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warm equatorial areas. However, it has been mentioned already a long time ago
that different circulation regimes could have been present in the past, for example
a salinity driven regime with heaviest water in the lower latitudes. In this section,
potential mechanisms for both changes in mean state and for oscillatory behavior
are discussed.

6.2.1. Advective feedback

Using a two-box model, as introduced in section 3.1, the possibility of multi-
ple equilibria under similar surface forcing conditions was discovered (Stommel,
1961) about 40 years ago. Responsible for this non-uniqueness is a nonlinear
feedback between the flow and the density structure, called the (salt) advection
feedback. Consider in Fig. 6.4 a zonally averaged (overturning) circulation from
the equator towards northern latitudes. The surface forcing saltens/warms the low
latitude region and freshens/cools the high latitude region and the circulation is
driven by the meridional density gradient. Since there is northern sinking, the
circulation is thermally driven. If the circulation strengthens, then more salt is
transported northward. This enhanced salt transport will increase the density in
the north and consequently amplify the original perturbation in the circulation.
The strengthening of the circulation also transports more heat northward, which
will weaken the flow by lowering the density. Heat transport therefore provides a
negative feedback on the circulation.

In addition to the advection feedback, a central ingredient to the existence of

multiple steady states are the different damping times of salinity and temperature

anomalies. The atmosphere exerts quite a strong control on the sea surface tem-
perature anomalies, but salinity in the ocean does not affect the freshwater flux at
all. In the two-box model in section 3.1, these different response time scales of
salinity and temperature, with 7¢ = 1/Rg and 70 = 1/Rr, were taken into ac-
count by the coefficient 3 = Rg/Rp = 7p /Ts, which was smaller than unity. In
general, the different surface boundary conditions for temperature and salinity are
réferred to as mixed boundary conditions (Haney, 1971; Welander, 1986; Tziper-
man et al., 1994). The extreme case is a prescribed surface temperature (70 << 1)
and prescribed surface freshwater flux (ts >> 1) for which surface temperature
perturbations are essentially zero. As seen in chapter 3, multiple equilibria arise
if indeed the ratio 73 < 1 and only under certain forcing conditions (Fig. 3.4), i.e.
a particular area in the (7, 772) plane.

Together, the advectiye feedback and the different response time scales provide
a potential mechanism of change of the thermohaline circulation. Consider again
the thermally driven circulation as in Fig. 6.4 and imagine that a surface freshwater
anomaly is suddenly present in the north part of the domain. Because the density
is Jowered in the north, the meridional buoyancy gradient decreases and hence the
strength of the circulation decreases. The effect is that both the northward salt
and heat transport decrease. Now, the negative heat anomaly is rapidly damped
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Figure 6.4. |Sketch of the physics of the salt advection feedback. The mean circulation is indicated
by the closed arrows. The upper ocean temperature and salinity fields can be inferred from the
surface forcing of heat and freshwater. A perturbation which strengthens the circulation leads to
a northward salt transport, which leads to amplification (open arrows) of the circulation (posmve
feedback). The perturbation in the circulation also leads to increased heat transport which opposes
(negative feedback) the original perturbation (closed arrows).

at the sea surface, but the freshwater anomaly is not damped at all and hence
amplifies the original freshwater perturbation. This positive feedback is able to
rapidly weaken the thermally driven overturning circulation. ;

6.2.2. Convective feedback

A convective feedback may also be responsible for multiple equilibria (We-
lander, 1982; Lenderink and Haarsma, 1994). Consider in Fig. 6.5 a box model
with' time-varying temperature T and salinity Sy due to a surface heat fluxes
Fr = o(T, —T.) and surface salinity flux Fig in the surface box, coupled to a box
with constant temperature 7; and .S; and constant prescribed flow rate g. Convec-
tive exchange with time constant 71 occurs if the surface water becomes denser
than the deep water, which has constant temperature 7}, and salinity Sp. For g = 0,
the model reduces to the model used by Welander (1982), and when there is no
vertical exchange, the model can be considered as a limit of the Stommel (1961)
model, for which the surface forcing in the equatorial box is adjusted such that
temperature and salinity 7; and \S; remain constant.

