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(1) f(x) and g(x) are continuously differentiable for all x ;
(2) g(—x)=-—g(x) forall x (i.e., g(x) is an odd function);
3) g(x)>0 forx>0;

(4) f(=x)=f(x)forall x (ie., f(x) is an even function);

(5) The odd function F(x) = j Sf(u)du has exactly one positive zero at x =g,
0
is negative for 0.<x <a, is positive and nondecreasing for x>a, and
F(x)—> o0 as x — oo,
Then the system (2) has a unique, stable limit cycle surrounding the origin in the
phase plane. .

This result should seem plausible. The assumptions on g(x) mean that the
restoring force acts like an ordinary spring, and tends to reduce any displacement,
whereas the assumptions on f(x) imply that the damping is negative at small |x|
and positive at large |x| . Since small oscillations are pumped up and large oscilla-
tions are damped down, it is not surprising that the system tends to settle into a
self-sustained oscillation of some intermediate amplitude.

EXAMPLE 7.4.1:

Show that the van der Pol equation has a unique, stable limit cycle.

Solution: The van der Pol equation X + (x> = 1) +x =0 has f(x)=p(x* 1)
and g(x) = x, so conditions (1)-(4) of Liénard’s theorem are clearly satisfied. To
check condition (5), notice that

Fx)=p(4x*-x)=$px(*-3).

Hence condition (5) is satisfied for a = /3 B} Thus the van der Pol equation has a
unique, stable limit cycle. m

There are several other classical results about the existence of periodic solutions
for Liénard’s equation and its relatives. See Stoker (1950), Minorsky (1962), An-
dronov et al. (1973), and Jordan and Smith (1987).

7.5 Relaxation Oscillations

It’s time to change gears. So far in this chapter, we have focused on a qualitative
question: Given a particular two-dimensional system, does it have any periodic solu-
tions? Now we ask a quantitative question: Given that a closed orbit exists, what can
we say about its shape and period? In general, such problems can’t be solved exactly,
but we can still obtain useful approximations if some parameter is large or small.
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We begin by considering the van der Pol equation
F+px-Dx+x=0

for p>>1. In this strongly nonlinear limit, we’ll see that the limit cycle consists
of an extremely slow buildup followed by a sudden discharge, followed by another
slow buildup, and so on. Oscillations of this type are often called relaxation oscil-
lations, because the “stress” accumulated during the slow buildup is “relaxed” dur-
ing the sudden discharge. Relaxation oscillations occur in many other scientific
contexts, from the stick-slip oscillations of a bowed violin string to the periodic
firing of nerve cells driven by a constant current (Edelstein—Keshet 1988, Murray
1989, Rinzel and Ermentrout 1989).

EXAMPLE 7.5.1:

Give a phase plane analysis of the van der Pol equation for i >>1.
Solution: It proves convenient to introduce different phase plane variables from
the usual “x =y, y = ...”. To motivate the new variables, notice that

Pt ur(d-1)= %(J&+u[§x3 —x]),
So if we let
F(x)=4x"-x, w=Xx+uF(x), (1)
the van der Pol equation implies that
w=5é+,tt)'c(x2—r1)=—x. (2)
Hence the van der Pol equation is equivalent to (1), (2), which may be rewritten as

X=w-—UF(x)

Ww=—x. (3)

One further change of variables is helpful. If we let

y=-
U

then (3) becomes

i=ply-F0]

y=—%x. (4)
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Now consider a typical trajectory in the (x,y) phase plane. The nullclines are
the key to understanding the motion. We claim that all trajectories behave like that
shown in Figure 7.5.1; starting from any point excepi the origin, the trajectory zaps
horizontally onto the cubic nullcline y = F(x). Then it crawls down the nullcline
until it comes to the knee (point B in Figure 7.5.1), after which it zaps over to the
other branch of the cubic at C. This is followed by another crawl along the cubic

y
y=F(x)
D
slow
x
slow
C _— —
fast | B
Figure 7.5.1

until the trajectory reaches the next jumping-off point at D, and the motion contin-
ues periodically after that.

