2c)cos(kx−ωt)

and is shown in Fig. 19, where

H0 = 1; H1 = 2x; H2 = 4x2−2; H3 = 8x3−12x; H4 = 16x4−48x2+12
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meridional structure of equatorial modes

Figure 19: The latitudinal structure of the first few equatorial modes: Hn(y)exp(−y2/2)/n2.

The dispersion relation is plotted in Fig. 20.
So, we have a complete set of waves, the Kelvin (n=−1), Yanai (n= 0), Rossby and Poincare (n> 0) waves.

As seen in the plot, the dispersion relation includes two main sets of waves for n> 0. For high frequency, we can
neglect the term βk

ω , to find the Poincare gravity-inertial waves

ω2 ≈ (2n+1)βc+ k2c2,

while for low frequency, we can neglect the termω2/c2 in the dispersion relation to find the westward propagating
Rossby wave dispersion relation

ω=
−βk

k2+(2n+1)β/c
.

Typical speeds of long Rossby waves would therefore be

ω/k =
−c
2n+1

17

The latitudinal structure of 
the first few equatorial 
modes: Hn(y)exp(−y2/2)/n2. 
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Atmospheric equatorial waves

(Wheeler-Kiladis Space-Time Spectra)


https://www.ncl.ucar.edu/Applications/space_time.shtml 

Observations of atmospheric Equatorial wave modes

https://www.ncl.ucar.edu/Applications/space_time.shtml
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Atmospheric equatorial waves
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1. An initial weakening of trades

2. Warm Kelvin wave, positive 

feedback, El Nino peaks

3. Cold Rossby waves making their 

way to the west pacific 

4. Reflecting from western boundary, 

ending the event, start a cooling

5. All repeats with opposite signs…

Mechanism: Kelvin & Rossby waves, and the 
delayed oscillator (Schopf & Suarez, Battisti 1988)
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http://iri.columbia.edu/climate/ENSO/theory/ 

1. Force ocean with a 
westerly wind stress pulse

2. Warm Kelvin waves 
propagate east along equator 
➔ Event starts!


3. Cold Rossby waves 
propagate west at higher 
latitude & reflect eastward as 
Kelvin waves ➔ Event ends

Kelvin and Rossby waves and boundary reflections
Kelvin wave 
schematic

http://iri.columbia.edu/climate/ENSO/theory/
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notes

delayed oscillator derivation


use also next side

graduate level
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Delayed oscillator equations

graduate level

Lecture 2
ENSO toy models

Eli Tziperman

2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)

dt
= âheq(xc, t�

1

2
⌧K) + b̂hoff�eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as

dT (t)

dt
= ā⌧eq(xc, t�

1

2
⌧K)� b̄⌧eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.

21

East Pacific temperature, T(t), depends on thermocline depth there:

Schopf & Suarez 1989
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= âheq(xc, t�

1

2
⌧K) + b̂hoff�eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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= aT (t� 1
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where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.

21

Lecture 2
ENSO toy models

Eli Tziperman

2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1
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there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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East Pacific temperature, T(t), depends on thermocline depth there:

3 ENSO
Downloads available here.

3.1 ENSO background and equatorial waves
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lectures 0, 1 here.

3.2 Delay oscillator model
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lecture 2, here, plus the following: Gill’s
atmospheric model solution from Dijkstra (2000) technical box 7.2 p 347; recharge oscillator from
Jin (1997) (section 2, possibly also section 3);

• The climatological background: easterlies, walker circulation, warm pool and cold tongue,
thermocline slope (ppt, and lecture 1 from WH notes).

• Dynamical basics (WH lecture 1): reduced gravity equations on an equatorial beta plane.
Equatorial Rossby and Kelvin waves, thermocline slope set by balance between wind stress
and pressure gradient, SST dynamics, atmospheric heating and wind response to SST from
Gill’s model. The coupled ocean-atmosphere feedback.

• The heuristic delayed oscillator equation from section 2.1 in WH notes. One detail to note
regarding how do we transition from +b̂hoff�eq(t � [1

2tR+tK]) to �b̄teq(t � [1
2tR+tK]) and

then to �bT (t � [1
2tR + tK]): hoff�eq depends on the Ekman pumping off the equator. In the

northern hemisphere, if the wind curl is positive, the Ekman pumping is positive, upward
(wE = curl(~t/ f )/r), and the induced thermocline depth anomaly is therefore negative (a
shallowing signal). The wind curl may be approximated in terms of the equatorial wind only
(larger than the off-equatorial wind), consider the northern hemisphere:

hoff�eq µ �wEkman
off�eq µ �curl(toff�eq)⇡ ∂yt(x)off�eq ⇡ (t(x)off�eq � t(x)eq )/L µ �t(x)eq .

Finally, as the east Pacific temperature is increasing, the wind anomaly in the central Pacific
is westerly (positive), leading to the minus sign in front of the T term,

�t(x)eq (t � [
1
2

tR + tK])/L µ �T (t � [
1
2

tR + tK]).

• Next, the linearized stability analysis of the Schopf-Suarez delayed oscillator from the WH
notes section 2.1.1. The dispersion relation in the WH notes is s = 1�3T̄ 2 �aexp(�sd).
Its real part is 0 = sR � (1� 3T̄ 2 �aexp(�sRd)cos(�sId)), and its imaginary part is 0 =
sI � (�aexp(�sRd)sin(�sId)). The following image shows the roots for an example with
two unstable roots and many stable ones. Show time series of numerical solution of this
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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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= âheq(xc, t�
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1

2
⌧R + ⌧K ])� cT (t)3

where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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= ā⌧eq(xc, t�
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2
⌧K)� b̄⌧eq(xc, t� [
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2
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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= aT (t� 1
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where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows
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where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write
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where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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3 ENSO
Downloads available here.

3.1 ENSO background and equatorial waves
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lectures 0, 1 here.

3.2 Delay oscillator model
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lecture 2, here, plus the following: Gill’s
atmospheric model solution from Dijkstra (2000) technical box 7.2 p 347; recharge oscillator from
Jin (1997) (section 2, possibly also section 3);

• The climatological background: easterlies, walker circulation, warm pool and cold tongue,
thermocline slope (ppt, and lecture 1 from WH notes).

• Dynamical basics (WH lecture 1): reduced gravity equations on an equatorial beta plane.
Equatorial Rossby and Kelvin waves, thermocline slope set by balance between wind stress
and pressure gradient, SST dynamics, atmospheric heating and wind response to SST from
Gill’s model. The coupled ocean-atmosphere feedback.

• The heuristic delayed oscillator equation from section 2.1 in WH notes. One detail to note
regarding how do we transition from +b̂hoff�eq(t � [1
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2tR + tK]): hoff�eq depends on the Ekman pumping off the equator. In the

northern hemisphere, if the wind curl is positive, the Ekman pumping is positive, upward
(wE = curl(~t/ f )/r), and the induced thermocline depth anomaly is therefore negative (a
shallowing signal). The wind curl may be approximated in terms of the equatorial wind only
(larger than the off-equatorial wind), consider the northern hemisphere:

hoff�eq µ �wEkman
off�eq µ �curl(toff�eq)⇡ ∂yt(x)off�eq ⇡ (t(x)off�eq � t(x)eq )/L µ �t(x)eq .

Finally, as the east Pacific temperature is increasing, the wind anomaly in the central Pacific
is westerly (positive), leading to the minus sign in front of the T term,
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• Next, the linearized stability analysis of the Schopf-Suarez delayed oscillator from the WH
notes section 2.1.1. The dispersion relation in the WH notes is s = 1�3T̄ 2 �aexp(�sd).
Its real part is 0 = sR � (1� 3T̄ 2 �aexp(�sRd)cos(�sId)), and its imaginary part is 0 =
sI � (�aexp(�sRd)sin(�sId)). The following image shows the roots for an example with
two unstable roots and many stable ones. Show time series of numerical solution of this
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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)

dt
= âheq(xc, t�

1

2
⌧K) + b̂hoff�eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as

dT (t)

dt
= ā⌧eq(xc, t�

1

2
⌧K)� b̄⌧eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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= ā⌧eq(xc, t�

1

2
⌧K)� b̄⌧eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3
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where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.

21

East Pacific temperature, T(t), depends on thermocline depth there:

3 ENSO
Downloads available here.

3.1 ENSO background and equatorial waves
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lectures 0, 1 here.

3.2 Delay oscillator model
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lecture 2, here, plus the following: Gill’s
atmospheric model solution from Dijkstra (2000) technical box 7.2 p 347; recharge oscillator from
Jin (1997) (section 2, possibly also section 3);

• The climatological background: easterlies, walker circulation, warm pool and cold tongue,
thermocline slope (ppt, and lecture 1 from WH notes).

• Dynamical basics (WH lecture 1): reduced gravity equations on an equatorial beta plane.
Equatorial Rossby and Kelvin waves, thermocline slope set by balance between wind stress
and pressure gradient, SST dynamics, atmospheric heating and wind response to SST from
Gill’s model. The coupled ocean-atmosphere feedback.

• The heuristic delayed oscillator equation from section 2.1 in WH notes. One detail to note
regarding how do we transition from +b̂hoff�eq(t � [1

2tR+tK]) to �b̄teq(t � [1
2tR+tK]) and

then to �bT (t � [1
2tR + tK]): hoff�eq depends on the Ekman pumping off the equator. In the

northern hemisphere, if the wind curl is positive, the Ekman pumping is positive, upward
(wE = curl(~t/ f )/r), and the induced thermocline depth anomaly is therefore negative (a
shallowing signal). The wind curl may be approximated in terms of the equatorial wind only
(larger than the off-equatorial wind), consider the northern hemisphere:

hoff�eq µ �wEkman
off�eq µ �curl(toff�eq)⇡ ∂yt(x)off�eq ⇡ (t(x)off�eq � t(x)eq )/L µ �t(x)eq .

