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ABSTRACT

There is a wide range of evidence from both models and palaeoclimatic data that indicates the possibility of
abrupt changes in the oceanic meridional overturning circulation (MOC). However, much of our dynamical
understanding of the MOC comes from steady-state models that rely upon the assumption of thermodynamic
equilibrium and are therefore only valid on millennial time scales. Here a dynamical model for the global
teleconnections of MOC anomalies on annual to multidecadal time scales is developed. It is based on a linear
theory for the propagation of zonally integrated meridional transport anomalies in a reduced-gravity ocean and
allows for multiple ocean basins connected by a circumpolar channel to the south. The theory demonstrates that
the equator acts as a low-pass filter to MOC anomalies. As a consequence, MOC anomalies on decadal and
shorter time scales are confined to the hemispheric basin in which they are generated and have little impact on
the remainder of the global ocean. The linear theory is compared with the results of a global nonlinear numerical
integration, which it reproduces to a good approximation.

1. Introduction

State-of-the-art climate models suggest that the me-
ridional overturning circulation (MOC) in the Atlantic
Ocean is likely to weaken over the next century, al-
though there is little consensus on the rate and mag-
nitude of the likely changes (Houghton et al. 2001).
Moreover, there is evidence from a range of models to
suggest that the MOC might possess more than one
stable mode of operation and is liable to collapse in a
warming climate (e.g., Stommel 1961; Marotzke and
Willebrand 1991; Manabe and Stouffer 1994). Abrupt
changes between different MOC states are also sug-
gested by a number of palaeoclimate records (e.g.,
Broecker and Denton 1989).
Despite the distinct possibility of abrupt changes,

much of our dynamical understanding of the MOC is
based on steady-state theory, as initiated by Stommel
and Arons (1960), Stommel (1961), and Munk (1966).
However, steady-state theories for the MOC assume
thermodynamic equilibrium, which occurs only on mil-
lenial time scales, whereas rapid changes in MOC can
occur over much shorter periods. The ocean is forced
by the atmosphere on all time scales, with wind forcing
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dominating MOC variability on interannual and shorter
time scales (Dong and Sutton 2001), but with buoyancy
forcing perhaps dominating on decadal time scales
(Häkkinen 2001; Eden and Willebrand 2001). To mon-
itor changes in the MOC successfully and to attribute
these changes to thermohaline forcing at high latitudes,
we need to understand the causes, propagation, and at-
tenuation of MOC anomalies on all time scales.
In this paper, we develop a theoretical model for the

global propagation of MOC anomalies forced on annual
to multidecadal time scales. Numerical experiments us-
ing general circulation models have made progress on
understanding the response of the MOC to changes in
surface forcing, both realistic [e.g., Eden and Jung
(2001) and Eden and Willebrand (2001), who consider
the response in the North Atlantic to more than 100
years of forcing associated with the North Atlantic Os-
cillation] and idealized (e.g., Goodman 2001). Others
have taken a theoretical approach in establishing the
localized response of the ocean to periodic wind and
buoyancy forcing (e.g., Liu 1993; Liu and Pedlosky
1994), and Karcher (1997) has considered the response
of an abyssal reduced-gravity layer in a North Atlantic
domain to periodic high-latitude forcing.
The model developed here builds on that described

in Johnson and Marshall (2002a,b) in which a reduced-
gravity isopycnal layer (representing the surface limb
of the MOC) is forced by a prescribed mass source or
sink at high latitudes (representing the formation of deep
water). Because the vertical structure of the MOC is
dominated by the first baroclinic mode, with a single
reversal at the approximate depth of the thermocline,
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we might expect a reduced-gravity model to provide a
useful zero-order description [see Wajsowicz (1986) for
a comparison with the response of a general circulation
model]. In the absence of variations in bottom topog-
raphy and background mean flow, the theory developed
here can be easily extended to a continuously stratified
ocean by projecting onto the spectrum of baroclinic
modes.
As found by Wajsowicz and Gill (1986) and Kawase

(1987), the initial dynamical adjustment to changes in
high-latitude forcing is through the propagation of
Kelvin waves around the perimeter of the basin, on time
scales of a few months, followed by the radiation of
Rossby waves off the eastern boundary into the ocean
interior, on time scales of a few months at low latitudes
to several years at high latitudes. The same adjustment
process has been observed in a wide hierarchy of models
(e.g., Döscher et al. 1994; Karcher and Lippert 1994;
Greatbatch and Peterson 1996; Winton 1996; Yang
1999; Goodman 2001; Dong and Sutton 2002). Al-
though some models suggest that the advection of deep
density anomalies may also be important [e.g., Gerdes
and Köberle (1995), who see a two-stage adjustment
that consists of a baroclinic-wave response followed by
an advective response, Marotzke and Klinger (2000),
and Goodman (2001)], the choice of a reduced-gravity
framework here restricts our focus to the surface ad-
justment processes, which are the most likely to feed
back on the atmosphere on the decadal to multidecadal
time scales of interest.
The crucial ingredient emphasized by Johnson and

Marshall (2002a) is the role of the equator. In specific
terms, they note that the amplitude of the boundary
pressure anomaly within a western boundary Kelvin
wave is greatly reduced by the time the Kelvin wave
reaches the equator; this pressure anomaly is not ream-
plified when the Kelvin wave subsequently returns pole-
ward along the eastern margin of the basin. As a con-
sequence, the pressure anomaly radiated westward into
the basin interior by Rossby waves represents only a
small fraction of the original high-latitude forcing. John-
son and Marshall (2002a) term this mechanism the
‘‘equatorial buffer’’ because it restricts the amplitude of
the response in the unforced hemisphere on short time
scales. As a result of this buffering mechanism, the
equator acts as a low-pass filter to MOC anomalies
(Johnson and Marshall 2002b; Liu et al. 1999).
By relating the zonal propagation of layer thickness

anomalies (by Rossby waves) to the divergence of the
MOC, Johnson and Marshall (2002a) derive an equation
for the adjustment of the layer thickness on the eastern
boundary, from which the adjustment of the MOC can
be deduced. Results of this single-parameter theoretical
model agree extremely favorably with the results of full
numerical calculations (Johnson and Marshall 2002a,b).
The mathematics of this MOC adjustment problem are
similar to the mathematics of the damped ‘‘basin
modes’’ discussed by LaCasce (2000), Cessi and Pri-

meau (2001), Cessi and Paparella (2001), Cessi and
Louazel (2001), Liu (2002), and Primeau (2002). How-
ever, the forcing is applied at the western boundary in
the present problem, rather than in the basin interior,
and, as a result, the resonance of the basin modes at
decadal frequencies turns out to be weak.
Primeau (2002) and Cessi and Otheguy (2003) have

recently questioned the relevance of Kelvin waves to
the ocean’s adjustment on decadal and multidecadal time
scales. Both point out that the wavelength of a Kelvin
wave forced at such low frequencies will greatly exceed
the length of the coastline around which it travels. We
do not view these long wavelengths as a problem, since
there is no requirement for an integral number of wave-
lengths to fit within the basin. Because the theory de-
veloped here depends only on the existence of some
form of boundary adjustment process that acts to make
pressure uniform on the eastern boundary on time scales
longer than a few months, the role of Kelvin waves
specifically is not critical to our results. In the real ocean,
where the boundary consists of a sloping bottom, the
signal is more likely to propagate as a coastally trapped
topographic wave on the continental shelf. We use the
term Kelvin wave throughout to describe the propaga-
tion of a coastally trapped thickness anomaly at ap-
proximately the gravity-wave speed, and it is left to the
reader to make up his or her own mind on the matter.
The remainder of the paper is structured as follows.

In section 2 we extend the theory derived in Johnson
and Marshall (2002a) to obtain an expression for the
amplitude of MOC anomalies in an idealized rectangular
basin as a function of latitude and frequency. In section
3 the theory is then further extended to multiple con-
nected ocean basins. In section 4, we apply the model
to a realistic global ocean geometry, and the theory is
validated through comparison with the results of a full
numerical calculation. A concluding discussion in given
in section 5.