To justify this picture, suppose that the initial condition is not too close to the
cubic nullcline, i.e., suppose .y — F(x) ~ O(1). Then (4) implies |x|~ O(1) >> 1
whereas | j}' ~ O(u™") << 1; hence the velocity is enormous in the horizontal di-
rection and tiny in the vertical direction, so trajectories move practically hori-
zontally. If the initial condition is above the nullcline, then y— F(x)>0 and
therefore x > 0 ; thus the trajectory moves sideways toward the nullcline. How-
ever, once the trajectory gets so close that y — F(x)~ O(it™), then % and y be-
come comparable, both being O(x™'). What happens then? The trajectory
crosses the nullcline vertically, as shown in Figure 7.5.1, and then moves
slowly along the backside of the branch, with a velocity of size O(u™"), until it
reaches the knee and can jump sideways again. m

This analysis shows that the limit cycle has two widely separated time scales:
the crawls require At ~ O(i) and the jumps require Az ~ O(u™"). Both time scales
are apparent in the waveform of x(¢) shown in Figure 7.5.2, obtained by numerical
integration of the van der Pol equation for =10 and initial condition

(xo,y0)=(2,0).
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Figure 7.5.2

EXAMPLE 7.5.2:

Estimate the period of the limit cycle for the van der Pol equation for u>>1.
Solution: The period T is essentially the time required to travel along the

two slow branches, since the time spent in the jumps is negligible for large .
!
By symmetry, the time spent on each branch is the same. Hence T ~ 2 Bdt . To

. 1A
derive an expression for df, note that on the slow branches, y= F(x) and

thus ,
D g B

dx
Fl(x)—=(x*-1)= .
dt ) dt (x )dt

But since dy/dt =~x /u from (4), we find dx/dr = —x /1 (x* =1). Therefore

2—
dtz—-u_(_x_ﬂdx

. (5)

on a slow branch. As you can check (Exercise 7.5.1), the positive branch begins at
X, =2 and ends at x; =1. Hence

I 2 2
r=2f B -nar=op|Emx| =u[3-21m2], ()
2 x 2

1

which is O(u) as expected. m

The formula (6) can be refined. With much more work, one can show that
T=p[3-2In2]+20u "+ ..., where a=2.338 is the smallest root of
Ai(~a) = 0. Here Ai(x) is a special function called the Airy function. This correc-
tion term comes from an estimate of the time required to turn the corner between
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the jumps and the crawls. See Grimshaw (1990, pp. 161-163) for a readable de-
rivation of this wonderful formula, discovered by Mary Cartwright (1952). See
also Stoker (1950) for more about relaxation oscillations.

One last remark: We have seen that a relaxation oscillation has two time scales
that operate sequentially—a slow buildup is followed by a fast discharge. In the
next section we will encounter problems where two time scales operate concur-
rently, and that makes the problems a bit more subtle.

7.6 Weakly Nonlinear Oscillators
This section deals with equations of the form
F+x+eh(x,%)=0 - (1)

where 0 < £<<1 and h(x, x) is an arbitrary smooth function. Such equations repre-
sent small perturbations of the linear oscillator X +x =0 and are therefore called
weakly nonlinear oscillators. Two fundamental examples are the van der Pol
equation

X+ x+e(x*-1)x=0, (2)
(now in the limit of small nonlinearity), and the Duffing equation
i+x+ex’=0. (3)

To illustrate the kinds of phenomena that can arise, Figure 7.6.1 shows a com-
puter-generated solution of the van der Pol equation in the (x,x) phase plane, for
€ =0.1 and an initial condition close to the origin. The trajectory is a slowly wind-
ing spiral; it takes many cycles for the amplitude to grow substantially. Eventually

Figure 7.6.1

7.6 WEAKLY NONLINEAR OSCILLATORS 215