Finally, as the east Pacific temperature is increasing, the wind anomaly in the central Pacific
is westerly (positive), leading to the minus sign in front of the T term,

�t(x)eq (t � [
1
2

tR + tK])/L µ �T (t � [
1
2

tR + tK]).

• Next, the linearized stability analysis of the Schopf-Suarez delayed oscillator from the WH
notes section 2.1.1. The dispersion relation in the WH notes is s = 1�3T̄ 2 �aexp(�sd).
Its real part is 0 = sR � (1� 3T̄ 2 �aexp(�sRd)cos(�sId)), and its imaginary part is 0 =
sI � (�aexp(�sRd)sin(�sId)). The following image shows the roots for an example with
two unstable roots and many stable ones. Show time series of numerical solution of this
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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)

dt
= âheq(xc, t�

1

2
⌧K) + b̂hoff�eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as

dT (t)

dt
= ā⌧eq(xc, t�

1

2
⌧K)� b̄⌧eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Figure 22: Results of the delayed oscillator of equation 10, from [56].
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shallowing signal). The wind curl may be approximated in terms of the equatorial wind only
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).

22

neglect Kelvin delay for simplicity

Schopf & Suarez 1989



Eli Tziperman, EPS 131/231, Physical oceanography/Climate dynamics

graduate level

Delayed oscillator analysis

1 2

3

3

4
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
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1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
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Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution
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Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution
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Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution
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Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is
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= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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steady states:

Letting T̃ = e�t where � = �r + i�i, results in the linearized eigenvalue problem

� = 1� 3T̄ 2 � ↵e���T

(note that this is a complex transcendental equation, with the real and imaginary parts of � satisfying equations
that involve sine and cosine functions) which can be solved for the frequency � as function of the two nondimen-
sional parameters ↵ and �T . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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steady states:

Letting T̃ = e�t where � = �r + i�i, results in the linearized eigenvalue problem

� = 1� 3T̄ 2 � ↵e���T

(note that this is a complex transcendental equation, with the real and imaginary parts of � satisfying equations
that involve sine and cosine functions) which can be solved for the frequency � as function of the two nondimen-
sional parameters ↵ and �T . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).

22



Eli Tziperman, EPS 131/231, Physical oceanography/Climate dynamics

graduate level

Delayed oscillator analysis

1 2

3

3

4

Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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steady states:

Letting T̃ = e�t where � = �r + i�i, results in the linearized eigenvalue problem

� = 1� 3T̄ 2 � ↵e���T

(note that this is a complex transcendental equation, with the real and imaginary parts of � satisfying equations
that involve sine and cosine functions) which can be solved for the frequency � as function of the two nondimen-
sional parameters ↵ and �T . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Self-sustained vs damped ENSO: Delayed oscillator analysis
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Irregularity: chaos
notes: 


A. nonlinear synchronization example: fireflies (pp. 75,77)

B. nonlinear phase locking video in the following slide

C. circle map and quasi-periodicity route to chaos (pp. 79, 81)
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128 Chapter 8. Hurricanes

series of this quantity is referred to as the power dissipation index (PDI).
The work done by the hurricane wind friction force on the surface is also a
measure of the destructiveness of the hurricane, making the PDI a useful
measure of the destructiveness of hurricanes.

Climate background box 8.1 El Niño, La Niña.
These are the warm (panel a) and cold (b) phases of the El Niño–Southern
Oscillation (ENSO) climate variability mode in the equatorial Pacific,
which occurs due to a large-scale interaction between the ocean and
atmosphere. “Southern oscillation” refers to a variability of the sea
level atmospheric pressure difference between Tahiti (in the Pacific) and
Darwin, Australia, which co-varies with the sea surface temperature
in the eastern equatorial Pacific. The time series in (c) shows the SST
anomaly (deviation from monthly mean) averaged over the NINO3.4
index region, 120W–170W, 5S–5N, shown by the green box in panels
(a,b). Panel a (b) shows the SST anomaly averaged over all months
during which the index is above 1 std (below minus 1 std). The time
series shows warm events in red and cold events in blue, with warm
events occurring irregularly every 2–7 years. The vectors show the wind
anomaly composites.

The two phases of ENSO have significant and different effects on
weather, affecting precipitation, temperature and winds over large areas
of the globe. In spite of their irregular occurrence, these events can now
be predicted a few months in advance, providing advance warning to
farmers, fisherman and other sectors that are affected by this variability
around the equatorial Pacific. The simulation of ENSO by climate models
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Transition to chaos of an ENSO model

An “Intermediate” coupled ocean-atmosphere model, first to 
successfully predict El Niño events graduate level
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Transition to chaos of an ENSO model

Weak seasonal cycle: quasi-periodic, ENSO period is 4.X years
1 2 3 4 5 6 7 8 9 101112

   

5

10

15

20

   
1
   

2
   

3
   

4
   

5
   

6
   

7
   

8
   

9
   
10

   

50
100
150
200

(a) (b)

(c) (d)

(e) (f)

SST

Delay 
coordinates 
reconstructed 
phase space

Number of 
events per 
month

Time between 
events

Spectrum

graduate level



Eli Tziperman, EPS 131/231, Physical oceanography/Climate dynamics

Transition to chaos of an ENSO model

Moderate amplitude seasonal cycle: phase-locked
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Transition to chaos of an ENSO model

Strong seasonal cycle: chaotic
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Irregularity: noise, transient growth

Outline: 


1- notes: non-normal transient growth, optimal initial conditions 

              (stochastic optimals will be covered in AMOC section)


2- WWBs as stochastic optimals 


3- WWBs do not seem stochastic, they depend on the mean 
state and occur more frequently during El Nino conditions
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Irregularity: observed Westerly Wind Bursts

Vecchi and Harrison 1997
41

Fig. 56. Type W composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.

Figs 68, 69, 70: composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) 
and (c) day(1). The classifying region is indicated by the thin lined box. The scale vector is 
5m/s. Zonal wind anomalies statistically significant at 99% are indicated by bold vectors, 
meridional wind anomalies significant at 99% are indicated by shaded background.
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Irregularity: observed Westerly Wind Bursts

Vecchi and Harrison 1997
41

Fig. 56. Type W composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.
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Fig. 63. Type C composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.

Figs 68, 69, 70: composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) 
and (c) day(1). The classifying region is indicated by the thin lined box. The scale vector is 
5m/s. Zonal wind anomalies statistically significant at 99% are indicated by bold vectors, 
meridional wind anomalies significant at 99% are indicated by shaded background.

graduate level



Eli Tziperman, EPS 131/231, Physical oceanography/Climate dynamics

Irregularity: observed Westerly Wind Bursts

Vecchi and Harrison 1997
41

Fig. 56. Type W composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.
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Fig. 63. Type C composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.
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Fig. 70. Type E composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) and (c) day(1). The
classifying region is indicated by the thin lined box. The scale vector is 5 m s–1. Zonal wind anomalies
statistically significant at 99% are indicated by bold vectors, meridional wind anomalies significant at 99%
are indicated by shaded background. Significance is determined as described in the Appendix.

Figs 68, 69, 70: composite WWE 10-m wind anomaly vector map, for (a) day(–1), (b) day(0) 
and (c) day(1). The classifying region is indicated by the thin lined box. The scale vector is 
5m/s. Zonal wind anomalies statistically significant at 99% are indicated by bold vectors, 
meridional wind anomalies significant at 99% are indicated by shaded background.
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Irregularity: Westerly Wind Bursts excite Kelvin waves

McPhaden and Yu 1999

2962 MCPHADEN AND YU: EQUATORIAL WAVES AND THE 1997–98 EL NIÑO

Figure 1. Anomalies in surface zonal wind (in m s−1 , left), sea surface temperature (in ◦C, middle), and 20◦C isotherm depth (in
m, right) from October 1996 to September 1998. Analyses are based on 5-day averages of moored time series data between 2◦N–2◦S
from the Tropical Atmosphere Ocean (TAO) ArrayMcPhaden [1999]. Heavy dashed line in the left panel is for the 29◦C isotherm
through early 1998.

and eastern Pacific in 1998. SSTs remained unusually high
in the eastern Pacific at this time though because the local
trade winds were weak there (Figure 1). It was not until
the trade winds abruptly returned to near normal strength
in the eastern Pacific in mid-May 1998 that the cold sub-
surface waters could be efficiently upwelled and mixed into
the surface layer.

Figure 2. Heat content anomalies averaged between 2◦N and 2◦S along the equator from TAO data (in 1010 J m−3, left), sea
level anomalies along the equator from the TOPEX/Poseidon altimeter (in cm, middle), and modeled sea level anomalies along the
equator (in cm, right). Temporal resolution is 5-days for TAO data and the model, 10-days for the altimeter data. A mean seasonal
cycle has been removed from each time series.

3. Model Formulation and Results

We use the model of Yu and McPhaden [1999], which
is based on the method of characteristics, to solve for the
first four vertical baroclinic mode equatorial Kelvin waves
and six greatest meridional mode equatorial Rossby waves.
The model is forced for the period January 1985 to Septem-

Figure 2. Heat content anomalies averaged between 2◦N and 2◦S along the 
equator from TAO data (in 1010 J m−3, left), sea level anomalies along the equator 
from the TOPEX/Poseidon altimeter (in cm, middle), and modeled sea level 
anomalies along the equator (in cm, right). Temporal resolution is 5-days for TAO 
data and the model, 10-days for the altimeter data. A mean seasonal cycle has 
been removed from each time series. 
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Irregularity: WWBs precede major El Ninos

Lisan Yu: observed SST (contours) and WWBs (colors)
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Irregularity: Westerly Wind Bursts as optimal initial conditions

Moore and Kleeman 1997

970 A. M. MOORE and R. KLEEMAN 
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Figure 6 .  The structure of the fastest growing 'all terms' singular vector (TAUSV) over the tropical Pacific, 
during the July, August and September (JAS) quarter. Maps detailing the structure of the perturbation SST (6T) ,  
perturbation thermocline depth (Sh), perturbation zonal ocean current (Su), equatorial perturbation vertical velocity 
(6w), and vectors of the perturbation wind (6U) are shown at the end of July and September. Light shading represents 
positive values of each quantity, while dark shading indicates negative values. Because the SVs are the result of a 

linear analysis, the scaling of the various fields is arbitrary. 