2. Theory for a single basin
We first consider the response of a single reduced-

gravity basin to a periodic forcing at its high-latitude
margin. Preliminary calculations employing a realistic
Atlantic domain were reported in Johnson and Marshall
(2002b). Here we develop the underlying theory for the
propagation of MOC anomalies in a single basin.

a. Model formulation
Following Johnson and Marshall (2002a), we con-

sider an idealized, reduced-gravity ocean basin that
spans the equator and is open to the south. The model
is intended to represent the warm, upper limb of the
MOC in the Atlantic. Flow is forced on the northern
boundary by a prescribed northward transport TN that
represents the net conversion of surface water into deep
water at high latitudes. (Equivalently, one can specify
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the layer thickness in the northwest corner of the domain
to parameterize the effects of deep convection, and this
leads to identical results.) At the southern boundary, a
northward transport TS is allowed to represent the flow
of water into the Atlantic from the remaining basins
(details of how TS is prescribed are given below).
Under the assumptions of geostrophic balance and a

linearized continuity equation in the interior, the adia-
batic response of a reduced-gravity model is described
by the mass budget equation derived in Johnson and
Marshall (2002a):

fN

T 2 T 5 Rc[h (t 2 L /c) 2 h (t)] df, (1)N S E e e
fS

where R 5 6.373 3 106 m is the radius of the earth,
he is the surface-layer thickness on the eastern boundary,
L(f) is the width of the basin, t is time,

bg9H g9H cosf
c 5 5 (2)

2 2f 2VR sin f

is the Rossby wave speed, b is the meridional gradient
of the Coriolis parameter f, g9 is the reduced gravity,
H is the initial surface-layer thickness, and V 5 7.29
3 1025 s21 is the rotation rate of the earth.
This equation is based on a time scale separation

between the fast boundary/equatorial Kelvin waves and
the much slower Rossby wave adjustment in the interior.
It assumes that the Kelvin wave speed is infinite such
that the surface layer thickness along the eastern bound-
ary and the equator is uniform at any given time. In
physical terms, Eq. (1) expresses the fact that the di-
vergence in meridional transport (TN 2 TS) is deter-
mined by the difference between the surface-layer thick-
ness anomaly communicated by Rossby waves into the
western boundary current [he(t 2 L/c)] and that prop-
agated into the interior on the eastern side of the basin
[he(t)], integrated over the entire meridional extent of
the domain.
On the southern boundary, the transport TS is deter-

mined by integrating geostrophic balance across the ba-
sin and linearizing to give

g9H
T 5 (h 2 h ), (3)S e SWf S

where the layer thickness in the southwest corner of the
domain hSW is equal to the constant H. This boundary
condition is based on the assumption that the layer thick-
ness in the southwest corner of the Atlantic is set by
Kelvin waves propagating around the southern tip of
South America from the Pacific; we will see in sections
3 and 4 that setting hSW equal to a constant is justified
on time scales shorter than a few decades.
Given a prescribed forcing on the northern boundary

TN, Eq. (1) can be used to predict the time-dependent
adjustment of the system.

b. Theory for periodic forcing

If the forcing is periodic, with a solution of the form
eivt, then

ivth 5 h 1 Ae , and (4)e 0

ivtT 5 T e , (5)N 0

where A is the amplitude of variability in layer thickness
on the eastern boundary. After dividing through by eivt,
Eq. (1) becomes

fNg9H
(2ivL)/cT 5 A 2 Rc[1 2 e ] df , (6)0 E5 6f S fS

from which one can determine A.
A mass budget equation similar to Eq. (1) can also

be derived over a limited latitudinal range. Integrating
from the southern boundary to a latitude f gives the
zonally integrated transport T(f, v) as a function of
latitude and frequency:

f

T(f, v) 2 T 5 Rc[h (t 2 L /c) 2 h (t)] df, (7)S E e e
fS

which, after substitution, results in
fg9H

ivt (2ivL)/cT(f, v) 5 Ae 2 Rc[1 2 e ] df . (8)E5 6f S fS

Dividing Eq. (8) by TN and substituting for T0 using Eq.
(6) results in an expression for the reduction in ampli-
tude of the meridional transport anomaly in the upper
layer as a function of latitude and frequency:

fg9H
(2ivL)/c2 Rc[1 2 e ] dfEf S fT S(f, v) 5 . (9)

fNT g9HN (2ivL)/c2 Rc[1 2 e ] dfEf S fS

Equation (9) is a complex fraction whose modulus |T/TN |
gives the amplitude of the variability in zonally inte-
grated meridional volume transport at each latitude, as
a fraction of the prescribed variability on the northern
boundary. The argument of Eq. (9) gives the phase lag.
Note that the numerator and denominator only differ in
the latitudinal extents over which the integral is eval-
uated.

c. Results

Figure 1 shows the numerical solution of Eq. (9) for
an idealized sector ocean basin 508 wide, where L 5
L0 cosf, L0 5 5.5 3 106 m, g9 5 0.02 m s22, H 5 500
m, fS 5 368S, and fN 5 658N. Figure 1a shows the
modulus | T/TN | , which gives the amplitude of the var-
iability in meridional transport at each latitude as a frac-
tion of the amplitude of the forcing on the northern
boundary.
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FIG. 1. Numerical solution of Eq. (9) for an idealized sector ocean
basin. (a) Modulus | T/TN | , which gives the amplitude of the vari-
ability in meridional transport as a fraction of the prescribed vari-
ability on the northern boundary. (b) Phase lag arg(T/TN) of the var-
iability behind the forcing, in years.

At decadal frequencies and higher, the amplitude is
approximately constant throughout most of the Northern
Hemisphere but is greatly reduced in the Tropics. The
signal in the Southern Hemisphere is small. As the fre-
quency of the forcing decreases, the region over which
the amplitude reduction occurs becomes broader such
that at multidecadal frequencies the amplitude of the
variability decreases throughout the entire domain. At
these lower frequencies much more of the variability is
transmitted to the southern boundary. For a forcing pe-
riod of 50 yr, 50% of the signal reaches 308S.
For variability with a period of about 13 yr, the am-

plitude of the response at high latitudes in the North
Atlantic is slightly larger than that of the forcing. This
is the result of a weak resonance of the basin modes
described by LaCasce (2000), Cessi and Primeau
(2001), Cessi and Paparella (2001), Cessi and Louazel
(2001), Liu (2002), and Primeau (2002). The period of
these oscillatory modes is controlled by the time taken
for a Rossby wave to cross the basin at its northern
margin:

2VRL0 2t(f) 5 sin f . (10)Ng9H

At the northernmost extent of our model (658N), this
Rossby wave transit time is 13.3 yr. If the forcing on
the northern boundary has a period of 13.3 yr, then the
signal returning via the westward-propagating Rossby
wave will be in phase with the forcing and will amplify
it, leading to a resonance effect. This condition will also
occur at all harmonics of the resonant frequency (cor-
responding to periods of 6.6 yr, 3.3 yr, etc.) and is clear
in Fig. 1a.
The basin modes are only weakly excited because,

unlike in previous studies that have been forced largely
by wind and buoyancy anomalies within the ocean in-
terior, here the forcing is applied exclusively at the west-
ern boundary. The resultant boundary pressure anomaly
is heavily damped as the Kelvin wave propagates equa-
torward along the western boundary and does not ream-
plify as the Kelvin wave returns poleward along the
eastern boundary (Johnson and Marshall 2002a). As a
consequence the forcing ‘‘seen’’ by the ocean interior,
which can in turn resonate a basin mode, is only a small
fraction of that originally applied at the western bound-
ary.
Figure 1b shows the phase lag, in years, of the var-

iability at each latitude in comparison with the forcing.
Variability with a period of less than 20 yr is transmitted
with almost no lag to the equator (there is, in fact, a
small phase lead, presumably due to interference ef-
fects). South of the equator, the phase lag increases with
latitude. For multidecadal variability both the Northern
and Southern Hemispheres experience a phase lag that
decreases with frequency and increases with distance
from the forcing region such that, on the southern
boundary, variability with a period of 50 yr lags behind
the forcing by about 7 yr. In the low-frequency limit,
the phase lag varies approximately linearly with latitude
and is independent of frequency. (The phase lag in Fig.
1 should be viewed in the light of the amplitude re-
duction illustrated in the upper panel; at high frequency,
signals in the Southern Hemisphere are so small that
the phase lag is meaningless.)
Figure 1a shows that the spatial extent of variability

