THE

MOTIONS OF FLUIDS AND SOLIDS

RELATIVE TO

THE EARTH’S SURFACE.

INTRODUCTION.

SoME of the results contained in the following pages were pub-
lished about two years ago, in an essay in the Nashville Journal of
Medicine and Surgery, edited by Professor W. K. Bowwive, M. D,
of Nashville, Tennessee. A small edition was also published in
pamphlet form, and distributed by the Smithsonian Institution
and myself amongst various scientific men, libraries, and scientific
associations, both in this country and in Europe. In that essay
it was attempted to shéw that the depression of the atmosphere
at the poles and the equator, and the accumulation or bulging
at the tropics, as indicated by barometric pressure, the gyratory
motion of storms from right to left in the northern hemisphere, and
the contrary way in the southern, and certain motions of oceanic
currents, are necessary consequences of the modifying forces arising
from the earth’s rotation on its axis, and also that the observed
flowing of the lower strata of the atmosphere in the middle lati-
tudes towards the poles, contrary to the ordinary theory of the trade
winds, is caused by the greater pressure of this accumulation of
atmosphere at the tropics. It is believed that that essay was the first
attempt to account for those remarkable phenomena by means of
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the modifying influence of the earth’s rotation, and that 1t furnishes
the only satisfactory explanation of them which has yet been given.

In that essay it was inconvenient to use any mathematical
formulee, and consequently the results merely of only a partial and
imperfect investigation of the subject were given; but it is thought
that on account of the importance of the subject, it deserves a more
thorough investigation. It is proposed, therefore, in the following
pages, to go into a complete analytical investigation of the general
motions of fluids surrounding the earth, and of projectiles at its sur-
face, arising from disturbing forces and the earth’s attraction, com-
bined with the modifying forces arising from its rotation on its axis.
We shall accordingly, in the first section, investigate the general
equations of motion relative to the earth’s surface, applicable to both
fluids and solids, and in the subsequent sections treat, first of the
motions and figure of the whole or a part of a fluid surrounding the
earth, upon the hypothesis that its motions are not resisted by the
earth’s surface, and then apply the results thus obtained to the ex-
planation of the general motions of the atmosphere, the motions of
storms or hurricanes, and the currents of the ocean. We shall also
give a complete but concise treatise on projectiles, taking into ac-
count the effeet of the earth’s rotation. .

We hope to be able in this investigation to give a satisfactory
explanation of all the general motions of the atmosphere and of the
ocean ; the cause of the greater pressure aof the atmosphere near the
tropics than at the equator and the poles, and of the greater press-
ure generally in the northern hemisphere than in the southern; to
account for the motion of all great storms in both hemispheres
from the equator towards the poles in parabolic paths, and to com-
pletely establish their gyratory character; none of which phenomena
have ever been satisfactorily accounted for by any of the usual
theories, which do not take inte account the influence of the éarth’s
eabiof | ¢ T e e i
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SECTION I.

OF THE GENERAL EQUATIONS OF MOTION RELATIVE TO THE EARTH'S SURFACE.

1. Let z,y, and z be three rectangular cosrdinates, having their
origin at the centre of the earth, z corresponding with the axis of
rotation. Also let

L2 be the potential of all the attractive forces of the earth,
P the pressure of the fluid, and
k 1ts density.

Then Zz D, 22, & D, £2, and k D, £2 are the forces for a unit of
volume, arising from the earth’s attraction, and D, P, D, P, and
D, P, those arising from the pressure of the fluid, in the directions
respectively of #,y, and z; and we have for the equations of the
absolute motions of the fluid, regarding the centre of the earth at

rest,
Do+ D2 41D, P=0,

(1) D?f/"}‘py‘!z—*_%DyP:OJ
D4 D2 4D, P=0.