Figure 6: the structure of the fastest growing all 
terms singular factor (TAUSV) over the tropical 
pacific. during the July, August and September 
(JAS) quarter. Maps detailing the structure of the 
perturbation SST (delta T) , perturbation 
thermocline depth (delta h),perturbation zonal 
ocean current (delta u),equatorial perturbation 
vertical velocity (delta w),and vectors of the 
perturbation wind (delta U) are shown at the end 
of July and September. Light shading represents 
positive values of each quantity, while dark 
shading indicates negative values. Because the 
SVs are the result of a linear analysis, the scaling 
of the various fields is arbitrary. 
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Irregularity: WWBs are not purely stochastic, depend on mean state

Tziperman and Yu 2007

WWBs as a gaussian perturbation:


with parameters:


covariance matrix with SST


and singular vectors are:

and Cane (1987) ENSO model, one in which WWBs
are completely stochastic and one in which their occur-
rence is a function of the extent of the warm pool. With
the same average number of events per year in both
scenarios, the modulation of the WWBs by the SST
results in an ENSO amplitude twice as large as for com-
pletely stochastic WWBs. This was explained by Eisen-
man et al. (2005) to be a result of an enhancement of
the slow component of the WWBs (Roulston and Nee-
lin 2000) by the SST modulation. These results were
reinforced using a fuller hybrid coupled model (ocean
GCM coupled to a statistical atmospheric model) and
allowing the WWBs to be partially stochastic (Gebbie
et al. 2006). In a somewhat related modeling study,
Perez et al. (2005), motivated by the view that WWBs
may be a multiplicative noise forcing of ENSO, studied
the difference in ENSO’s response to additive versus
multiplicative noise in an intermediate coupled model.
(A multiplicative noise of a given dynamical system is a
stochastic forcing term that appears in the equations
such that it depends on the state of the system itself; for
example, the amplitude of the noise could be propor-
tional to the state. An additive noise is completely in-
dependent of the system state.)

Statistical atmospheric models commonly calculate
the wind stress from the SST based on a singular value
decomposition (SVD) of the covariance matrix of the
two fields (Bretherton et al. 1992; Harrison et al. 2002;
Syu and Neelin 2000b). The resulting wind field is large
scale and slowly varying, like the SST itself, and does
not include a representation of WWBs.

The objective of this paper is to analyze the link be-
tween the SST and the WWBs by using simple linear
statistical analysis tools (SVD), yet without assuming a
linear relationship between the wind at a given place
and the SST. We do so by correlating the SST and the
parameters governing the WWB characteristics, rather
than the SST and the wind itself. By using this approach
we allow for a nonlinear relationship between the SST
and the wind signal of the WWBs in our analysis. We
also allow for the fact that the WWBs are at least par-
tially stochastic in our analysis.

Specifically, our objectives here are first to find out
which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as

R"t# $ "A, x0, y0, LEW, LNS, T, p#T, "1#

corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,

! $ A exp!%
"x % x0#2

LEW
2 %

"y % y0#2

LNS
2 %

"t % t0#2

T2 ". "2#

Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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and Cane (1987) ENSO model, one in which WWBs
are completely stochastic and one in which their occur-
rence is a function of the extent of the warm pool. With
the same average number of events per year in both
scenarios, the modulation of the WWBs by the SST
results in an ENSO amplitude twice as large as for com-
pletely stochastic WWBs. This was explained by Eisen-
man et al. (2005) to be a result of an enhancement of
the slow component of the WWBs (Roulston and Nee-
lin 2000) by the SST modulation. These results were
reinforced using a fuller hybrid coupled model (ocean
GCM coupled to a statistical atmospheric model) and
allowing the WWBs to be partially stochastic (Gebbie
et al. 2006). In a somewhat related modeling study,
Perez et al. (2005), motivated by the view that WWBs
may be a multiplicative noise forcing of ENSO, studied
the difference in ENSO’s response to additive versus
multiplicative noise in an intermediate coupled model.
(A multiplicative noise of a given dynamical system is a
stochastic forcing term that appears in the equations
such that it depends on the state of the system itself; for
example, the amplitude of the noise could be propor-
tional to the state. An additive noise is completely in-
dependent of the system state.)

Statistical atmospheric models commonly calculate
the wind stress from the SST based on a singular value
decomposition (SVD) of the covariance matrix of the
two fields (Bretherton et al. 1992; Harrison et al. 2002;
Syu and Neelin 2000b). The resulting wind field is large
scale and slowly varying, like the SST itself, and does
not include a representation of WWBs.

The objective of this paper is to analyze the link be-
tween the SST and the WWBs by using simple linear
statistical analysis tools (SVD), yet without assuming a
linear relationship between the wind at a given place
and the SST. We do so by correlating the SST and the
parameters governing the WWB characteristics, rather
than the SST and the wind itself. By using this approach
we allow for a nonlinear relationship between the SST
and the wind signal of the WWBs in our analysis. We
also allow for the fact that the WWBs are at least par-
tially stochastic in our analysis.

Specifically, our objectives here are first to find out
which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as

R"t# $ "A, x0, y0, LEW, LNS, T, p#T, "1#

corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,

! $ A exp!%
"x % x0#2

LEW
2 %

"y % y0#2

LNS
2 %

"t % t0#2

T2 ". "2#

Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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ability per month, p, for having a WWB at that time.
We found that changing the interval length from 2 to 4
months does not change our results (e.g., the structure
of the SST singular vectors) significantly.

Before analyzing the time series of the WWB param-
eter vector R(t), each element of this vector is nondi-
mensionalized by removing its mean and dividing it by
its standard deviation. Next, one defines the elements
of the N ! q correlation matrix C between the SST and
the WWB parameters to be defined via the following
average over the observations, which are given at Nwwb

different times:

Cij "
1

Nwwb # 1 $
t"1

Nwwb

Ti%t&Rj%t&. %3&

Here, Ti(t) is the SST at a location i (representing both
latitude and longitude and varying over the entire tropi-
cal Pacific) and time t.

The singular values and right and left eigenvectors of
the covariance matrix C satisfy

Ce%R,i& " !ie
%SST,i& %4&

CTe%SST,i& " !ie
%R,i&, %5&

where e(SST,i) is the ith SST vector and e(R,i) the ith
WWB parameter vector. Writing the singular values 'i

as the diagonal elements of a diagonal matrix ! and the
matrices of the eigenvectors as

e%R& " (e%R,1&, . . . , e%R,q&) %6&

e%SST& " (e%SST,1&, . . . , e%SST,N&), %7&

the SVD decomposition is

C " (e%SST&)T!e%R&. %8&

In the following, we will use these right and left
eigenvectors of C to analyze the WWB–SST correla-
tions. But let us first consider how the WWB–SST co-
variance as well as the WWB parameter variance de-
scribed by a given SVD mode are calculated.

The fraction of the covariance explained by each
mode, fcovar(i), is given by

fcovar%i& " !i
2"$

j"1

q

!j
2. %9&

To obtain the fraction of the variance of the WWB
characteristics vector described by each SVD mode, re-
construct the WWB parameter time series using the
principal components rwwb

i (t),

ri
wwb%t& " (e%R,i&)TR%t&. %10&

Then, the fraction of the variance of the WWB charac-
teristics vector, R(t), explained by a given WWB SVD
vector is given by the ratio of the variance of the ap-
propriate principal component rwwb

i (t) to the total vari-
ance of the WWB parameter vector, obtained by sum-
ming over all principal components,

fvariance,wwb%i& " var(ri
wwb%t&) "$

j"1

q

var(rj
wwb%t&). %11&

The first few SST singular vectors contain the spatial
SST structure that has the most effect on the WWB
parameters. If we believe that the warm phase of ENSO
plays a significant role in setting the timing and char-
acteristics of the WWBs, then we expect one of the first
singular vectors to reflect the structure of the El Niño
SST warming. If the WWBs are not affected by the SST
at all, we can expect the SVD vectors for the SST to be
dominated by spatial noise rather than a coherent
large-scale structure. We will see below that a useful
signal can be extracted in the present case, indicating
that the SST plays a significant role in determining the
WWB characteristics.

3. Data

The SST data used here are obtained from the opti-
mal interpolation SST (OISST) version-2 analysis
(Reynolds et al. 2002). The analysis uses in situ and
satellite Advanced Very High Resolution Radiometer
(AVHRR) SSTs to produce a weekly field on a 1° grid
from 25°S to 25°N in the Pacific Ocean. The dataset is
available from November 1981 onward. The SST data
used in the analysis here were first subsampled to a

FIG. 1. (a) An idealized reconstruction of a WWB using Eq. (2)
and the parameters in Eq. (1). (b) Wind vectors for an observed
WWB event whose parameters are used to produce (a); the ob-
served wind is averaged over 15–19 Oct 1997.
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three WWB parameters are very strongly linked to the
occurrence of a warm event in the equatorial Pacific.