is highly dependent on frequency. The equator acts as
a low-pass filter, restricting decadal and higher-fre-
quency variability to the hemisphere in which it is gen-
erated. This low-pass filtering results from the differ-
ence, outlined in Johnson and Marshall (2002a,b), in
the mechanism by which overturning anomalies prop-
agate southward in each hemisphere. High-latitude var-
iability is transmitted efficiently throughout the entire
hemisphere in which it is forced by fast Kelvin waves
that propagate along the western boundary to the equa-
tor (Kawase 1987). In the opposite hemisphere, how-
ever, a fast response on the western boundary is not
possible, and eastern boundary Kelvin waves are inef-
ficient at communicating overturning anomalies pole-
ward (because they radiate Rossby waves that propagate
westward into the interior). As a consequence of its
slower adjustment, the second hemisphere cannot re-
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FIG. 2. Schematic illustrating two identical sector ocean basins,
each extending from fS to fN, and connected by a zonal channel to
the south. Thickness anomalies are transmitted from one basin to the
next by Kelvin waves, which propagate in the direction shown. A
linear, geostrophic boundary condition is applied to the south of each
basin (straight arrows) such that flow leaving basin 1 is assumed to
enter basin 2.

spond to high-frequency variability before the forcing
changes sign. Only variability on decadal time scales
and longer has a significant influence.
Low-pass filtering by the Tropics was demonstrated

in a realistic Atlantic-shaped domain using a fully non-
linear numerical reduced-gravity model in Johnson and
Marshall (2002b). Agreement between the theory and
the numerical calculation is good in both idealized (not
shown) and realistic domain geometries, suggesting that
the theory successfully captures the response of the
model’s Atlantic overturning circulation to variability
in forcing at high latitudes.

3. Two basins

In the previous section, discussion of the spatial ex-
tent of variability was limited to the Atlantic sector. Here
the effect of thermohaline overturning anomalies in the
high-latitude North Atlantic on the rest of the global
ocean is considered. The theory will be built up in stag-
es, beginning with the case of two idealized sector ocean
basins. A realistic global ocean geometry will be con-
sidered subsequently in section 4.
To solve for a single basin, it is necessary to prescribe

the surface-layer thickness in the southwest corner of
the domain hSW [see Eq. (3)]. So far the value of hSW
has been assumed to be constant and equal to the initial
surface-layer thickness H (and hence to h0). In reality
it will be set by Kelvin waves propagating around the
southern tip of South America from the Pacific Ocean.
The linearized southern boundary condition then be-
comes

g9H
T 5 (h 2 h ), (11)S A Pf S

where hA is the surface-layer thickness on the eastern
boundary of the Atlantic and hP is the surface-layer
thickness on the eastern boundary of the Pacific. In this
way the adjustment between basins is coupled through
the geostrophic flow across their southern boundaries.
Consider first the simplified case of two identical sec-

tor ocean basins, separated by continental land masses
that extend to the same latitude fS, south of the equator,
and connected through a zonal channel to the south (see
Fig. 2). Variable thermohaline forcing TN 5 T0eivt is
applied to the northern boundary of basin 1, and there
is a closed northern boundary in basin 2. The applied
forcing has a mean of zero so that there is no net gain
or loss of mass from the surface layer—the ocean ad-
justment is assumed to be entirely adiabatic on the de-
cadal and multidecadal time scales of interest here. Lay-
er thickness in the southwest corner of each basin is set
by Kelvin waves propagating along the coast from the
basin immediately to the west.
Proceeding as in section 2, the mass budget equation

for basin 1 can be expressed as

] L1T (f, t) 5 Rc h t 2 2 h (t) , (12)1 1 11 2[ ]]f c

where

ivth 5 h 1 A e ,1 0 1

ivtT 5 T e ,N1 0

g9H
T 5 (h 2 h ),S1 1 2f S

h1 is the surface-layer thickness (he) on the eastern
boundary of basin 1, and h2 is the equivalent in basin
2. For basin 2,

] L2T (f, t) 5 Rc h t 2 2 h (t) , (13)2 2 21 2[ ]]f c

ivth 5 h 1 A e ,2 0 2

T 5 0, andN2

g9H
T 5 (h 2 h ).S2 2 1f S

Note that TS1 5 2TS2, reflecting the fact that flow leav-
ing basin 1 at its southern boundary is assumed to enter
basin 2. There is no net flow into or out of the domain
apart from the prescribed forcing TN1.
Integrating Eqs. (12) and (13) over the entire merid-

ional extent of the domain and dividing through by eivt
leads to
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FIG. 3. (a) Magnitude and (b) phase of the ratio A2/A1, as a function
of forcing period, for two identical sector ocean basins each 508 wide
and extending from 368S to 658N.

g9H
T 2 (A 2 A )0 1 2f S

fN

(2ivL )/c11 A Rc[1 2 e ] df 5 0 and (14)1 E
fS

g9H
2 (A 2 A )2 1f S

fN

(2ivL )/c21 A Rc[1 2 e ] df 5 0. (15)2 E
fS

Integrating the same two equations from the southern
extent of each basin up to a latitude f gives
T (f, v)1

fg9H
ivt (2ivL )/c15 e (A 2 A ) 2 A Rc[1 2 e ] df1 2 1 E5 6f S fS

(16)
and

T (f, v)2

fg9H
ivt (2ivL )/c25 e (A 2 A ) 2 A Rc[1 2 e ] df .2 1 2 E5 6f S fS

(17)
Here A1 and A2 are the amplitudes of the variability in
layer thickness on the eastern boundaries of basins 1
and 2, respectively.

a. Basin factor
Equation (15) can be rearranged to give

g9H
A f2 S5 . (18)

fNA g9H1 (2ivL )/c22 Rc[1 2 e ] dfEf S fS

This ‘‘basin factor’’ is the ratio of the surface-layer
thickness anomalies on the eastern boundaries of basin
2 and basin 1. It varies with frequency and depends
upon the geometry of basin 2 (but not of basin 1). All
that is required to calculate this ratio for any pair of
ocean basins is the width L(f) of basin 2 as a function
of latitude and the southern extent of the peninsula di-
viding the two basins fS.
Because Eq. (18) is complex, it provides information

about both the relative amplitude of the responses in
each basin and the phase difference between them. Fig-
ure 3 shows the results for two identical sector ocean
basins, each 508 wide and extending from 368S to 658N.
Forcing periods of up to 250 yr are shown throughout
this section to establish the implications of the theory
right across parameter space. It is important to note,
however, that on centennial time scales in the real ocean

the thermodynamic part of the adjustment begins to play
a role, and the low-frequency results shown here should
be treated with caution.
In Fig. 3a the relative amplitude is plotted. At fre-

quencies higher than 1/(50 yr) it varies approximately
linearly with the period of the forcing—the longer the
period, the larger the response in thermocline thickness
on the eastern boundary of basin 2. Even for a forcing
period of 50 yr, though, the response in this second basin
is less than 50% of that in the forced basin 1. At low
frequencies the ratio asymptotically approaches 1. This
result implies that in the steady state the surface-layer
thickness changes uniformly across both basins, a con-
sequence of the fact that the only net flow into or out
of the domain is the prescribed forcing TN1, which must
therefore be balanced by changes in layer thickness (i.e.,
changes in storage) within the domain itself.
Figure 3b shows the phase lag in years of the response

in basin 2 behind that in basin 1. At high frequencies
it too varies approximately linearly with the forcing pe-
riod (about 15% of the period); in the low-frequency
limit it asymptotically approaches a value of 13.3 yr.
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FIG. 4. Schematic illustrating the Kelvin wave response to a prescribed anomaly in thermohaline
overturning on the northern boundary of basin 1. The associated pressure anomaly is in geostrophic
balance and consequently reduces in amplitude as it propagates southward as a Kelvin wave along
the western boundary (1). The resulting small thermocline displacement is transmitted across the
equator but does not reamplify as the Kelvin wave travels poleward on the eastern side of basin
1 (2). Having propagated around the cape separating the two basins, the Kelvin wave is further
reduced in amplitude as it travels equatorward along the western boundary of basin 2 (3). The
response on the eastern boundary of basin 2 is therefore smaller than that on the eastern boundary
of basin 1 and depends upon the latitude fS. Rossby waves communicate the reduced pressure
anomaly into the interior of each basin.

