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THE INFLUENCE OF THE EARTH’S ROTATION UPON THE RELATIVE MOTION
OF BODIES NEAR ITS SURFACE.

BY W. FERREL.

Ir a body upon or near the earth’s surface receive a motion
relatively to the earth, either by means of a single impulse
or by a continually acting force, this motion, combined with
the rotatory motion of the earth, gives rise to a deflecting
force relatively to the earth, which causes a different relative
motion from that of a body acted upon in a similar manner
upon the earth at rest. It is proposed, in this paper, to exa-
mine a few of the effects produced by this deflecting force.

Let =, y and z be three rectangular codrdinates having
their origin at the center of the earth, z corresponding with
the axis; and P, Q and R be the forces which act respec-
tively in the directions of these ordinates. We shall then
have

Let » = the distance of the body from the earth’s center
0 — its polar distance
® = its longitude [ printed s in the fractions]
nt = the rotatory motion of the earth.

‘We shall then have

T==rcosf; y =rsind cos (nt-+w); z = r sin4f sin (nf +=)

[2]
Substituting the second differential of the value of z in the
first of equations [1], we get

dr df
dt " di

de? . . ddf
—reosﬁd—t—i—-rsmﬁ— = P

dt?
[3]
Substituting in like manner the second differentials of y and

ddr .
cosfl v i 2 sinf

ddz ddy ddz z in the last two of equations [2], and multiplying the former
g =t g Q; = R. [1] by cos(nt+=) and the latter by sin (nf+=), and adding, we
get
. o ddi dr d . ,d6? . 2 .
sin dt:+ 2 cosﬁé -Jf——r smﬂd—g +rcosﬁ(%2—-—r smﬁ(n—}—j—?) = cos (nt+w) Q + sin (né+=) R 4]

Multiplying equation [3] by cos6 and .equation [4] by
sinf, and adding, we get the first of equations [5]. Multiply-
ing the former by sin # and the latter by cos#, and subtract-
ing, we get the second of equations [5]. Again, after sub-

Zti: —_r 3—;’;—2 — 7 8in%f (n-}—(;—;)g =
ddp dr

—_— =

dt

stituting the second differentials of y and 2, as stated above,
in the last two of equations [1], if we multiply the former by

sin (n¢+4-m) and the latter by cos (nt-+-w), and subtract, we get
the last one of the following equations.

008§ P - sin 6 cos (n¢+w) Q 4 sin 6 sin (nt+=) R ;

d . .
7 Qd—t . d_t0+ r sinf cos (n-}—%)z = sinf P — cos 8 cos (nf4-w) Q — cos f sin (nt+w) R ; 5]

. ddr . dn\d dr\d .
—-rsmﬁl-itT —2s1n0<n+8;~z) T—2rcosﬁ<n+£>at2 = (sinnt4-n) Q — cos (nt+ =) R.

The preceding equations may be applied to the relative
motions of a body acted upon by any forces whatever. We
shall first apply them to the motions of projectiles; and in
the application, we shall neglect all quantities of the order
of the earth’s ellipticity ; and, also, as the range of motion
is generally small, all quantities of the order of the range of
motion compared with the earth’s radius. We shall also, in
integrating, consider sin# and cosf constant quantities, We

shall then have P — — cosfigr,

Q = —sing cos (nt-4w) gr?,
and R = —sinf sin (nt4-=) gr—,
in which g = the force of gravity at the distance of unity.
Substituting these values in the righthand members of equa-
tions [5], the first becomes — gr~2, and the other two become

d
0. As Z—? and l—i—? are generally small in comparison with =,
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and very nearly constant, we shall, in integrating, use the
initia] values of those quantities. We may hence deduce from
equations [5],

o= ut—Far —t2+swln6§n,+w) 7

a uv v cos § (0 4w

= ot—Up g Epy O, [6]
_ u . n+w ot — cosﬁ(n’—{—w)v

r = wt— () T B

in which

o« — fdr — the vertical motion in the time ¢

8 = fr'df = the linear motion in latitude

y = Jfr'sinf dw = the linear motion in longitude
u — the initial vertical velocity

v = the initial velocity in latitude

w — the initial velocity in longitude

r’ = the value of r at the earth’s surface
n’ = r’/sinf n = the linear velocity of the earth’s surface
g = gr’®—r'sin’f n® — gravity at the earth’s surface,

diminished by the effect of the earth’s rotation.