The second WWB SVD vector is dominated by the
entry corresponding to the amplitude of the WWB
event, A. The second SST vector has a structure with a
north–south gradient, reflecting the seasonal cycle and
the tendency of the events to be stronger during the
boreal winter. We conclude that the seasonal cycle is
the most important factor determining the amplitude of
WWBs. The second WWB vector also seems to deter-
mine the central latitude of the event. This component
is negative (!0.41), indicating [given the structure of
the corresponding second SST SVD mode (Fig. 3)] that
the events tend to happen in the Southern Hemisphere
during the Northern Hemisphere winter. This may be
related to the seasonal characteristics of intraseasonal
convection anomalies (Madden–Julian oscillation;
Wang and Rui 1990), which seem to be among the fac-

tors leading to WWBs. Off-equatorial wind events were
proposed to play an important role in ENSO’s dynam-
ics (Vecchi and Harrison 2003). This makes the corre-
lation between the WWB latitude and SST especially
relevant in case one wishes to use our formulation for
representing WWBs in ENSO models. On the other
hand, the second singular SST vector has practically no
effect on the duration of the WWB events (entry cor-
responding to T in Table 1 is only 0.01), indicating that
our analysis is not able to find a connection between
seasonality and the duration of the events.

The third SVD vector pair only accounts for 6% of
the covariance between the WWB parameters and the
SST, although it does account for 13% of the WWB
parameter vector variance. The large-scale structure of
this mode suggests that physical interpretation in this
case may be possible (and perhaps related to the off-
equatorial SST signal in the east Pacific), but its value is
questionable given that the covariance explained by
this vector is very small. The rest of the SVD vectors
account for negligible parts of the covariance between
the WWBs and the SST, and their spatial structure
tends to be dominated by noise. It is quite remarkable
that the first two SVD SST vectors reflect large-scale
SST changes and account for so much of the covariance
(92%) and of the WWB parameter variance (47.0%).
This reflects a clear dependence of the WWBs on the
large-scale SST. This indicates that the WWBs should
probably not be considered external noise, but that a
large part of their variance is, in fact, explained by the
large-scale SST, specifically by El Niño and the sea-
sonal cycle.

Our analysis differs from previous efforts to analyze
the WWB–SST correlations in two critical ways. First,
we explicitly included the partially stochastic nature of

FIG. 3. The (a)–(c) first three SST SVD vectors [e(SST, i), Eq. (4)]
from the analysis of the covariance matrix between the WWB
parameters and the SST. The labels of (a)–(c) show the covariance
between the SST and WWB parameters described by each mode
[Eq. (9)], the portion of the WWB parameter variance explained
by each mode [Eq. (11)], and the contour interval. The SST SVD
vectors are each normalized by the std dev of the corresponding
principal component.

TABLE 1. The first seven rows of this table give the seven SVD
vectors for the WWB parameters shown in Eq. (1). The entries
are all multiplied by 100. The row marked “%covar” contains the
percentage of the covariance between the SST and the WWB
parameters explained by each SVD vector [using the singular val-
ues, Eq. (9)]. The last row, marked “%var("),” is the percentage
of the variance of the WWB parameter vector explained by each
SVD vector [using Eq. (11)].

1 2 3 4 5 6 7

A 18 81 2 35 0 2 43
x0 58 !20 27 !49 !23 0 51
LEW 49 4 !7 17 !11 !75 !39
LNS 11 !13 31 6 91 !15 14
T 27 1 67 30 !14 43 !43
P 47 !33 !56 43 11 38 8
y0 !28 !41 27 57 !27 !29 44
%covar 53 39 6 1 1 0 0
%var(") 32 15 13 15 12 7 6
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and Cane (1987) ENSO model, one in which WWBs
are completely stochastic and one in which their occur-
rence is a function of the extent of the warm pool. With
the same average number of events per year in both
scenarios, the modulation of the WWBs by the SST
results in an ENSO amplitude twice as large as for com-
pletely stochastic WWBs. This was explained by Eisen-
man et al. (2005) to be a result of an enhancement of
the slow component of the WWBs (Roulston and Nee-
lin 2000) by the SST modulation. These results were
reinforced using a fuller hybrid coupled model (ocean
GCM coupled to a statistical atmospheric model) and
allowing the WWBs to be partially stochastic (Gebbie
et al. 2006). In a somewhat related modeling study,
Perez et al. (2005), motivated by the view that WWBs
may be a multiplicative noise forcing of ENSO, studied
the difference in ENSO’s response to additive versus
multiplicative noise in an intermediate coupled model.
(A multiplicative noise of a given dynamical system is a
stochastic forcing term that appears in the equations
such that it depends on the state of the system itself; for
example, the amplitude of the noise could be propor-
tional to the state. An additive noise is completely in-
dependent of the system state.)

Statistical atmospheric models commonly calculate
the wind stress from the SST based on a singular value
decomposition (SVD) of the covariance matrix of the
two fields (Bretherton et al. 1992; Harrison et al. 2002;
Syu and Neelin 2000b). The resulting wind field is large
scale and slowly varying, like the SST itself, and does
not include a representation of WWBs.

The objective of this paper is to analyze the link be-
tween the SST and the WWBs by using simple linear
statistical analysis tools (SVD), yet without assuming a
linear relationship between the wind at a given place
and the SST. We do so by correlating the SST and the
parameters governing the WWB characteristics, rather
than the SST and the wind itself. By using this approach
we allow for a nonlinear relationship between the SST
and the wind signal of the WWBs in our analysis. We
also allow for the fact that the WWBs are at least par-
tially stochastic in our analysis.

Specifically, our objectives here are first to find out
which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as

R"t# $ "A, x0, y0, LEW, LNS, T, p#T, "1#

corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,

! $ A exp!%
"x % x0#2

LEW
2 %

"y % y0#2

LNS
2 %

"t % t0#2

T2 ". "2#

Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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and Cane (1987) ENSO model, one in which WWBs
are completely stochastic and one in which their occur-
rence is a function of the extent of the warm pool. With
the same average number of events per year in both
scenarios, the modulation of the WWBs by the SST
results in an ENSO amplitude twice as large as for com-
pletely stochastic WWBs. This was explained by Eisen-
man et al. (2005) to be a result of an enhancement of
the slow component of the WWBs (Roulston and Nee-
lin 2000) by the SST modulation. These results were
reinforced using a fuller hybrid coupled model (ocean
GCM coupled to a statistical atmospheric model) and
allowing the WWBs to be partially stochastic (Gebbie
et al. 2006). In a somewhat related modeling study,
Perez et al. (2005), motivated by the view that WWBs
may be a multiplicative noise forcing of ENSO, studied
the difference in ENSO’s response to additive versus
multiplicative noise in an intermediate coupled model.
(A multiplicative noise of a given dynamical system is a
stochastic forcing term that appears in the equations
such that it depends on the state of the system itself; for
example, the amplitude of the noise could be propor-
tional to the state. An additive noise is completely in-
dependent of the system state.)

Statistical atmospheric models commonly calculate
the wind stress from the SST based on a singular value
decomposition (SVD) of the covariance matrix of the
two fields (Bretherton et al. 1992; Harrison et al. 2002;
Syu and Neelin 2000b). The resulting wind field is large
scale and slowly varying, like the SST itself, and does
not include a representation of WWBs.

The objective of this paper is to analyze the link be-
tween the SST and the WWBs by using simple linear
statistical analysis tools (SVD), yet without assuming a
linear relationship between the wind at a given place
and the SST. We do so by correlating the SST and the
parameters governing the WWB characteristics, rather
than the SST and the wind itself. By using this approach
we allow for a nonlinear relationship between the SST
and the wind signal of the WWBs in our analysis. We
also allow for the fact that the WWBs are at least par-
tially stochastic in our analysis.

Specifically, our objectives here are first to find out
which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as

R"t# $ "A, x0, y0, LEW, LNS, T, p#T, "1#

corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,

! $ A exp!%
"x % x0#2

LEW
2 %

"y % y0#2

LNS
2 %

"t % t0#2

T2 ". "2#

Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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ability per month, p, for having a WWB at that time.
We found that changing the interval length from 2 to 4
months does not change our results (e.g., the structure
of the SST singular vectors) significantly.

Before analyzing the time series of the WWB param-
eter vector R(t), each element of this vector is nondi-
mensionalized by removing its mean and dividing it by
its standard deviation. Next, one defines the elements
of the N ! q correlation matrix C between the SST and
the WWB parameters to be defined via the following
average over the observations, which are given at Nwwb

different times:

Cij "
1

Nwwb # 1 $
t"1

Nwwb

Ti%t&Rj%t&. %3&

Here, Ti(t) is the SST at a location i (representing both
latitude and longitude and varying over the entire tropi-
cal Pacific) and time t.

The singular values and right and left eigenvectors of
the covariance matrix C satisfy

Ce%R,i& " !ie
%SST,i& %4&

CTe%SST,i& " !ie
%R,i&, %5&

where e(SST,i) is the ith SST vector and e(R,i) the ith
WWB parameter vector. Writing the singular values 'i

as the diagonal elements of a diagonal matrix ! and the
matrices of the eigenvectors as

e%R& " (e%R,1&, . . . , e%R,q&) %6&

e%SST& " (e%SST,1&, . . . , e%SST,N&), %7&

the SVD decomposition is

C " (e%SST&)T!e%R&. %8&

In the following, we will use these right and left
eigenvectors of C to analyze the WWB–SST correla-
tions. But let us first consider how the WWB–SST co-
variance as well as the WWB parameter variance de-
scribed by a given SVD mode are calculated.