The equations for the evolution of the temperature T and S are

dT
dt

= a(T, - T.) + q(T; — To) + 7eH(px — po)(Tp — Tx)  (6.12)
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Figure 6.5. Sketch of the box model set-up to illustrate the convective feedback. An active box
of temperature Ty, S« is coupled to boxes of constant temperature T, S; and Ty, Sy. Advective
exchange takes place with flow rate q and vertical (convective) exchange occurs, on a time scale Te,
if the surface water is denser than the bottom water.

dS* -
d = Fs+ Q(Si - S*) + TcH(p* - pb) (Sb - S*) (6.1b)
t* o=
with H being the Heaviside function. With the equation of state

P*(T*) S*) = po — arTy + asS (6.2)
the steady states can be easily solved and become
_ qT; + oT, + TCH(P* — o) Ty
g+ a+1H(px — pp)
_ 4Si+ Fs +1cH(ps — pb)Sh
q +7H(px = pb)

Two types of equilibria can be distinguished. Those for which the argument of
the Heaviside function is positive are called convective equilibria, and those for
which it is negative are called non-convective equilibria. With the new parameters

T (6.3a)

(6.3b)

*

®r = -—ar(a(Ts—T) +q(T; — Tp)) (6.42)

®s = oag(Fs+q(Si—Sh)) (6.4b)
_ _4t%

"W = Trta (6.4<)

three different solution regimes exist (Fig. 6.6).
The condition that a convective equilibrium exists can be written as &g >
—£(7)®r (indicated as the line @ — b in Fig. 6.6) which defines regime 1 in
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Figure 6.6. Sketch of the regimes of convective and non-convective equilibria in the box model
in the (97, ®s) parameter plane. In regime 1, there are convective states, in regime 2 there are

non-convective states, whereas in regime 3 both states are present. In regime 4 no steady states
exist.

Fig. 6.6. Similarly, the condition for a non-convective equilibrium to exists can
be written as &g < —k(0)®@7 (indicated as the line ¢ — d in Fig. 6.6) which de-
fines regime 2. In regime 3, both convective and non-convective equilibria exist
and transitions between these solutions.can occur under the same forcing con-

ditions. _Consider a non-convective state with cold/freshwater above warm/salty

water which is only marginally stable and an atmospheric forcing which is cool-
=il . . . o, . e Y
ing and freshening the upper box. A finite amplitude positive density perturbation

1s able to induce vection and if this occurs, warmer and saltier water is mixed

to the surface. The heat in the surface layer is quickly lost to the atmosphere but

‘the surface salinity is increased and hence convection is maintained, leading to a

convective state. A

" For the parficular case &7 = 1.0, ¢/a = 0.5 and 7/a = 2.0, the bifurcation
diagram of the model (6.1) is plotted. In this diagram, both the dimensionless
temperature 7' = ap(Ty —T}p) and salinity S = ag(Sx—Sp) are plotted versus the
control parameter 5. Two saddle node bifurcations (L and L) occur at &g =
—5/7 and &g = —1/3. These are exactly the values —«(7) and —x(0) bounding
the regions of convective and non-convective regimes, respectively. Hence, the
high temperature and salinity states are convective and exist for &g > —5/7
(regime 1) whereas the low salinity and temperature states are non-convective
and exist for &g < —1/3 (regime 2). Regime 3 is exactly located in the interval
—5/7 < ®5 < —1/3 and in this regime, multiple equilibria exist. Note that
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Figure 6.7.  Bifurcation diagram for the box model (6.1) with ®1 = 1.0, g/a=05andt/a=
2.0 and @5 as control parameter.

regime 4 is not reached here, because &7 > 0.

6.2.3. The flip-flop oscillation

Within simple box models, two types of oscillat henomena nd.
One 1s associated with propagation of perturbations along the mean thermohaline

flow which will be subject of the next subsection and another is associated with
WMMQW&S‘TMS type of oscillation
was Toun

y Welander (1982) in a box model which is a special case of the model
in section 6.2.2. Only two boxes which exchange heat and salt vertically are
considered and moreover the ocean-atmosphere salinity flux is chosen as Fig =
B(Sq — Si), with different restoring times for freshwater and heat. With ¢ =
0;Ty = To;Sy = So;pp = po in (6.1) and with a more general form of the
convective exchange function &(px, pg) the model equations become

Sa, \ dT.
= i = ATe—=T)+k(ps po)(To — To) (6.52)

* g ds.
LWL o = B(Sa—8:) +k(ps, po)(So — i) (6.5b)
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with the equation of state (6.2).
One of the cases considered (Welander, 1982) is Ty = Sp = 0 and

k(p*) = 0,,0*S€
k(p*) = k,px2c¢

which means that if the surface density ps becomes slightly larger than the density
in the bottom box, an exchange flux (—kTy) is generated for both temperature and
salinity with constant exchange coefficient k.