FIG. 5. Variation of the basin factor | A2/A1 | with frequency and
with the southern extent of the dividing land mass fS.

This is the maximum Rossby wave transit time in the
system (which in this idealized ocean geometry occurs
on the northern boundary of each basin).
In physical terms, the eastern boundary response in

basin 2 is smaller than the response in basin 1 because
the anomaly in thermocline thickness, having propa-
gated around the dividing land mass as a Kelvin wave,
is reduced in amplitude as it travels equatorward in close
to geostrophic balance along the western boundary of
basin 2 (Johnson and Marshall 2002a and Fig. 4). One
might imagine, therefore, that the closer the southern

connection between ocean basins is to the equator, the
larger the amplitude of variability will be in basin 2.
This relationship is apparent in the variation of the basin
factor |A2/A1 | with the southern extent of the dividing
land mass (Fig. 5). If the zonal channel connecting two
basins occurs exactly on the equator, there is no differ-
ence in the amplitude of variability between them.

b. Meridional overturning anomalies

Dividing Eq. (16) by TN1 and substituting for T0 using
Eq. (14) gives an expression for the amplitude of var-
iability in meridional transport throughout basin 1:

fg9H A2 (2ivL )/c11 2 2 Rc[1 2 e ] dfE1 2f AS 1 fT S1 (f, v) 5 .
fNTN1 g9H A2 (2ivL )/c11 2 2 Rc[1 2 e ] dfE1 2f AS 1 fS

(19)

This equation is general—it does not rely upon the fact
that the two basins are identical but applies to the case
of any two basins that extend south of the equator to
the same latitude fS.
Transport anomalies in basin 2 can be obtained by

treating it as a single basin, forced on its southern
boundary by the variability that remains after the am-

Eli Tziperman




JULY 2004 1709J O H N S O N A N D M A R S H A L L

FIG. 6. Amplitude of the variability in meridional transport as a
fraction of the prescribed variability on the northern boundary of
basin 1, for each of two identical sector ocean basins ( | T/TN1 | ). The
dashed contours show the equivalent for a single basin with an open
southern boundary. At decadal frequencies, when variability is con-
fined to the hemispheric basin in which it is generated, the two so-
lutions in (a) basin 1 are identical, and (b) basin 2 experiences only
a very small fraction of the variability.

plitude of the signal has been reduced in basin 1. Di-
viding Eq. (17) by TS2, and substituting using Eq. (15)
gives

f

(2ivL )/c2Rc[1 2 e ] dfE
fT S2 (f, v) 5 1 2 , (20)
fNTS2 (2ivL )/c2Rc[1 2 e ] dfE

fS

where

T 5 2T (f 5 f ).S2 1 S (21)

The minus sign here reflects the fact that any flow leav-
ing basin 1 is assumed to enter basin 2. A southward
anomaly in meridional transport on the southern bound-
ary of basin 1 is equivalent to a northward anomaly in
transport on the southern boundary of basin 2.
Figure 6 shows the numerical solution of Eqs. (19)

and (20). Plotted is the amplitude of variability in me-
ridional transport as a fraction of the prescribed vari-
ability on the northern boundary of basin 1. The single-
basin solution from Fig. 1 is also plotted for comparison.
In the high-frequency limit, the basin factor |A2/A1 |

→ 0 (see Fig. 3), and Eq. (19) therefore reduces to the
single-basin solution in Eq. (9). This fact is apparent in
Fig. 6a and is as we might expect from section 2. High-
frequency variability is confined to the North Atlantic
as a result of the equatorial buffer mechanism, and so
the presence of a second basin has little effect.
In contrast, low-frequency variability is able to pass

across the equator with little reduction in amplitude. At
low frequencies, reduction in the amplitude of transport
anomalies with latitude is instead controlled by the dy-
namic boundary condition T 5 0 at the northern margin
of basin 2. The magnitude of the transport anomaly in
both basins varies approximately linearly with latitude,
with the amplitude in basin 2 decreasing northward and
falling to zero at f 5 fN (the decrease is not exactly
linear since basin width varies as the cosine of latitude).
This is physically the result of storage in the surface
layer.
The phase lag of the transport signal (in years) is

shown in Fig. 7. In basin 1, divergence from the single-
basin solution occurs at a relatively high frequency. For
variability with a period longer than about 100 yr, the
phase lag is independent of frequency and increases with
distance from the forcing region on the northern bound-
ary. In basin 2, the phase lag at high frequencies is only
a weak function of latitude and increases approximately
linearly with the period of the variability. In the low-
frequency limit, it becomes a function simply of latitude,
increasing northward throughout the domain.
Close to the northern boundary of basin 2, at a fre-

quency corresponding to the transit time of a Rossby
wave (;13 yr) and its harmonics, the phase lag drops
to zero because of a resonance between the Rossby wave
signal and the forcing on the western boundary, dis-

cussed for the single-basin case in section 2. The dif-
ference here is that western boundary ‘‘forcing’’ in basin
2 is not prescribed as a volume flux on the northern
boundary but is determined by the mass balance of the
whole basin. Resonance occurs at a frequency such that
Rossby wave propagation at high latitudes generates
Kelvin waves on the western boundary that will rein-
force the eastern boundary thickness anomaly. The am-
plitude of variability on the northern boundary of basin
2 is so small, however, that the phase lag here means
very little in real terms.
If the width of basin 2 vanishes (L2 → 0), then from

Eq. (18) A2 5 A1, and
f

(2ivL )/c1Rc[1 2 e ] dfE
fT S1 (f, v) 5 . (22)
fNTN1 (2ivL )/c1Rc[1 2 e ] dfE

fS
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FIG. 7. Phase lag, in years, of the variability in transport at each
latitude for each of two identical sector ocean basins, arg(T/TN1). The
dashed contours in (a) show the single-basin case.

FIG. 8. The asymmetric two-basin case. Eastern boundary thickness
anomalies in each basin are communicated to the next by Kelvin
waves to the south of the dividing land mass. It is helpful to view
basin 1 as an L-shaped basin, in which Rossby waves reaching the
western side come from both the eastern boundary of basin 1 itself
and, south of fP, from the eastern boundary of basin 2. The geo-
strophic flow shown by the straight arrow is a source to basin 2 and
a sink to basin 1. There is no geostrophic flow into basin 1 from the
south because the thickness on both sides of the basin is equal to h2.

This expression differs from the equivalent result for
the single-basin case in section 2 [Eq. (9)] because here
there is no outflow on the southern boundary (TS) and
adjustment must occur entirely within the basin itself.

c. Asymmetric basins

When the land masses between the two ocean basins
extend to different latitudes, the analysis becomes a little
more complicated. Consider the case illustrated in Fig.
8, in which one land mass extends to fS as before, but
the southern tip of the other occurs farther north at fP.
It is helpful to view basin 1 as an L-shaped basin, in
which the meridional transport depends upon Rossby
wave propagation both from the east coast of basin 1
itself and, south of fP, from the east coast of basin 2.
The mass budget equation integrated over the meridi-
onal extent of basin 1 will involve two integrated Rossby
wave terms. If one assumes a periodic forcing and re-
sponse, it becomes

fNg9H
(2ivL )/c1T 1 (A 2 A ) 1 A Rc[1 2 e ] df0 2 1 1 Ef P fP

fP

(2ivL )/c11 A Rc[1 2 e ] df 5 0, (23)2 E
fS

where A1 and A2 are the amplitudes of the variability
in layer thickness on the eastern boundaries of basins
1 and 2, respectively. The second term here represents
the flow out of the L-shaped basin 1 and into the closed
basin 2. There is no geostrophic flow into basin 1 from
the south because the layer thickness on both sides of
the basin is h2. Integrating over the meridional extent
of basin 2 results in

fNg9H
(2ivL )/c22 (A 2 A ) 1 A Rc[1 2 e ] df 5 0.2 1 2 Ef P fP

(24)