0, they will be the
equations of motion upon the earth without a rotatory motion.
If we make 7’ infinite, we have the ordinary equations of
parabolic motion, in which the direetions of gravity are con-
sin § nf?
2r!

in the last term of the first equation, which depends upon the
earth’s rotation alone, we still have the equations of motion
in a parabola, but in this case the effect of gravity is dimi-

cos  n?

nished by that term; and retaining also Y %, contained

in the last term of the second equation, the direction of the
axis of the parabola is changed by an angle v, in which
sin § cos 4
tan 1{1 = m‘zﬂnz.
equations, in all ordinary cases of projectiles, is very small.
If a projectile were thrown 2 miles, in any direction, in 10
seconds, the effect of the earth’s rotation would deflect it from
that direction, in the latitude of Cambridge, about 8 feet to
the right. From the first of the preceding equations it may
be seen that if w is plus, that is, if the initial velocity is east,

If in these equations we put n’ —

sidered parallel. If we retain > t* = 4 sin® n, contained

The effect of n' in the preceding

the projectile will ascend a little higher than when it is minus,
or the initial velocity is west, all other circumstances being
the same.

If in equations [6] we put » and w = 0, they become the
equations of an ascending or descending body; and putting
also w = 0, they become the equations of a falling body
without any initial velocity. In the latter case they become

o = — §(gr'™*—r'sin’f n?) £ .
B = 3+'sinf cos e [71
y = }sinfng't
The second of the preceding equations shows that a body falls
south of the direction of the earth’s attraction. As the first
two equations evidently give the equation of a plumb-line, a
falling body cannot deviate to the north or south of it. If,
however, the falling body is resisted by the atmosphere, so
that « is not in proportion with £, they no longer give the
equation of a straight line, and the effect evidently is to throw
the body a little to the south of a plumb-line in the northern
hemisphere, but north of it in the southern. Hence the ob-
served deviation of falling bodies in the northern hemisphere
to the south of a plumb-line, is caused by the resistance of
the atmosphere together with the effect of the earth’s rotation.
The last of equations [7] shows that a falling body deviates
to the east of a plumb-line, and that it falls in a curve convex
2 -

3%60156) %60 — .00007292.
With this value of n, this equation gives about 7 inches for
the eastern deviation of a body, in the latitude of Cambridge,

in falling 10 seconds.
If a body be free to move upon the surface of the earth
regarded as a perfect sphere, its motions may be determined

towards it. The value of n —

. = .. d
by the last two of equations {5], the terms containing 7;2

vanishing. The term rsinf cosf n?, contained in the first
one of those equations, gives rise to the elliptical figure of
the earth. Since the resultant of this force and the earth’s
attraction is perpendicular to the elliptical surface, these forces
cannot affect the motions of a body upon this surface. Hence
we have for the motions of a body upon the elliptical surface
of the earth, using r for the radius of the earth regarded as
constant,

_r’ﬁ_a_+r smﬁcosﬁ<2n—i— )dﬂ = sinf P — cos 0 cos (nt+w) Q — cos § sin (nt+=) R

—r sinﬁ‘?n——Q r cosf <n+dt >d0 = sin(nt+w) @ — cos(nt+=) R

If the body be acted upon by a central force I at the
surface, and ¢ be the distance in arc of the body from the
center of force, and g the angle which o makes with the
meridian reckoned from the south towards the east, if we put
n = 0, we can change 6 to ¢ and @ to u in the preceding

[8]

equations, and thus deduce the equations of motion upon the
spherical surface of the earth without rotation. Since gravity
can produce no effect, the right member of the first equation
becomes F, and of the second equation 0. Hence they

become
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ddp . @ _ p From what precedes, it is evident that if a body is moving

Tgp T TSmecose d_t" - in any direction, there is a force, arising from the earth’s