The fraction of the covariance explained by each
mode, fcovar(i), is given by

fcovar%i& " !i
2"$

j"1

q

!j
2. %9&

To obtain the fraction of the variance of the WWB
characteristics vector described by each SVD mode, re-
construct the WWB parameter time series using the
principal components rwwb

i (t),

ri
wwb%t& " (e%R,i&)TR%t&. %10&

Then, the fraction of the variance of the WWB charac-
teristics vector, R(t), explained by a given WWB SVD
vector is given by the ratio of the variance of the ap-
propriate principal component rwwb

i (t) to the total vari-
ance of the WWB parameter vector, obtained by sum-
ming over all principal components,

fvariance,wwb%i& " var(ri
wwb%t&) "$

j"1

q

var(rj
wwb%t&). %11&

The first few SST singular vectors contain the spatial
SST structure that has the most effect on the WWB
parameters. If we believe that the warm phase of ENSO
plays a significant role in setting the timing and char-
acteristics of the WWBs, then we expect one of the first
singular vectors to reflect the structure of the El Niño
SST warming. If the WWBs are not affected by the SST
at all, we can expect the SVD vectors for the SST to be
dominated by spatial noise rather than a coherent
large-scale structure. We will see below that a useful
signal can be extracted in the present case, indicating
that the SST plays a significant role in determining the
WWB characteristics.

3. Data

The SST data used here are obtained from the opti-
mal interpolation SST (OISST) version-2 analysis
(Reynolds et al. 2002). The analysis uses in situ and
satellite Advanced Very High Resolution Radiometer
(AVHRR) SSTs to produce a weekly field on a 1° grid
from 25°S to 25°N in the Pacific Ocean. The dataset is
available from November 1981 onward. The SST data
used in the analysis here were first subsampled to a

FIG. 1. (a) An idealized reconstruction of a WWB using Eq. (2)
and the parameters in Eq. (1). (b) Wind vectors for an observed
WWB event whose parameters are used to produce (a); the ob-
served wind is averaged over 15–19 Oct 1997.
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three WWB parameters are very strongly linked to the
occurrence of a warm event in the equatorial Pacific.

The second WWB SVD vector is dominated by the
entry corresponding to the amplitude of the WWB
event, A. The second SST vector has a structure with a
north–south gradient, reflecting the seasonal cycle and
the tendency of the events to be stronger during the
boreal winter. We conclude that the seasonal cycle is
the most important factor determining the amplitude of
WWBs. The second WWB vector also seems to deter-
mine the central latitude of the event. This component
is negative (!0.41), indicating [given the structure of
the corresponding second SST SVD mode (Fig. 3)] that
the events tend to happen in the Southern Hemisphere
during the Northern Hemisphere winter. This may be
related to the seasonal characteristics of intraseasonal
convection anomalies (Madden–Julian oscillation;
Wang and Rui 1990), which seem to be among the fac-

tors leading to WWBs. Off-equatorial wind events were
proposed to play an important role in ENSO’s dynam-
ics (Vecchi and Harrison 2003). This makes the corre-
lation between the WWB latitude and SST especially
relevant in case one wishes to use our formulation for
representing WWBs in ENSO models. On the other
hand, the second singular SST vector has practically no
effect on the duration of the WWB events (entry cor-
responding to T in Table 1 is only 0.01), indicating that
our analysis is not able to find a connection between
seasonality and the duration of the events.

The third SVD vector pair only accounts for 6% of
the covariance between the WWB parameters and the
SST, although it does account for 13% of the WWB
parameter vector variance. The large-scale structure of
this mode suggests that physical interpretation in this
case may be possible (and perhaps related to the off-
equatorial SST signal in the east Pacific), but its value is
questionable given that the covariance explained by
this vector is very small. The rest of the SVD vectors
account for negligible parts of the covariance between
the WWBs and the SST, and their spatial structure
tends to be dominated by noise. It is quite remarkable
that the first two SVD SST vectors reflect large-scale
SST changes and account for so much of the covariance
(92%) and of the WWB parameter variance (47.0%).
This reflects a clear dependence of the WWBs on the
large-scale SST. This indicates that the WWBs should
probably not be considered external noise, but that a
large part of their variance is, in fact, explained by the
large-scale SST, specifically by El Niño and the sea-
sonal cycle.

Our analysis differs from previous efforts to analyze
the WWB–SST correlations in two critical ways. First,
we explicitly included the partially stochastic nature of

FIG. 3. The (a)–(c) first three SST SVD vectors [e(SST, i), Eq. (4)]
from the analysis of the covariance matrix between the WWB
parameters and the SST. The labels of (a)–(c) show the covariance
between the SST and WWB parameters described by each mode
[Eq. (9)], the portion of the WWB parameter variance explained
by each mode [Eq. (11)], and the contour interval. The SST SVD
vectors are each normalized by the std dev of the corresponding
principal component.

TABLE 1. The first seven rows of this table give the seven SVD
vectors for the WWB parameters shown in Eq. (1). The entries
are all multiplied by 100. The row marked “%covar” contains the
percentage of the covariance between the SST and the WWB
parameters explained by each SVD vector [using the singular val-
ues, Eq. (9)]. The last row, marked “%var("),” is the percentage
of the variance of the WWB parameter vector explained by each
SVD vector [using Eq. (11)].

1 2 3 4 5 6 7

A 18 81 2 35 0 2 43
x0 58 !20 27 !49 !23 0 51
LEW 49 4 !7 17 !11 !75 !39
LNS 11 !13 31 6 91 !15 14
T 27 1 67 30 !14 43 !43
P 47 !33 !56 43 11 38 8
y0 !28 !41 27 57 !27 !29 44
%covar 53 39 6 1 1 0 0
%var(") 32 15 13 15 12 7 6
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WWBs as a gaussian perturbation:


with parameters:


covariance matrix with SST


and singular vectors are:

and Cane (1987) ENSO model, one in which WWBs
are completely stochastic and one in which their occur-
rence is a function of the extent of the warm pool. With
the same average number of events per year in both
scenarios, the modulation of the WWBs by the SST
results in an ENSO amplitude twice as large as for com-
pletely stochastic WWBs. This was explained by Eisen-
man et al. (2005) to be a result of an enhancement of
the slow component of the WWBs (Roulston and Nee-
lin 2000) by the SST modulation. These results were
reinforced using a fuller hybrid coupled model (ocean
GCM coupled to a statistical atmospheric model) and
allowing the WWBs to be partially stochastic (Gebbie
et al. 2006). In a somewhat related modeling study,
Perez et al. (2005), motivated by the view that WWBs
may be a multiplicative noise forcing of ENSO, studied
the difference in ENSO’s response to additive versus
multiplicative noise in an intermediate coupled model.
(A multiplicative noise of a given dynamical system is a
stochastic forcing term that appears in the equations
such that it depends on the state of the system itself; for
example, the amplitude of the noise could be propor-
tional to the state. An additive noise is completely in-
dependent of the system state.)

Statistical atmospheric models commonly calculate
the wind stress from the SST based on a singular value
decomposition (SVD) of the covariance matrix of the
two fields (Bretherton et al. 1992; Harrison et al. 2002;
Syu and Neelin 2000b). The resulting wind field is large
scale and slowly varying, like the SST itself, and does
not include a representation of WWBs.

The objective of this paper is to analyze the link be-
tween the SST and the WWBs by using simple linear
statistical analysis tools (SVD), yet without assuming a
linear relationship between the wind at a given place
and the SST. We do so by correlating the SST and the
parameters governing the WWB characteristics, rather
than the SST and the wind itself. By using this approach
we allow for a nonlinear relationship between the SST
and the wind signal of the WWBs in our analysis. We
also allow for the fact that the WWBs are at least par-
tially stochastic in our analysis.

Specifically, our objectives here are first to find out
which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as

R"t# $ "A, x0, y0, LEW, LNS, T, p#T, "1#

corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,

! $ A exp!%
"x % x0#2

LEW
2 %

"y % y0#2

LNS
2 %

"t % t0#2

T2 ". "2#

Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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not include a representation of WWBs.
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statistical analysis tools (SVD), yet without assuming a
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which SST patterns affect and modulate what aspects of
the observed WWBs, and second to use this analysis to
derive a procedure that allows the inclusion of WWBs
in models that cannot resolve them explicitly, which is
currently the case for all intermediate models as well as
for some atmospheric GCMs.

The following sections introduce our methodology
(section 2), the data (section 3), the results and inter-
pretation (section 4), and the conclusions (section 5).

2. Methodology

Our objective is to investigate possible connections
between the large-scale SST structure and the WWBs.
Our approach is motivated by the standard SVD pro-
cedure for deriving a statistical atmosphere relating the
wind to the SST (Bretherton et al. 1992; Harrison et al.
2002; Syu and Neelin 2000a; see also the regression
approach of Batstone and Hendon 2005). However,
rather than applying the SVD analysis to the correla-
tion between the wind field and SST field, we apply it to
the correlation between the parameters characterizing
the WWBs on the one hand and the SST field on the
other.

Suppose the WWBs are characterized by parameters
in a q ! 1 vector that includes elements such as
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corresponding to the amplitude, central longitude, cen-
tral latitude, east–west extent, north–south extent, du-
ration, and probability of occurrence. In our calcula-
tions, therefore, q $ 7 and generally q $ N, where N is
the number of grid points at which the wind and SST
observations are given. The above parameters allow us
to characterize the main features of individual wind
events, although not to completely reproduce all details
of each individual event. Given these characteristics,
the WWBs may be reconstructed, for example, as hav-
ing an idealized Gaussian structure in space and time,
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Alternatively, it is possible to use a composite spatial
and temporal WWB structure based on observations
and to set the scale and amplitude of the composite
event using the above individual characteristics re-
corded for each event. Figure 1 shows an actual WWB
event, together with its fit based on (2) and the param-
eters in (1). The idealized fit provides a reasonably
good description of the actual event, showing that our
set of chosen parameters is able to reproduce the WWB
structure quite reasonably.