This gives us the same basin factor as in section 3a,
where now the Coriolis parameter is evaluated at the
latitude fP:

g9H
A f2 P5 . (25)

fNA g9H1 (2ivL )/c22 Rc[1 2 e ] dfEf P fP

Integrating the mass budget in basin 1 from its south-
ern boundary up to a latitude f, which lies in the closed
portion of the basin, gives the transport T1:
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FIG. 9. Asymmetric basins—amplitude of the variability in merid-
ional transport as a fraction of the prescribed variability on the north-
ern boundary of basin 1.

fg9H
ivt (2ivL )/c1T 5 2e (A 2 A ) 1 A Rc[1 2 e ] df1 2 1 1 E5 f P fP

fP

(2ivL )/c11 A Rc[1 2 e ] df . (26)2 E 6
fS

Using Eq. (23) this simplifies to
fN

ivt (2ivL )/c ivt1T 5 A e Rc[1 2 e ] df 1 T e , (27)1 1 E 0
f

and in basin 2

g9H
ivtT 5 2e 2 (A 2 A )2 2 15 f P

f

(2ivL )/c21 A Rc[1 2 e ] df2 E 6
fP

fN

ivt (2ivL )/c25 A e Rc[1 2 e ] df. (28)2 E
f

South of fP in basin 1, the transport anomaly at a lat-
itude f is

f

ivt (2ivL )/c1T 5 2A e Rc[1 2 e ] df, (29)1 2 E
fS

determined only by Rossby wave propagation from the
east coast. Transports T1 and T2 are again functions of
latitude f and frequency v. Dividing Eqs. (27)–(29) by
TN1 and substituting for T0 using Eq. (23) gives the
amplitude of variability in meridional transport as a frac-
tion of the forcing. Figure 9 shows the result for the
case where fP 5 108S, fS 5 368S, and fN 5 658N.
Both ocean basins are 508 wide, and the dividing land
masses have negligible width. At decadal and multi-
decadal frequencies, the asymmetry between basins re-
sults in less of a reduction in the amplitude of over-
turning anomalies in basin 1 and a larger amplitude of
variability north of the equator in basin 2 (as compared
with the case of two identical basins). In the low-fre-
quency limit, however, the storage dominates and the
layer shallows uniformly throughout the domain such
that north of fP the reduction in amplitude is approx-
imately independent of the value of fP itself. A com-
parison of Figs. 9 and 6 illustrates this point. Note that
there is a discontinuity in the northward transport in
basin 1 at fP, where the basin doubles in width to en-
compass the area to the south of basin 2. The northward
transport in basin 1 is discontinuous acrossfP to account
for the northward transport from basin 1 into basin 2.
The only assumption required about the geometry of

the domain in the analysis above is that fS is south of
fP. The equation set is therefore equally applicable
when fP falls north of the equator. In this case Kelvin
waves propagate around the peninsula with the coast on
their right-hand side, and the direction of information

propagation is from basin 2 to basin 1. The analytical
theory still holds because it assumes Kelvin wave prop-
agation to be instantaneous. It relies only upon the fact
that the layer thickness at the southwest corner of basin
2 is equal to that on the eastern boundary of basin 1 at
all times. The theory is, in effect, an instantaneous mass
balance of the surface layer, and, as a result, the direction
of propagation of Kelvin waves is irrelevant.
Figure 10 shows the magnitude of the basin factor

[Eq. (25)] as a function of fP and of frequency. When
fP is south of the equator, |A2/A1 | is plotted (exactly
as in Fig. 5), but, for fP north of the equator, the am-
plitude of variability in basin 2 is larger than that in
basin 1 and the figure shows contours of |A1/A2 | .
For peninsulas that do not extend far from the north-

ern boundary of the model, and for peninsulas that ex-
tend almost to the equator, there is very little reduction
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FIG. 10. Basin factor in the asymmetric case as a function of fP

and frequency. For peninsulas south of the equator, the dashed con-
tours show |A2/A1 | . North of the equator, the solid contours show
|A1/A2 | , such that the basin factor is always ,1.

FIG. 11. Ratio of the amplitude of variability in layer thickness on
the eastern boundary of the Arabian Sea (A1) to that in the Bay of
Bengal (A2). At all frequencies for which the conceptual model is
valid, the ratio is very close to 1.

in the eastern boundary signal between the two basins.
For peninsulas of intermediate extent, however, the re-
duction in amplitude increases with frequency and is
greater than 50% for variability with a period shorter
than 25 yr. The latitude fP at which this maximum
reduction in the eastern boundary signal occurs decreas-
es with frequency.
In the real ocean, the only peninsula of significant

meridional extent that is entirely contained within the
Northern Hemisphere is the Indian peninsula, which
separates the Arabian Sea and Bay of Bengal in the
Indian Ocean. The 500-m isobath here extends to ap-
proximately 58N. Only the dimensions of the Bay of
Bengal are required to calculate the basin factor—the
result is shown in Fig. 11. For variability with a period
longer than about 3 yr the basin factor is very close to
1. Because at annual frequencies critical assumptions of
the theory begin to break down in any case, for our
purposes here eastern boundary thickness in the Bay of
Bengal can be assumed to be equal to eastern boundary

thickness in the Arabian Sea, and the global ocean can
be treated as three separate basins.

4. Global ocean geometry

Having demonstrated the multiple-basin approach
using two idealized basins, we are now in a position
to consider a more realistic global ocean geometry.
This geometry is represented as three large ocean ba-
sins, connected via a circumpolar channel to the south,
as illustrated in Fig. 12. Eastern boundary layer thick-
ness and zonally integrated transport in each basin are
labeled with the suffix A, I, or P for the Atlantic, Indian,
and Pacific basins, respectively. The latitude of the
southern tip of Africa is labeled f I , because it repre-
sents the southern extent of the closed portion of the
Indian basin, and the latitude of the southern tip of
Australasia, the most southerly extent of the Pacific
basin, is similarly labeled fP . The tip of South Amer-
ica, Cape Horn, is fS , and the northern boundary of
the Atlantic is fN . All three continents extend into the
Southern Hemisphere, and so Kelvin waves propagate
in the direction shown. The layer thickness in the
southwest corner of each basin is equal, in our theo-
retical model, to the eastern boundary thickness in the
basin immediately to the west. Ocean basins are de-
fined by the 500-m isobath, the approximate edge of
the continental shelf, and islands have been removed.
It is assumed that Rossby waves impinging upon the
eastern side of an island generate Kelvin waves around
the coast and are then reradiated as Rossby waves from
the western side (Liu et al. 1999). The ocean is forced
on the northern boundary of the Atlantic, as before,
with a periodic volume flux TN whose mean is zero,
intended to represent variability in deep-water for-
mation at high latitudes.
The general equation

] L
T(f, t) 5 Rc h t 2 2 h (t) (30)e e1 2[ ]]f c

is first integrated over the entire meridional extent of
each basin. For this purpose the Atlantic ocean is as-
sumed to be ‘‘staircase’’ shaped, such that the unbound-
ed areas of ocean south of the Indian and Pacific basins
are treated as part of the Atlantic (see Fig. 12). Zonally
integrated flow into the Indian and Pacific basins is con-
sidered as a sink of Atlantic transport and is given by
a linear geostrophic boundary condition as in section 3.
There is no geostrophic flow across the latitude fS,
because the layer thickness on both sides of Cape Horn
is equal to hP.
Integrals over the meridional extent of each basin

result in the following balances:

fNg9H LP2 (h 2 h ) 5 Rc h t 2 2 h (t) df, (31)P I E P P1 2[ ]f cP fP
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FIG. 12. Global ocean schematic. The direction of Kelvin wave propagation between basins
is shown by dashed arrows. The Atlantic (shaded) is treated as staircase shaped and includes
the unbounded areas of ocean to the south of the Indian and Pacific basins. Rossby waves
(solid arrows) reaching its western side have propagated from three separate eastern boundary
regions. The geostrophic flow into the Indian and Pacific basins is shown by bold face straight
arrows. Basins are defined by the 500-m isobath; fN 5 658N, f I 5 368S, fP 5 458S, and
fS 5 568S.