. ddp o du (91 rotation, which always deflects it to the right in the northern

TRy = T 27 cos th dt hemisphere, and to the left in the southern. Since this deflecting

If to the right-hand members of these equations we add the
forces arising from the terms in the preceding equations con-
taining n, resolved in the direction of ¢ and perpendicular to
it, and expressed in terms of ¢ and p instead of  and =, we
shall have the equations of the motion of a body upon the
elliptical surface of the earth with a rotatory motion, dis-
regarding effects of the order of the earth’s ellipticity. The
eqnations will then become

. du
rgg@- = rsmgcosgdtoﬁ—-2rsmocosénUT——-F
. dd dy dg [101
rsmgaz“f :—2rcosgdt E-—Qrcoséndt

If in these equations we put F' = 0, they become the
equations of the motion of a body when it is not acted upon
by any superficial or tangential forces. If in these equations

we then put —Q — Oand @ig = 0, the last equation, regarding

d Lo .
cos § constant, gwes M = m, a constant, which is the initial

angular velocity. ThIS value, substituted in the first equation,
satisfies it when cosgm — — 2 cosf n. [11]

When ¢ is small, cosp may be put = 1. Hence when the
range of motion is so small in comparison with the radius of
the earth, that cosf may be regarded as a constant, these
equations may be satisfied with 2 motion in the circumference
of a circle of which the angular velocity m is uniform, and
equal {o twice the velocity of the earth’s rotation multiplied
by the sine of the latitude. Since the value of m is negative
in the northern hemisphere and positive in the southern, this
motion is from left to right in the former, and the contrary
in the latter.

Since ¢, when it is so small that cos g may be put = 1,
does not enter into the preceding equation, it depends for its
value upon the initial linear veloeity. Multiplying both
members of the preceding equation by rsing, and putting
rsing = ¢ = the linear distance, cosg =1, and........
r ging m — v = the initial linear velocity, we obtain

v = — 29 cosfn.

[12]

Hence if a body receives a motion in any direction, it de-
scribes the circumference of a circle, if the range of motion
is small, the radius of which is determined by the preceding
equation; and the time of its performing a revolution is
equal‘tq the time of the earth’s rotation divided by twice the
stne of the latitude.

The time of revolution, in the latitude of Cambridge, is

16™156™; and if v — 100 feet per second, the radius is 176.8
miles.

force must always be at right angles with the direction, it
cannot change v the linear velocity; and hence when the
range of motion is great, the radius of curvature is always
inversely as the sine of the latitude. The larger the range of
motion, the more it deviates from a circle; but the curve
must always be symmetrical on each side of the central me-
ridian, and the body return to the point from which it started.

Equations [10] may be applied to the motions of a pen-
dulum in which the oscillations are small in comparison with
its length. Putting ¢/ — the distance of the pendulum from

its vertical position of rest, we may put » sing=¢', cosg=1,
and F = Q’;_g', { being the length of the pendulum. These
equations then become
ddy _ _ &
I = dt" + 2 ¢ cosf n —5 5
ddy . d()’ dy do/ [
0 = 2 “ ——200s0nl—i—t

Putting » = 0, these equations become the differential equa-
tions of elliptic motion in which the body is attracted by a
central force which varies as the distance. Hence the general
motions of the pendulum, if the earth had no rotation, would
be an ellipse of which the center would be the vertical position
of the pendulum.

The preceding equations may be satisfied by the preceding
motion in an ellipse which gyrates with an angular velocity -
m. The equations of such a motion are

ddg __(du _ \* o8
=@ =7

dt?
g dd [14]
a == d =)
If in these equations we put m == — cos § n, they become

the same as equations [13], omifting the very small term
¢'m® in the first equation, which is of the order of the time of
an oscillation compared with the time of the earth’s rotation.
Hence the general motion of a pendulum is in an ellipse,
which, in the northern hemisphere, gyrates from left to right
in the time of the earth’s rotation divided by the sine of the
latitude. Since the value of m is positive in the southern
hemisphere, the gyration there is the contrary way.