We consider here the possibility that the WWBs’ am-
plitude, location, structure, and time of occurrence may
be deterministically modulated by the large-scale SST.
Yet, even if this is the case, there is still an important
stochastic element to the WWBs. We bring this to ac-
count by including a parameter that represents the
probability of occurrence, p, of a WWB for a given SST
distribution. To evaluate this probability at a time t
from the observations, we scan an interval of 3 months
centered around t. The number of WWBs within this
interval divided by 3 months is defined to be the prob-
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ability per month, p, for having a WWB at that time.
We found that changing the interval length from 2 to 4
months does not change our results (e.g., the structure
of the SST singular vectors) significantly.

Before analyzing the time series of the WWB param-
eter vector R(t), each element of this vector is nondi-
mensionalized by removing its mean and dividing it by
its standard deviation. Next, one defines the elements
of the N ! q correlation matrix C between the SST and
the WWB parameters to be defined via the following
average over the observations, which are given at Nwwb

different times:

Cij "
1

Nwwb # 1 $
t"1

Nwwb

Ti%t&Rj%t&. %3&

Here, Ti(t) is the SST at a location i (representing both
latitude and longitude and varying over the entire tropi-
cal Pacific) and time t.

The singular values and right and left eigenvectors of
the covariance matrix C satisfy

Ce%R,i& " !ie
%SST,i& %4&

CTe%SST,i& " !ie
%R,i&, %5&

where e(SST,i) is the ith SST vector and e(R,i) the ith
WWB parameter vector. Writing the singular values 'i

as the diagonal elements of a diagonal matrix ! and the
matrices of the eigenvectors as

e%R& " (e%R,1&, . . . , e%R,q&) %6&

e%SST& " (e%SST,1&, . . . , e%SST,N&), %7&

the SVD decomposition is

C " (e%SST&)T!e%R&. %8&

In the following, we will use these right and left
eigenvectors of C to analyze the WWB–SST correla-
tions. But let us first consider how the WWB–SST co-
variance as well as the WWB parameter variance de-
scribed by a given SVD mode are calculated.

The fraction of the covariance explained by each
mode, fcovar(i), is given by

fcovar%i& " !i
2"$

j"1

q

!j
2. %9&

To obtain the fraction of the variance of the WWB
characteristics vector described by each SVD mode, re-
construct the WWB parameter time series using the
principal components rwwb

i (t),

ri
wwb%t& " (e%R,i&)TR%t&. %10&

Then, the fraction of the variance of the WWB charac-
teristics vector, R(t), explained by a given WWB SVD
vector is given by the ratio of the variance of the ap-
propriate principal component rwwb

i (t) to the total vari-
ance of the WWB parameter vector, obtained by sum-
ming over all principal components,

fvariance,wwb%i& " var(ri
wwb%t&) "$

j"1

q

var(rj
wwb%t&). %11&

The first few SST singular vectors contain the spatial
SST structure that has the most effect on the WWB
parameters. If we believe that the warm phase of ENSO
plays a significant role in setting the timing and char-
acteristics of the WWBs, then we expect one of the first
singular vectors to reflect the structure of the El Niño
SST warming. If the WWBs are not affected by the SST
at all, we can expect the SVD vectors for the SST to be
dominated by spatial noise rather than a coherent
large-scale structure. We will see below that a useful
signal can be extracted in the present case, indicating
that the SST plays a significant role in determining the
WWB characteristics.

3. Data

The SST data used here are obtained from the opti-
mal interpolation SST (OISST) version-2 analysis
(Reynolds et al. 2002). The analysis uses in situ and
satellite Advanced Very High Resolution Radiometer
(AVHRR) SSTs to produce a weekly field on a 1° grid
from 25°S to 25°N in the Pacific Ocean. The dataset is
available from November 1981 onward. The SST data
used in the analysis here were first subsampled to a

FIG. 1. (a) An idealized reconstruction of a WWB using Eq. (2)
and the parameters in Eq. (1). (b) Wind vectors for an observed
WWB event whose parameters are used to produce (a); the ob-
served wind is averaged over 15–19 Oct 1997.
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three WWB parameters are very strongly linked to the
occurrence of a warm event in the equatorial Pacific.

The second WWB SVD vector is dominated by the
entry corresponding to the amplitude of the WWB
event, A. The second SST vector has a structure with a
north–south gradient, reflecting the seasonal cycle and
the tendency of the events to be stronger during the
boreal winter. We conclude that the seasonal cycle is
the most important factor determining the amplitude of
WWBs. The second WWB vector also seems to deter-
mine the central latitude of the event. This component
is negative (!0.41), indicating [given the structure of
the corresponding second SST SVD mode (Fig. 3)] that
the events tend to happen in the Southern Hemisphere
during the Northern Hemisphere winter. This may be
related to the seasonal characteristics of intraseasonal
convection anomalies (Madden–Julian oscillation;
Wang and Rui 1990), which seem to be among the fac-

tors leading to WWBs. Off-equatorial wind events were
proposed to play an important role in ENSO’s dynam-
ics (Vecchi and Harrison 2003). This makes the corre-
lation between the WWB latitude and SST especially
relevant in case one wishes to use our formulation for
representing WWBs in ENSO models. On the other
hand, the second singular SST vector has practically no
effect on the duration of the WWB events (entry cor-
responding to T in Table 1 is only 0.01), indicating that
our analysis is not able to find a connection between
seasonality and the duration of the events.

The third SVD vector pair only accounts for 6% of
the covariance between the WWB parameters and the
SST, although it does account for 13% of the WWB
parameter vector variance. The large-scale structure of
this mode suggests that physical interpretation in this
case may be possible (and perhaps related to the off-
equatorial SST signal in the east Pacific), but its value is
questionable given that the covariance explained by
this vector is very small. The rest of the SVD vectors
account for negligible parts of the covariance between
the WWBs and the SST, and their spatial structure
tends to be dominated by noise. It is quite remarkable
that the first two SVD SST vectors reflect large-scale
SST changes and account for so much of the covariance
(92%) and of the WWB parameter variance (47.0%).
This reflects a clear dependence of the WWBs on the
large-scale SST. This indicates that the WWBs should
probably not be considered external noise, but that a
large part of their variance is, in fact, explained by the
large-scale SST, specifically by El Niño and the sea-
sonal cycle.

Our analysis differs from previous efforts to analyze
the WWB–SST correlations in two critical ways. First,
we explicitly included the partially stochastic nature of

FIG. 3. The (a)–(c) first three SST SVD vectors [e(SST, i), Eq. (4)]
from the analysis of the covariance matrix between the WWB
parameters and the SST. The labels of (a)–(c) show the covariance
between the SST and WWB parameters described by each mode
[Eq. (9)], the portion of the WWB parameter variance explained
by each mode [Eq. (11)], and the contour interval. The SST SVD
vectors are each normalized by the std dev of the corresponding
principal component.

TABLE 1. The first seven rows of this table give the seven SVD
vectors for the WWB parameters shown in Eq. (1). The entries
are all multiplied by 100. The row marked “%covar” contains the
percentage of the covariance between the SST and the WWB
parameters explained by each SVD vector [using the singular val-
ues, Eq. (9)]. The last row, marked “%var("),” is the percentage
of the variance of the WWB parameter vector explained by each
SVD vector [using Eq. (11)].

1 2 3 4 5 6 7

A 18 81 2 35 0 2 43
x0 58 !20 27 !49 !23 0 51
LEW 49 4 !7 17 !11 !75 !39
LNS 11 !13 31 6 91 !15 14
T 27 1 67 30 !14 43 !43
P 47 !33 !56 43 11 38 8
y0 !28 !41 27 57 !27 !29 44
%covar 53 39 6 1 1 0 0
%var(") 32 15 13 15 12 7 6
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Global Consequences of El Niño

  
Precipitation anomalies during El Niño in (a) Summer and (b) Winter

The twists and turns in the ongoing dialogue between ocean and atmosphere in the Pacific can
have a ripple effect on climatic conditions in far flung regions of the globe. This worldwide
message is conveyed by shifts in tropical rainfall, which affect wind patterns over much of the
globe. Imagine a rushing stream flowing over and around a series of large boulders. The boulders
create a train of waves that extend downstream, with crests and troughs that show up in fixed
positions. If one of the boulders were to shift, the shape of the wave train would also change and
the crests and troughs might occur in different places.

Dense tropical rainclouds distort the air flow aloft (5-10 miles above sea level) much as rocks
distort the flow of a stream, or islands distort the winds that blow over them, but on a horizontal
scale of thousands of miles. The waves in the air flow, in turn, determine the positions of the
monsoons, and the storm tracks and belts of strong winds aloft (commonly referred to as jet
streams) which separate warm and cold regions at the Earth's surface. In El Niño years, when the
rain area that is usually centered over Indonesia and the far western Pacific moves eastward into
the central Pacific, as shown on p. 17, the waves in the flow aloft are affected, causing
unseasonable weather over many regions of the globe.

See List of Global Impacts.

http://www.pmel.noaa.gov/tao/elnino/impacts.html 

Reminder: ENSO teleconnections, precipitation:
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ENSO teleconnections: steady-state view of Rossby ray bending

Hoskins and Karoly 1981 graduate level

Steady-state view of limits on propagation. One can obtain an intuitive understand-
ing of the fate of Rossby rays directly from the dispersion relation, and ignoring, for now, the
time-dependent equations for the meridional wavenumber (Hoskins and Karoly, 1981, after
solution 5.23). ENSO events last months, which implies an e↵ectively stationary forcing on
the atmosphere, and therefore we expect the wave response to be stationary as well. Start
therefore from the dispersion relation for stationary waves, 0 = ! = uMk � �Mk/(k2 + l

2),
and define Ks = (�M/uM)1/2 = k

2 + l
2. Based on these only, we can analyze the trapping of

the ray by the jet: if k > Ks then l must be imaginary. Therefore, as the wave propagates
northward from the low latitude, with a constant k while Ks gets smaller due to changes in
mean flow and e↵ective beta (Fig. 13a,b), this implies evanescent behavior in latitude past
a critical latitude, and trapping of the ray at the critical latitude.