fNg9H LI2 (h 2 h ) 5 Rc h t 2 2 h (t) df, (32)I A E I I1 2[ ]f cI fI

and
g9H g9H

T 1 (h 2 h ) 1 (h 2 h )N P I I Af fP I

fN LA5 Rc h t 2 2 h (t) dfE A A1 2[ ]cfI

fI LA1 Rc h t 2 2 h (t) dfE I I1 2[ ]cfP

fP LA1 Rc h t 2 2 h (t) df. (33)E P P1 2[ ]cfS

Both the forcing and the response in each basin are
assumed to be periodic, as before:

ivtT 5 T e ,N 0

ivth 5 h 1 Ae ,A 0

ivth 5 h 1 Ie , andI 0

ivth 5 h 1 Pe , (34)P 0

where A, I, and P are the amplitudes of variability in
he in the Atlantic, Indian, and Pacific, respectively. After
dividing through by eivt, Eqs. (31)–(33) become

fNg9H
(2ivL )/cP(P 2 I ) 5 P Rc[1 2 e ] df, (35)Ef P fP

fNg9H
(2ivL )/cI(I 2 A) 5 I Rc[1 2 e ] df, and (36)Ef I fI

g9H g9H
T 1 (P 2 I) 1 (I 2 A)0 f fP I

fN

(2ivL )/cA5 2A Rc[1 2 e ] dfE
fI

fI

(2ivL )/cA2 I Rc[1 2 e ] dfE
fP

fP

(2ivL )/e.A2 P Rc[1 2 e ] df. (37)E
fS

a. Basin factors

Equations (35) and (36) can be rearranged to give the
ratio of the eastern boundary responses in adjacent ba-
sins:

g9H
P fP5 and (38)

fNI g9H
(2ivL )/cP2 Rc[1 2 e ] dfEf P fP

g9H
I f I5 . (39)

fNA g9H
(2ivL )/cI2 Rc[1 2 e ] dfEf I fI

The ratio of the response in the Pacific to that in the
Atlantic, P/A, can be found by multiplying these two
expressions together. To calculate these ratios for the
real global ocean, all that is required is the width of
each basin as a function of latitude and the integral
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FIG. 13. (a) Relative amplitude of the variability in thermocline
thickness on the eastern boundary of adjacent ocean basins. (b) Phase
lag, in years.

limits fS 5 568S, fP 5 458S, f I 5 368S, and fN 5
658N.
Figure 13 shows the amplitude in each of the three

cases (the basin factor introduced in section 3a) and the
associated phase lag. In section 3 a wide range of fre-
quencies was considered, but here attention is restricted
to decadal and multidecadal frequencies.
All three basin factors increase as frequency de-

creases. For a forcing in the North Atlantic with a
period of 40 yr, 50% of the variability in thermocline
thickness is transmitted to the Indian Ocean, and only
8% to the Pacific. This justifies the assumption, made

in section 2 and in Johnson and Marshall (2002a,b) for
the single Atlantic basin case, that layer thickness hSW
in the southwest corner of the domain is constant, be-
cause signals propagating back into the Atlantic from
the Pacific at decadal frequencies are small. The basin
factors all asymptotically approach 1, consistent with
a steady-state solution of uniform shallowing through-
out the domain. After 155 yr | I/A | . 0.9, and | P/A |
. 0.9 after 642 yr. These time scales suggest that ad-
justment times for the global ocean basins are additive
rather than multiplicative; that is, despite being subject
to equatorial ‘‘buffers’’ in three ocean basins, the ad-
justment of the Pacific by Rossby waves from the east-
ern boundary occurs over centuries rather than mil-
lenia. The phase lag of the variability in the Pacific
behind that in the Atlantic is approximately 30% of
the forcing period over the range of frequencies shown
here.
Huang et al. (2000) consider the steady-state change

in the global thermocline after adjustment to a sudden
change in the prescribed high-latitude Atlantic forcing.
They find that the thermocline in the Indian basin ad-
justs by 83% of the change in the Atlantic and that the
Pacific thermocline undergoes an adjustment of 44%.
Their experiment is not directly comparable with the
results reported here because of 1) their emphasis on
the steady-state solution (the time-dependent adjust-
ment is not considered), 2) the distributed source that
they apply as a forcing, and 3) their inclusion of a
simple Rayleigh reduction term to represent the dia-
batic adjustment, which is not included in our model.
However, their steady-state results are qualitatively
similar to the change in thermocline thickness found
here, at the multidecadal frequencies comparable to
their damping time scale. Huang et al. (2000) also find
that, when friction is increased, thermocline pertur-
bations become increasingly confined to the Atlantic
Ocean. This result is consistent with the model sug-
gested here, because adjustment in other basins relies
upon Kelvin wave propagation, which is subject to
dissipation.

b. Meridional overturning anomalies

Integrating Eq. (30) from the southern extent of each
basin up to a latitude f leads to a set of expressions for
the zonally integrated transport at any point in the global
ocean:

fg9H
ivt (2ivL )/cPT (f) 5 e (P 2 I ) 2 P Rc[1 2 e ] df , (40)P E5 6f P fP

fg9H
ivt (2ivL )/cIT (f) 5 e (I 2 A) 2 I Rc[1 2 e ] df , (41)I E5 6f I fI
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fg9H g9H
ivt (2ivL )/cAT (f , f , f ) 5 2e (P 2 I ) 1 (I 2 A) 1 A Rc[1 2 e ] dfA I N E5 f fP I fI

f fI P

(2ivL )/c (2ivL )/cA A1 I Rc[1 2 e ] df 1 P Rc[1 2 e ] df , (42)E E 6
f fP S

f fPg9H
ivt (2ivL )/c (2ivL )/cA AT (f , f , f ) 5 2e (P 2 I ) 1 I Rc[1 2 e ] df 1 P Rc[1 2 e ] df , and (43)A P I E E5 6f P f fP S

f

ivt (2ivL )/cAT (f , f , f ) 5 2Pe Rc[1 2 e ] df. (44)A S P E
fS

The first three of these balances can be simplified con-
siderably using Eqs. (35)–(37) to become

fN

ivt (2ivL )/cPT (f) 5 Pe Rc[1 2 e ] df, (45)P E
f

fN

ivt (2ivL )/cIT (f) 5 Ie Rc[1 2 e ] df, and (46)I E
f

T (f , f , f )A I N

fN

ivt (2ivL )/c ivtA5 Ae Rc[1 2 e ] df 1 T e . (47)E 0
f

The process of dividing Eqs. (43)–(47) by TN 5 T0eivt,
substituting for T0 using Eq. (37), and making use of
the basin factors in Eqs. (38) and (39) allows the ratios
TA/TN, TI/TN, and TP/TN to be determined.
The theoretical analysis above relies only upon the

fact that

f , f , f , f .S P I N (48)

It would apply even if one or more of the connections
between ocean basins was in the Northern Hemisphere
rather than in the Southern Hemisphere. To calculate
the amplitude of thermohaline overturning anomalies in
a realistic global ocean geometry requires only the width
of each basin as a function of latitude and the values
of fN, fI, fP, and fS. Figure 14 shows the modulus
| T/TN | for each basin.
In the Atlantic itself the reduction in amplitude of

overturning anomalies is almost identical to the single-
basin case. This suggests, again, that fixing the surface-
layer thickness hSW in the southwest corner of the do-
main is a reasonable approximation if we are only in-
terested in variability within the Atlantic sector. Region
4, between 368 and 458S, demonstrates the fast adjust-
ment that occurs in parts of the basin that do not cross
the equator. It is bounded by geostrophic flows to the
north and south and exhibits almost no variation in the
amplitude of the transport signal with latitude. In the
North Pacific and Indian basins, high-frequency signals

are greatly reduced in amplitude—the low-pass filtering
of the equator at work. At low frequencies the amplitude
of anomalies in these basins varies approximately lin-
early with latitude, falling to zero on the closed northern
boundary, because the storage term dominates. In the
Pacific case, the amplitude of variability becomes linear
at a much lower frequency—this basin is both wider
and extends farther to the north, increasing the time
taken for Rossby waves to cross the basin.
Only a tiny proportion of variability in the high-lat-

itude North Atlantic is transmitted to the Southern
Ocean (see region 5), which suggests that, on decadal
and multidecadal time scales, variability in North At-
lantic deep-water formation and in Southern Ocean pro-
cesses is unlikely to be connected, unless it is through
large-scale atmospheric forcing. However, the Southern
Ocean does include sensitive convective regions, and it
is possible that even a small signal could change the
stratification around Antarctica by enough to affect
deep-water formation and, hence, the local overturning
circulation.
A weak resonance is apparent in the Southern Ocean