For the particular choice of parameters

arT,
asSa

ol k €
—=10:~=§: —— = —0. ;
3 0; 53 S 0.01 (6.6)

=0.2;

a trajectory is plotted in Fig. 6.8a. All fields oscillate and the oscillation seems to
be sustained. In Welander (1982), it is shown that it damps for the case € = 0.0,
hence a nonzero € is essential to the existence of the oscillation.
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Figure 6.8. (a) Trajectory of the box model (6.5) for & # 0 in the convective exchange function
(6.5) showing the oscillation in temperature T = T /Ta, salinity S = S«/Sa and density p =
p+/Pa. (b) Phase plane picture of the oscillation in (a), where T./Ta is plotted versus Sx/Sa
(Welander, 1982).

The advantage of these type of models is that the oscillation can be understood
in quite detail. In the particular case above, the model has two steady states. The
non-convective state is given by
——— T ,—————

ﬁ*SEZT*zTa;S*=Sa (6.7)
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and the convective state by

px > € T, = —= (6.8a)

a+k

5 BSa

Sy = —— 6.8b
B+k (6.8b)

with
ﬁ* == —aTT* + aSS*

There exists a parameter regime (similar to regime 4 in Fig. 6.6), where both J
steady states cannot be reached. The trajectory then oscillates between both steady
states without actually reaching them. A phase-plane picture of the oscillation in
Fig. 6.8a is plotted in Fig. 6.8b. At point 1, T and S are such that p, < € so that
the trajectory is attracted towards the non-convective steady state and both T and
S increase (fowards point 2). This steady state is never reached, because at point
3, the boundary p, = € is crossed and convection occurs. Then the trajectory
is a ed towards the convective steady state, but it also does not reach this
state because at some point, convection will stop. Hence, the oscillation can be
described as a ’flip-flop’ between convective and non-convective states, where
during the oscillation neither of these states is actually reached.

6.2.4. The loop oscillation

The most elementary box model which includes a loop oscillation is the four-
box model originally used by Huang et al. (1992) and analysed in more detail
in Tziperman et al. (1994). It differs from the two-box model by including two
deep boxes and vertical exchange of heat and salt (Fig. 6.9a). The surface and
deep boxes may have different volumes, but their ratio is fixed and Tziperman
et al. (1994) mostly consider the case of equal volumes. The surface boundary
conditions consist of fresh-water fluxes H; and Hy, atmospheric temperatures 77"
and T¢ and the transport g, is related to the average north-south density differ-
ence. The governing equations of this box model can be found in Tziperman et al.
(1994), where also values of the parameters are provided.

A typical bifurcation diagram of this model is plotted in Fig. 6.9b with the (di-
mensionless) freshwater flux E— P = Hy+ Ho as control parameter. On the verti-
cal axis, the buoyancy ratio is plotted with AT = T, —Tp4 and AS = S1s— Sox.
The basic thermally driven state is stable for small E — P, but it looses stability
due to a Hopf bifurcation (the point marking the transition between **’ and ’o’ in
Fig. 6.9b at E — P = 110). The pair of complex conjugated eigenvalues which
have crossed the imaginary axis become real for slightly larger values of £ — P
(at the transition of "o’ and ’x’) and then one of them moves into the left complex
plane at the saddle node bifurcation (at E — P ~ 125) and a branch of unstable
solutions exists at smaller values of E — P. The mechanism of the oscillatory
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Figure 6.9. (a) Sketch of the box model to illustrate the loop oscillation (Tziperman et al., 1994).
(b) Bifurcation diagram for the 4-box model in (a) as used in Tziperman et al. ( 1994). The markers
correspond to the stability of the flow: '+’ indicates stability, **' indicates stability but the least
stable mode is oscillatory, ’o’ corresponds to an oscillatory instability and ’x’ to instability.

instability was investigated in Tziperman et al. (1994) and shown to be related to
the propagation of a salinity anomaly along the mean flow. This mechanism is
very similar to that of the Howard-Malkus loop oscillation discussed in Welander
(1986). It will be considered in more detail in the context of a somewhat more
complex model below (section 6.4.3).

6.2.5. Models of the thermohaline circulation

Certainly box models are useful to illustrate basic physical phenomena, but
more complex models are needed to capture the full spatial-temporal behavior
of the thermohaline circulation. Contrary to the wind-driven circulation in the
previous chapter, now also the modelling of the heat and salt transport is essential.
Starting point of all the models are the full (Boussinesq) primitive equations, with
velocity vector v, and pressure py, which were presented in chapter 2 but repeated
here for convenience.

Dv,
Po[dt +2Q/\V*:| = "“VP*—QP*GB’JFPO«FI* (6.92)
*
Vve, = 0 (6.9b)
DT, . ‘
poCp dt* = Fr« (6.9c)
DS
Pt = s (6.94)

pe = po(l—ar(Ty —Tp) + as(S.—5So)) (6.9)