Allowing for dl/dt. We next consider why the ray is reflected rather than being trapped
at the critical latitude as deduced from the above heuristic steady-state argument. In short,
this is due to the prognostic dl/dt equation allowing dl/dt < 0 when l = 0, leading to the
ray turning back south (thanks to Je↵ Shaman).

The stationary argument based on Ks suggests that the ray has l = 0 where Ks = k,
which only means that northward propagation is halted, not that it turns around. To see
how this works: Consider for simplicity solid body rotation, note Ks =

p
�M/uM , where

uM = U/ cos(�), that is in the Mercator projection uM is a constant, and �M = 2⌦ cos2(�)/a.
So, Ks is a decreasing function of latitude (5.25, HK81). See Ray-Tracing-Rossby-Waves-
Je↵-solid-test.jpg for an example of ray tracing with solid body rotation, k = 5.

The equations are:
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So, Ks is a decreasing function of latitude (5.25, HK81). See Ray-Tracing-Rossby-Waves-
Je↵-solid-test.jpg for an example of ray tracing with solid body rotation, k = 5.
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dQ/dy = �M ; for the assumed solid body rotation atmosphere, uM=constant and vM=0;
Therefore all the derivative terms are zero, but the dQ/dy and d

2
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2 (due to �);

3

If  then  must be imaginary. As the wave propagates 
northward from low latitudes, with a constant  while  gets 
smaller due to changes in mean flow and effective beta (Fig. 13 
a,b), this implies evanescent behavior in latitude past a critical 
latitude, and trapping of the ray at the critical latitude. 
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ENSO teleconnections

Hoskins and Karoly 1981

Ray tracing for idealized “constant angular momentum” mean flow:

and an analytic solution for x(t), y(t) is 
possible:
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ENSO teleconnections
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an example using the python code on course web page, should be useful for HW
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FIG. 1. (left) Distribution of boreal winter [Nov–Jan (NDJ)] SSTA extrema in the longitude–amplitude plane. 
Anomalies were obtained from the National Oceanic and Atmospheric Administration (NOAA) extended 
reconstructed SST dataset (Smith and Reynolds 2004) over the period 1900–2013, as departures from the 
1945–2013 climatology. Each dot corresponds to the extreme positive or negative value over the NDJ of each 
year in the region 2°S–2°N, 110°E–90°W. Events prior to 1945 are colored in gray. Events after 1945 are con-
sidered EP (red dots) when the Niño-3 index exceeds one standard deviation. CP events are identified using 
the leading principal component of the SSTA residual after removing the SSTA regression onto the Niño-3 
index. Blue dots in the left panel correspond to events for which the leading principal component (used as CP 
index) exceeds one standard deviation. (right) The spatial patterns of SSTA for specific warm and cold events 
of either type are shown, with a contour interval of 0.25°C.

these events, their identification as EP or CP depends 
somewhat on the methodology used. Notice that the 
strongest events occur in the eastern Pacific, with 
El Niños having potentially larger amplitudes than 
La Niñas. In the central Pacific, on the other hand, 
negative events tend to be a little stronger than posi-
tive events. This amplitude asymmetry between posi-
tive and negative events, which is itself a function of 
longitude, may be an indication of nonlinearities in 
the system (Takahashi et al. 2011; Dommenget et al. 
2013; Choi et al. 2013; Graham et al. 2014), and rep-
resents another important aspect of ENSO diversity.

Differences in the location and strength of the 
SSTA maximum correspond to differences in the 
evolution of each ENSO event. For example, Fig. 2 
hows how SSTA patterns similar to EP and CP cases 
(Fig. 2, middle) evolve from some initial tropical 
anomaly pattern, or “precursor,” as shown in the 
top panels of Fig. 2. In this example, the precursor 
patterns have been determined from observed SSTs, 
20°C isotherm depth, and zonal surface wind stress 
over the period 1959–2000, by fitting a linear stochas-
tically forced dynamical model to the observations 
(Penland and Sardeshmukh 1995; Newman et al. 
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(Capotondi et al 2005)

Examples of different El Niño/ La Niña types

Large events are EP (East Pacific) El Niños… graduate level
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Fig. 1. (left) Distribution of boreal winter [Nov–Jan (NDJ)] SSTA extrema in 

the longitude–amplitude plane. Anomalies were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) extended reconstructed SST 

dataset (Smith and Reynolds 2004) over the period 1900–2013, as departures 

from the 1945–2013 climatology. Each dot corresponds to the extreme positive 

or negative value over the NDJ of each year in the region 2°S–2°N, 110°E–

90°W. Events prior to 1945 are colored in gray. Events after 1945 are 

considered EP (red dots) when the Niño-3 index exceeds one standard 

deviation. CP events are identified using the leading principal component of the 

SSTA residual after removing the SSTA regression onto the Niño-3 index. Blue 

dots in the left panel correspond to events for which the leading principal 

component (used as CP index) exceeds one standard deviation. (right) The 

spatial patterns of SSTA for specific warm and cold events of either type are 

shown, with a contour interval of 0.25°C.
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recharge–discharge (Jin 1997; Meinen and McPhaden 
2000). The equatorial thermocline, the layer of large 
vertical density gradients that separates the warmer 
and active upper ocean from the colder deep ocean, 
is shallower in the eastern Pacific and deepens 
westward. Changes in the depth of the thermocline 
associated with the recharge–discharge processes are 
more influential on SST in the eastern Pacific, where 
the thermocline is shallower than in the western 
Pacific. Horizontal advection, especially the advec-
tion of the large zonal temperature gradients by the 
anomalous zonal currents, known as the zonal advec-
tive feedback, is another key process in the develop-
ment of SST anomalies associated with ENSO. The 
zonal advective feedback tends to be more effective in 
the central Pacific, due to the large mean zonal SST 
gradients near the edge of the western Pacific Warm 
Pool. Thus, the leading dynamical processes differ 
with event location, with thermocline anomalies and 
recharge–discharge processes becoming progressively 
weaker as events peak farther west (Kug et al. 2010; 
Capotondi 2013).

Figure 4, for example, shows that for simulated 
events peaking in the Niño-3 region (Fig. 4a) the 
equatorial thermocline depth anomalies achieve their 
maximum depth (recharged state) a few months before 
the peak of the event (1 January) and then decrease 
rapidly afterward, an indication of the discharge of the 
warm water volume from the equatorial thermocline 
to higher latitudes. For events peaking in the Niño-4 
region (Fig. 4b), the equatorial thermocline undergoes 
a similar evolution, but much weaker, while for events 
peaking in the westernmost region (Fig. 4c) the ther-
mocline anomalies are very weak and remain of the 
same sign throughout the event evolution, indicating 
the absence of warm water discharge.

Zonal advection and air–sea heat f luxes, on the 
other hand, are relatively more important in the 
heat budget of the central Pacific SST anomalies, as 
has also been found in observational studies (Kao 
and Yu 2009; Kug et al. 2009, 2010; Yu et al. 2010; 
Lübbecke and McPhaden 2014; Newman et al. 2011a). 
In particular, using a variety of reanalysis products, 
Lübbecke and McPhaden (2014) find a weakening of 
the thermocline feedback, relative to the zonal advec-
tive feedback, in the eastern equatorial Pacific during 
the CP-dominated 2000–10 decade.

TELECONNECTIONS AND IMPACTS. SSTAs 
associated with the ENSO cycle influence convective 
processes and modify the atmospheric circulation, 
thus affecting patterns of weather variability world-
wide (Trenberth et al. 1998). These atmospheric 

FIG. 4. Composite evolution of zonally averaged ther-
mocline depth, displayed as a function of latitude and 
time, for El Niño events occurring in a 500-yr preindus-
trial control simulation from the NCAR CCSM4–coupled 
GCM. The selected events peak in (a) the Niño-3 region 
(5°S–5°N, 150°–90°W), (b) the Niño-4 region (5°S–5°N, 
160°E–150°W), and (c) a region displaced 20° to the west 
of the Niño-4 area. The label at the top of each panel indi-
cates the central longitude of the region where each event 
peaks. The date 1 Jan corresponds to the event peak, and 
the evolution is shown from Jan of year 0 to the Jan of year 
2. The depth of the 15°C isotherm (m) is used as a proxy 
for thermocline depth. [Adapted from Capotondi (2013).]
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Composite evolution of zonally averaged thermocline 
depth, as a func of latitude & time, for El Niño events in a 
500-yr preindustrial simulation from CCSM4. The 
selected events peak in (a) Niño-3 region (5°S–5°N, 
150°–90°W), (b) Niño-4 region (5°S–5°N, 160°E–150°W), 
& (c) 20° to west of the Niño-4 area. 