as well as in the North Atlantic. The Rossby wave prop-
agation time along what is almost an entire latitude cir-
cle in the Southern Ocean is approximately 70 yr. If our
simple global model were to be forced on its southern
boundary, where in the real ocean there is considerable
variability, this resonance could play an important role.
Figure 15 shows the length of time in years by which

the signal lags the forcing. In the South Atlantic it ap-
pears to vary almost linearly with both forcing period
and latitude for the frequency range shown here. It
agrees well with the single-basin case discussed in sec-
tion 2. The phase lag in the Indian basin exhibits a
maximum of about 2 yr (at all latitudes) for variability
with a period of 35 yr. In the Pacific, phase lags are
much longer. They continue to increase as the frequency
decreases, and they are largest at about 408N, the latitude
at which Rossby wave propagation time reaches a max-
imum. (North of 408N, although the Rossby wave speed
continues to decrease, the narrowing in basin width
dominates, and the transit time falls.) The phase lag in
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FIG. 14. Amplitude of the variability in zonally integrated meridional transport in each basin
as a fraction of the prescribed transport variability on the northern boundary of the Atlantic.
Each panel corresponds to a numbered region in the schematic (top right). The dashed lines in
the Atlantic panel illustrate the single-basin case, in which layer thickness (hSW) in the southwest
corner of the domain is fixed.

the interval fS , f , fP is not shown because here
the amplitude of overturning anomalies is so small that
the phase is practically meaningless.
We might expect the phase lag between basins in the

real ocean to be somewhat longer than shown here, as
a result of the time scale separation that is implicit in
the theory. Kelvin waves propagating along boundaries
and the equator are assumed to travel at infinite speeds,
whereas in reality it will take a Kelvin wave about a
year to reach the eastern boundary of the Indian Ocean
from the North Atlantic forcing region and a further
year to reach the eastern boundary of the Pacific.
Throughout the above, the Indian Ocean has been

treated as a single basin. As discussed in section 3, its

northern part in fact consists of two subbasins, the Ara-
bian Sea and the Bay of Bengal, separated by the Indian
peninsula, which extends to about 58N. A similar anal-
ysis to that carried out in this section can be conducted
that distinguishes the Arabian Sea and the Bay of Ben-
gal, treating the global ocean as four basins instead of
three. The resulting equations are considerably more
complex and are not shown here, but the basin factors
and the variability in zonally integrated transport in each
basin are virtually indistinguishable (not shown). This
result is as we might expect, because, at all but the
highest frequencies, the basin factor for the Bay of Ben-
gal is equal to 1 (Fig. 11). It justifies our treatment of
the Indian Ocean as a single basin, with its width in the
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FIG. 15. Phase lag, in years, of the variability in
meridional transport with respect to the forcing in
the North Atlantic. Each panel corresponds to a
numbered region in the schematic (top right).

northern portion equal to the width of the Arabian Sea
plus the width of the Bay of Bengal.
The theory demonstrates, then, that at decadal fre-

quencies variability in deep-water formation in the high-
latitude North Atlantic has only a small effect on me-
ridional transport in the Indian and Pacific Oceans. This
is a consequence of the equatorial buffers that exist in
each basin.

c. Numerical validation

To ensure that the theory developed here for ther-
mohaline overturning anomalies in multiple basins has
not diverged significantly from the physical model on
which it is based, the shallow-water model described in
Johnson and Marshall (2002a) is run in a realistic global
ocean domain, at a resolution of 18. This is an important
check on the mechanisms involved, because, unlike the
theory, the fully nonlinear numerical model explicitly
represents the fast Kelvin wave response in each basin.

Although Kelvin waves are not properly resolved at a
resolution of 18, on a C grid their propagation speed is
unaffected (Hsieh et al. 1983). The model, initially at
rest, is forced by a sinusoidal volume flux on the north-
ern boundary of the Atlantic. The forcing has a period
of 20 yr and an amplitude of 2 Sv (1 Sv [ 106 m3 s21).
The northern boundaries of the Indian and Pacific basins
are closed. A periodic boundary condition is applied in
the Southern Ocean so that the model includes a cir-
cumpolar channel extending from 568 to 658S, with a
solid boundary to its south. Elsewhere, the ocean ge-
ometry is defined by the 500-m isobath and is identical
to that in Fig. 12. No-slip boundary conditions are im-
posed, and unresolved subgrid-scale processes are pa-
rameterized by harmonic diffusion terms in the mo-
mentum equations.
Figure 16 shows the average surface-layer thickness

on the eastern boundary of the Atlantic, Indian, and
Pacific basins over a 150-yr model run. The amplitude
of the variability is in the ratio 1:0.28:0.03. This ratio
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FIG. 16. Average surface-layer thickness on the eastern boundary
of the Atlantic, Indian, and Pacific basins, diagnosed from a 18 global
shallow-water model that is forced sinusoidally on the northern
boundary of the Atlantic with a period of 20 yr and an amplitude of
2 Sv.

agrees well with the basin factors shown in Fig. 13a for
a forcing period of 20 yr. In Fig. 16 the signal in the
Indian basin lags that in the Atlantic by 3.2 yr, and that
in the Pacific lags by a further 3 yr. These phase lags
are slightly longer than those predicted by the theory
(and shown in Fig. 13b), as we might expect from a
numerical model that explicitly represents Kelvin
waves.
In Fig. 17, the zonally integrated meridional transport

in each basin is plotted as a function of latitude and
time for 60 yr of the model run. The amplitude of the
variability agrees very well with the theory in all three
ocean basins. Approximately 25% of the variability in
forcing is transmitted to the South Atlantic at 308S, with
only 5% and 2.5% reaching the equator in the Indian
and Pacific Oceans, respectively. The phase lag through-
out is again somewhat larger than theory predicts (by
;1 yr). At all latitudes in the Indian Ocean the signal
lags the forcing by about 3 yr; in the Pacific the lag is
almost 7 yr on the southern boundary, increasing to a
maximum of 10 yr in the northern midlatitudes. (Note
that a northward transport anomaly in the Atlantic Ocean
becomes a southward anomaly in the Indian and Pacific
Oceans).
For overturning anomalies with a period of 20 yr,

then, the numerical modeling results appear to be de-
scribed well by the theory. Figure 18 demonstrates that
this is also true over a broader range of frequencies. It
shows the basin factors diagnosed from further shallow-
water model experiments in which the forcing has a
period of 10, 30, and 40 yr. The theoretical curves are
also plotted, and agreement is good.

d. Indonesian Throughflow
In the above analysis, it has been assumed that the

fast Kelvin wave connection between the Indian and
Pacific basins occurs around the southern edge of Aus-

tralia. This interpretation is most likely appropriate for
the deep limb of the MOC, but for the surface limb it
is necessary to consider the possibility that Kelvin
waves traveling along the eastern boundary of the Indian
Ocean are transmitted to the Pacific via the Indonesian
Throughflow region, much closer to the equator at 98S.
With the Indonesian Throughflow open, Australia

must be treated as a large island. Rossby waves im-
pinging on it are assumed to generate coastal Kelvin
waves and then to reradiate Rossby waves again from
its western side. In contrast to section 4b,

f , f , f , f ,S I P N (49)

and so it now is helpful to view the Pacific Ocean as a
closed basin, with both the Indian and Atlantic Oceans
as ‘‘L-shaped’’ basins extending to the east. The re-
sulting analytical expressions are more complicated, al-
though the philosophy is the same.
A larger proportion of the variability reaches the Pa-

cific at all frequencies with the Indonesian Throughflow
open (not shown). This is due to the fact that Kelvin
waves from the Indian Ocean arrive in the Pacific much
closer to the equator. They therefore travel a shorter
distance equatorward along the western boundary, and
their amplitude is not as reduced (see Fig. 4). The effect
of opening the Indonesian Throughflow on other ocean
basins is small. Southern Ocean meridional transport
varies by slightly more, and variability in the Indian
basin now reaches a maximum for a forcing period of
8 yr. The Atlantic is barely affected at all. These results
support those of Huang et al. (2000) who find that when
the Indonesian Throughflow is open the steady-state
thermocline displacement is larger in the Pacific and
reduced in the Indian Ocean. However, because the deep
modal expansion assumed throughout this study is not
suitable for capturing the dynamics of shallow seas and
flow across sills, the conclusions drawn here should be
viewed as preliminary.