The figure of this ellipse depends upon the initial value of

g‘? and the initial direction of motion. If the initial direction
dp g
is at right angles to ¢/, and such that F—m) —7= 0,

the pendulum describes the circumference of a circle. If the

initial value of % = m, equations [14] are reduced to
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ddg! __ _ og. ddp
e T T’ e

The former is the equation of a simple pendulum vibrating

[15]

in a right line; and the latter gives e — a constant, which

dt
is its initial value m or — cosf n. Hence, if the initial value
of Z—f = —cos0 n, the pendulum vibrates in a right line

which performs a gyration in the same time and in the same
manner ag the ellipse in the more general case. If the pen-
dulum receives no initial gyratory motion, its vibrations
deviate a little from a right line.

We have seen that a body cannot move in any direction
without being deflected to the right in the northern hemi-
sphere, and to the left in the southern. It cannot, therefore,;
be attracted or forced towards a center, without at the same
time receiving a gyratory motion around it. If, therefore, the
lower strata of atmosphere flow in from all sides towards a
center, on account of rarefaction produced by heat or any
other cause, it must at the same time receive a gyratory motion
around that center ; and this motion must be from right to
left in the northern hemisphere, and the contrary in the
southern. This completely accounts for the well established
fact that the motion of storms is gyratory; and that these
gyrations, in the northern hemisphere, are always from right
to left, and in the southern, from left to right.

The minimum amount of gyratory motion for a given amount
of motion towards the center may be deduced from the last
of equations [10]. Omitting the first term of the right mem-

ber, which is at first small, and putting » sinp Z—‘: — v = the

linear gyratory velocity, rsing = ¢’ — the linear distance,
considering sin g = ¢ and cosg == 1, we obtain

v = —2cosbn¢g (loge —logo”), [16].

in which ¢” is the value of ¢’ at the commencement of motion.

If we suppose the atmosphere, at the distance of 200 miles
on all sides from the center, to flow 50 miles towards it, the
preceding equation gives about 15 miles per hour for the
amount of gyratory motion it must receive in that time, in
the latitude of Cambridge, from the influence of the earth’s
rotation. A gyratory motion being once produced, it is very
rapidly accelerated, especially near the center, by the effect
of the termx which we have omitted, which then acquires- a
considerable value. This term is independent of the earth’s
rotation, and depends entirely upon the action of the central
force.

We hope to be able to give a complete application of these
principles to the theory of storms at some future time.

Cambridge, 1857 November 10.

ELEMENTS AND EPHEMERIS OF THE SIXTH COMET OF 1857.
BY JAMES C. WATSON.

Tur unfavorable state of the weather during the last two
weeks having entirely prevented later observations of the new
comet, discovered by VAN ArsparLE Nov. 10, I have com-
puted, from observations made at Washington, Nov. 12, 15
and 17 (for which I am indebted to the kindness of Mr.
FERGUSON), the following elements :

T = 1857 Nov. 16.985192 Washington M. T.
—  45°58 177 .
5 — 135 0 367 } Mean Equinox 1857.0
1 — 37 44 188
logg =  0.004004

Motion retrograde.

The middle place is represented in the following manner :

Comp. — Obs.
Ao eosd — —8'2, 46 = —49".7

These elements give the following

Ephemeris for Washington Mean Midnight.

1857 & o Y & log A

Dee. 2 20" 1712 +17°21'.9 9.9988
3 4 54 16 9.7
4 8 22 15 1.3
5 11 37 18 56.6
6 14 41 12 554 0.0477
7 17 34 11 574
8 20 18 11 22
9 22 53 10 9.9
10 25 20 9 20.3 0.0928
11 27 40 8 33.1
12 29 53 7 48.2
13 32 0 7 54
14 34 2 6 24.6 0.1341
15 35 59 5 4577
16 37 51 5 86
17 39 39 4 33.1 .
18 41 23 3 59.2 0.1712
19 13 4 3 268
20 44 42 2 557
21 - 20 46 17 + 2 259

Ann-Arbor, 1857 Dec. 3. JAMES C. WATSON.

© American Astronomical Society « Provided by the NASA Astrophysics Data System