(Capotondi et al 2005)

Zonal advective feedback: Positive feedback, 
particularly effective in the central Pacific, in which a 
positive (negative) equatorial SSTA weakens 
(strengthens) equatorial trade winds, reducing 
(enhancing) the oceanic transport of cold waters from 
the eastern Pacific.  (Timmermann et al 2018)

Thermocline feedback is weaker for CP (Central Pacific) events
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REVIEWRESEARCH

At the heart of our explanation for the spatial flavours of ENSO is the 
aforementioned multiplicity of coupled ENSO eigenmodes (Fig. 5a, b), 
as seen in an intermediate ENSO model46. Furthermore, the temporal 
complexity is generated in part by the different oscillation frequencies 
of the quasi-quadrennial and quasi-biennial modes and additionally by 
different external excitation processes. Such processes are associated, 
for example, with the North and South Pacific meridional modes81,82, 
the South Pacific booster38, WWEs (see ‘Space–time complexity of 
ENSO’ and ‘Seasonal ENSO dynamics’), tropical instability waves83 or 

transbasin influences40 (Fig. 5). In particular, asymmetric dependencies 
related to the increased WWE activity during El Niño and enhanced 
tropical instability wave activity during La Niña make these cross-scale 
interactions very effective sources for ENSO complexity. Furthermore, 
the annual cycle of winds and SSTs has a key role in determining the 
seasonal timing of ENSO anomalies and its predictability (see ‘Seasonal 
ENSO dynamics’ and ‘ENSO predictability’). To further explain the 
fact that El Niño anomalies are stronger in amplitude (see ‘A concep-
tual view of ENSO dynamics’) and exhibit a more pronounced spatial 
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Fig. 5 | Mechanisms of ENSO complexity. a, b, Leading two eigenmodes 
of tropical Pacific SSTA and equatorial thermocline depth anomalies 
(averaged between 5° S–5° N) with periods of about 4 yr (QQ, quasi-
quadrennial) and about 2 yr (QB, quasi-biennial), calculated fom an 
intermediate ENSO model46. The differences in zonal location of the 
centre in SSTAs and thermocline anomalies are largely due to the different 
roles of the zonal advective feedback (ZAF) and thermocline feedback 
(TF). c, Growth rates of the two eigenmodes as a function of the mean 
thermocline depth, H, and the mean strength of equatorial trade winds 
relative to climatological conditions. Black dots mark the mean state for 
the modes displayed in a and b. d–f, Patterns of SSTAs26 and equatorial 
Tropical Atmosphere Ocean (TAO)/ Triangle Trans-Ocean Buoy Network 

(TRITON) 20 °C thermocline depth anomalies for typical EP (1997/1998) 
and CP (2009/2010) El Niño and La Niña (boreal winter 2010) events 
(November–January), with schematic representations of the key excitation, 
nonlinear and cross-scale interaction mechanisms: annual cycle (ACY), 
WWEs, South Pacific booster (SPB), North and South Pacific meridional 
modes (NPMM and SPMM, respectively) and tropical instabilty waves 
(TIW). The solid red, eastward (blue, westward) arrows represent the ZAF 
and the red, upward (blue, downward) arrows denote the TF for El Niño 
(La Niña) conditions. The relative sizes and different zonal positions of 
the arrows indicate qualitatively the strength and areas of strong feedback 
efficiency. Curly upward (downward) arrows denote damping net surface 
heat flux (HF) feedback for El Niño (La Niña).
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EP & CP ENSO mechanisms: Thermocline vs zonal advection feedbacks

a, b, Leading two eigenmodes of SSTA & 
thermocline depth anomalies w/periods of 4 yr 
(QQ) and 2 yr (QB), from CZ model. Different 
roles of zonal advective feedback (ZAF) and 
thermocline feedback (TF). 

[analysis: dX/dt=AX, A has 2 main 
eigenmodes, rest are strongly damped]

c, Growth rates of 2 modes as func of mean 
thermocline depth H & mean wind strength. 2 
dots: mean state for modes. 


d–f, obs of SSTAs & 20°C depth for EP & CP 
El Niños & La Niñas, w/ key mechanisms: 
annual cycle (ACY), WWEs, South Pacific 
booster (SPB), North/South Pacific meridional 
modes (NPMM/ SPMM), tropical instabilty 
waves (TIW). Curly arrows: damping net 
surface heat flux (HF) feedback.

(Timmermann et al 2018; Xie and Jin 2018)
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The influences of tropical Pacific SSTAs associated 
with ENSO on precipitation and surface air tempera-
tures over many parts of the globe have been outlined 
in the seminal papers of Ropelewski and Halpert 
(1987) and Halpert and Ropelewski (1992). Robust 
features include warm wintertime temperatures over 
the northern United States and western Canada and 
excess precipitation over the southeastern United 
States. However, CP events in recent years appear 
to be associated with different temperature and pre-
cipitation impacts over the United States (Larkin and 
Harrison 2005, hereafter LH05; Figs. 5 and 6). For 
example, during the fall season, EP events (defined as 
“conventional” by LH05) are associated with cooling 
in the central United States, while during CP events 
(“dateline” events in LH05’s definition) the central 
United States experiences warming. In winter, the 
large warming in the northwestern United States 
during EP events is absent during CP events. Instead, 
cooling in the southeastern United States is observed 
(Fig. 5). Similarly, the pattern and even sign of pre-
cipitation anomalies over the United States differ for 
the two event types (Fig. 6). However, the patterns 
shown in Figs. 5 and 6 are based on a relatively small 
number of cases, so that large uncertainties remain on 
the temperature and precipitation anomaly patterns 
associated with the EP and CP events, as well as their 
differences.

FIG. 5. Composites of U.S. temperature anomalies during autumn [Sep–Nov (SON)] and winter (DJF) for con-
ventional (i.e., EP) and dateline (i.e., CP) El Niños during 1950–2003. Anomalies are computed relative to the 
1950–95 climatology. The right two columns are masked for 80% statistical significance. (From LH05; courtesy 
of Drs. N. K. Larkin and D. E. Harrison.)

teleconnections can be strongly influenced by key 
details of the equatorial SSTA pattern. The atmosphere 
tends to be most responsive to SSTAs in the Indo-
Pacific warm pool region, where the surface is warm 
and atmospheric deep convection is most active, and 
less sensitive to SSTAs in the eastern Pacific cold 
tongue. However, SSTAs are stronger in the eastern 
Pacific, and the combination of atmospheric sensitiv-
ity and SSTA amplitude leads to the central equatorial 
Pacific playing a key role in remote impacts (Barsugli 
and Sardeshmukh 2002; Shin et al. 2010).

Through atmospheric teleconnections, ENSO 
influences the evolution of extratropical modes of 
atmospheric variability. The strength of the Aleutian 
low, the leading mode of North Pacific sea level pressure 
(SLP) variability, is influenced by SSTAs in both the 
eastern and central equatorial Pacific (Yu and Kim 
2011). SSTAs in the central Pacific, however, have 
greater impact upon the second mode of North Pacific 
SLP variability, the North Pacific Oscillation (NPO) 
at decadal time scales (Di Lorenzo et al. 2010). 
The NPO is the atmospheric driver of the North 
Pacific Gyre Oscillation (NPGO), a mode of sea 
surface height (SSH) and SST variability that is con-
nected with f luctuations of physical quantities (e.g., 
salinity, nutrients, chlorophyll-A) that are crucial 
for planktonic ecosystem dynamics in the northeast 
Pacific (Di Lorenzo et al. 2008).
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El Niño events have also been associated with 
reduced precipitation over northern, central, and 
peninsular India (Rasmusson and Carpenter 1982; 
Shukla and Paolino 1983; Ropelewski and Halpert 
1987), as well as over northern and eastern Australia 
(Wang and Hendon 2007; Cai and Cowan 2009; 
Taschetto and England 2009). The location of SSTAs 
along the equatorial Pacific appears to be a very 
important factor for the reduced precipitation over 
both India and Australia, with events peaking in the 
central Pacific being much more inf luential than 
strong events peaking in the eastern Pacific. Thus, 
moderate El Niño events, like the 2002 and 2004 
CP events, have resulted in severe and economically 
devastating droughts in both India (Kumar et al. 
2006) and Australia (Wang and Hendon 2007), while 
the very strong 1997/98 El Niño had very little effect 
on precipitation in both regions. It should be noted, 
however, that due to the brevity of the observational 
record, the relationship between El Niño events and 
summertime Indian rainfall remains overall uncer-
tain for both EP and CP event types. La Niña events 
are associated with increased precipitation over 
Australia, with marked differences between EP and 
CP types (Cai and Cowan 2009).

The large influence of CP El Niños on Southern 
Hemisphere wintertime storm-track activity (Ashok 
et al. 2007) appears to have important implications 
for the temperature anomalies over Antarctica 
(T. Lee et al. 2010). The locations of SSTAs may also 

have an impact on the frequency and trajectory of 
North Atlantic tropical cyclones. Cyclone activity is 
usually reduced during El Niño and enhanced during 
La Niña. However, warming in the central Pacific has 
been associated with an increased frequency of North 
Atlantic tropical cyclones, with enhanced likelihood 
of landfall along the Gulf of Mexico and Central 
America (Kim et al. 2009). Some of the El Niño years 
considered by Kim et al. (2009) were also character-
ized by a broader Atlantic warm pool (AWP) extent 
(S.-K. Lee et al. 2010), making it unclear which of 
these two factors (central equatorial Pacific warming 
or AWP size) has been the primary cause of tropical 
Atlantic cyclone activity.

Apart from extratropical influences, the different 
spatial patterns of SSTAs during EP and CP events 
have considerable socioeconomic consequences 
in the tropics (McPhaden 2004). During large EP 
El Niño events, warming in the eastern Pacific 
leads to a southward shift of the intertropical con-
vergence zone, resulting in intense rainfall over 
eastern Pacific regions that are normally dry, with 
greater incidences of catastrophic floods in parts 
of Ecuador and northern Peru. In contrast during 
CP events, cooler conditions can exist in the eastern 
Pacific (Dewitte et al. 2012), producing dryness in 
Peru and Ecuador during the usual rainy season, with 
disruptions to local agriculture.

The ocean circulation changes associated with 
different ENSO types have distinct impacts on 

FIG. 6. As in Fig. 5, but for U.S. precipitation anomalies.
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same, for U.S. 
precipitation anomalies. 

Composites of U.S. 
temperature anomalies 
during autumn [Sep–Nov 
(SON)] and winter (DJF) for 
conventional (i.e., EP) and 
dateline (i.e., CP) El Niños 
during 1950–2003. 

(Capotondi et al 2005)

Different teleconnections for EP and CP ENSOs
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The End