5. Concluding remarks

In this paper we have developed a linear theory for
the propagation of meridional transport anomalies in a
reduced-gravity ocean, consisting of multiple connected
basins. Our key findings are the following.

• The equator acts as a low-pass filter to MOC anom-
alies.

• As a consequence, on decadal and shorter time scales,
anomalies in MOC are confined to the hemispheric
basin in which they are generated. Although fast
Kelvin wave propagation along boundaries and the
equator allows for the possibility of rapid communi-
cation between ocean basins, the amplitude of the re-
sponse in surface-layer thickness and in the overturn-
ing circulation itself is small beyond the original basin.

• Damped basin modes are resonated by prescribed
MOC anomalies, but only very weakly.
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FIG. 17. Zonally integrated meridional transport in each basin as a function of latitude and
time, diagnosed from a 18 global shallow-water model that is forced sinusoidally on the northern
boundary of the Atlantic with a period of 20 yr and an amplitude of 2 Sv. Each panel corresponds
to a numbered region in the schematic (top right).

• The results of full numerical integrations of the re-
duced-gravity equations can be reproduced, to excel-
lent approximation, by a linear analytical theory that
involves just one variable for each ocean basin.
We have found that MOC anomalies on interannual

to decadal time scales are confined to the basin in which
they are generated, but it is important to emphasize that
they may still have a global impact through atmospheric
teleconnections. For example, in a recent climate model
experiment in which the North Atlantic MOC is shut
down abruptly by an impulsive salinity forcing applied
at high latitudes (Dong and Sutton 2002), the equatorial
ocean circulation responds within a few months through
the passage of a Kelvin wave. Over the next two years,

an SST dipole anomaly is established across the tropical
Atlantic, with cooling in the North Atlantic. This SST
dipole anomaly, in turn, leads to a southward shift of
the ITCZ, inducing a global atmospheric response with-
in a few years. These global changes in atmospheric
circulation may themselves induce further MOC anom-
alies in remote basins.
We regard the calculation presented here as a prelim-

inary step toward a more detailed understanding of the
teleconnections of MOC anomalies. There are many
processes that have been neglected in this study but may
play an important role in the ocean. For example, back-
ground mean flows will Doppler shift the higher baro-
clinic modes (e.g., Liu 1999; Killworth and Blundell
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FIG. 18. Basin factors diagnosed from four global shallow-water
model experiments, with forcing periods of 10, 20, 30, and 40 yr.
The plotted curves show the theoretical predictions.

2001), thus modifying the details of the adjustment for
these higher modes. Variable bottom topography may
modify the propagation of MOC anomalies in several
respects, including allowing the boundary adjustment
to occur through coastal-trapped waves rather than
Kelvin waves (Huthnance 1978), interactions between
different baroclinic modes (if indeed such a modal de-
composition makes sense; see Hallberg 1997), excita-
tion of large-amplitude barotropic recirculations through
interactions between the stratification and the bottom
topography (the so-called JEBAR effect; e.g., Great-
batch et al. 1991; Häkkinen 2001; Gerdes and Köberle
1995), and possibly a blurring of the distinction between
western and eastern boundaries. [However, we note that
the calculations of Karcher (1997), employing an in-
verted shallow-water model over a realistic North At-
lantic bottom topography, are essentially consistent with
the adjustment mechanisms at the heart of the present
theory.] Various eastern boundary processes such as
coastal upwelling, surface mixing along the eastern
boundary, and the Mediterranean outflow may also in-
fluence the poleward propagation of Kelvin waves and,
hence, the propagation of MOC anomalies. Some mod-
els suggest that advection may be important in the ad-
justment process (e.g., Gerdes and Köberle 1995), and
we note that advective effects will not be properly rep-
resented in the model used here because of the single
active layer and the lack of a background mean flow.
These issues will all require further study. Nevertheless
we believe that many qualitative features of the theory
we have developed for the propagation of MOC anom-
alies are likely to carry over to the ocean, even if the
details of the theory may need modification.
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APPENDIX

Analytical Solution on a b Plane

Under certain assumptions, Eq. (9) can be solved an-
alytically. Aside from intellectual curiosity, this solution
is useful in establishing the validity of the presented
results and in ensuring that there are no unforeseen nu-
merical effects.
As a complex fraction, Eq. (9) can be expressed in

the form

T(f, v) p 1 iq
5 , (A1)

T r 1 isN

where
fg9H vL

p(f, v) 5 2 Rc 1 2 cos df, (A2)E 1 2[ ]f cS fS

f vL
q(f, v) 5 2 Rc sin df, (A3)E 1 2cfS

fNg9H vL
r(v) 5 2 Rc 1 2 cos df, (A4)E 1 2[ ]f cS fS

and
fN vL

s(v) 5 2 Rc sin df. (A5)E 1 2cfS

Obtaining an analytical solution thus reduces to eval-
uating the two integrals:

f vL
c cos df and (A6)E 1 2cfS

f vL
c sin df. (A7)E 1 2cfS

We now assume that the basin width L is constant, and
we adopt a b plane such that the Rossby wave speed is
inversely proportional to the square of the latitude:

k
c 5 , (A8)

2f

where k 5 g9H/bR2 and b is the meridional gradient
in the Coriolis parameter (now taken to be constant with
latitude). Equations (A6) and (A7) can then be inte-
grated by parts to give

f k vL
2cos f dfE 2 1 2f kfS

f fk vL vL
2 25 2 cos f 2 2vL sin f df andE1 2 1 2[ ]f k kf fS S
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FIG. A1. Analytical solution of Eq. (9) for a constant basin width
L and a Rossby wave speed given by k/f2. (a) Modulus | T/TN | ,
which gives the amplitude of the variability in meridional transport
as a fraction of the prescribed variability on the northern boundary.
(b) Phase lag arg(T/TN), in years. This figure is not directly com-
parable with Fig. 1 but is encouragingly similar.

f k vL
2sin f dfE 2 1 2f kfS

f fk vL vL
2 25 2 sin f 1 2vL cos f df.E1 2 1 2[ ]f k kf fS S

The second term on the right-hand side in each case
takes the form of a Fresnel integral. Fresnel integrals
are defined as

x p
2C(x) 5 cos t dt andE 1 220

x p
2S(x) 5 sin t dt. (A9)E 1 220

Under the appropriate transformation

2vL
t 5 f, (A10)! pk

p and q become

f
g9H k vL

2p 5 1 R 1 2 cos f5 1 26[ ]f f kS fS

x xS p p
2 22 œ2vLpkR sin t dt 6 sin t dtE E1 2 1 2[ ]2 20 0

(A11)
and

f
k vL

2q 5 R sin f1 2[ ]f k fS

x xS p p
2 22 œ2vLpkR cos t dt 6 cos t dt ,E E1 2 1 2[ ]2 20 0

(A12)

where x 5 t 5 f at the latitude of interestœ(2vL)/(pk)
f, and xS is the value of t on the southern boundary of
the domain. Note that, because Fresnel integrals are de-
fined from 0 to positive x, in our case the integrals must
be split into two parts, each defined from the equator
poleward. The ‘‘plus’’ applies if the latitude of interest
is in the Northern Hemisphere, and the ‘‘minus’’ applies
if it is in the Southern Hemisphere. Similar expressions
follow for r and s.
Figure A1 shows the amplitude of variability | T/TN |

and the phase lag arg(T/TN) calculated using the ana-
lytical solution, with the parameters L 5 5.5 3 106 m
and k 5 0.01 m s21. Although this figure is not directly
comparable with the numerical solution in Fig. 1 be-
cause of the assumptions of a constant basin width and
a Rossby wave speed given by k/f2, the two figures
are encouragingly similar. The resonance effects toward
the north of the domain, noted already in the numerical
solution, are perhaps not surprising given the oscillatory
nature of the Fresnel integrals.
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