Putting P = 0, they are the equations of a projectile.
2. Let r be the distance from the earth’s centre,
8, the polar distance,
¢, the 10ngitude; and
n, the angular velocity of the earth’s rotation.
Then we have
z =rcosé,
(2) y=rsiné cos (nf 4 ¢) = rsiné cosw,
‘ z=rsin 0 sin (nf 4 ¢) =rsind sin o,
by putting for brevity nf 4 ¢ == w.
The position of the ordinates y and 2, and alse the'origin of the
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sin (¢ + ¢) vanish in the plane of z, y.

motions of the fluid or projectile relative to the earth’s surface.
3. Taking the first derivatives of (2) with regard to £, we get
D,z =cosd D,r —rsinédD,4,
D,y =sindcosw D,r -+ rcosé cosw D8—rsindsinow D, o,
D,z =sindsinow D,r + rcosd sinw D, rsindcosw D,wv,
Taking the second derivatives, we get
Dix=cosd D2r—2sind D,r D,8—rcoséd (D, 0} — rsind D?4,

(3)  rcosdcosw Di8—rsindcosw(D,82—27rcosésinw D,w D,é
‘ — rsindsinw D? 9 — rsin 8 cos 0 (D, w)?

+ rsindcosw Dig — rsindsinw (D, w)
Since #, y, and z are functions of », §, and ¢, we must put
D.R2=DL.Dr+D2.D,é4 D, 2. D9,
(4) D,2=D2.D,r+ D,2.D6++D,2.D,9p,
D.2=DR2.D,r+ Dy2.D.64 D, 2.D,9.

Now we have

A=+ 2,
P
tan ¢ = Y EZ,
tan w — f
Hence,
Dzr::;: cos d,
D,r =% —sin 6 cos w,
r
D,r =% = sin 6 sin w,
r

time ¢, being entirely arbitrary, they must be so taken as to make

Using these values of #,y, and z in equations (1), we obtain
equations in which the first derivatives of », 8, and ¢ represent the

Dy —=sin b cosw D? r+2cosd cosw D,r D,6 —2sindsinew D, 0w D, r

D?z = sin 8sin w D37+ 2cosdsinw D,y D0 4 25sin é cosw D, 0 D,r
~- r cosdsinw D? § —rsin & sin w (D,8) -+ 27 cosé cos w Dy D, 8
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D= _VYytre__ _ cinf
r r
. zy __cosfcosw
',Dye‘—".TQV:l/T:F—_zE——: r b
D, 6— 2\/x2z+ 2:cosﬁrsinco,
r y <
-qu):()y
—z sin e
D,g = FL 2 rsng’
_ Yy __ cose
ngo—yz—}—‘z"_—rsinﬁ'

By means of these equations, equations (4) become

D, {2 =D, R cos¢ — D, 237,
() D,82 = D, 2sindcosw -+ D, 2 CBE?.:BE? —_ 1)¢ O sine

7sin 6"

. . 0 sin €os
D.2 =D Qsindsino | D2 =220 L p o

r r sin 0 '
In the same manner we obtain
D, P =D, Pcosé — D, P ™I,

(6) D,P = D,Psinbcosw + D, P cosﬁrcosm_D?P sine

rsin @’

D.P =D, Psinésino + D, p2IRey p p oo

r rsing”

Substituting the values of the first members of equations (3), (5),
and (6) in equations (1), and multiplying them respectively by
cosd, siné cosw, sin d sinw, and adding, we obtain the first of the
following equations.  Again, multiplying them respectively by
7siné,—rcosdcosw, and — r cos d sin o , and adding, we obtain the
second of those equations. Finally, multiplying the last two re-
spectively by 7 sin é sin w, and —7 sin 8 cos o, and adding, we get the
last of the following equations: — '

1D, P=— Dy 4 r(D,07 1 rsintd (u+ D,0) D,
+ ra?sind — D, 02,
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() 1Dy P =—r"D20—2r Dy D,6 +r*sindcosd (n 4 D,w) D, g
+ 2 uPsindcosd — D, L2,
2D,P=—si?0 D2 g — 27 si*d D, D,r

— 27%sindecos 0 D,w D, 4 ~— D, 12,

In these equations D, P, ; D, P, and ?Eil?B D, P represent the

forces arising from the pressure in the directions respectively of
r, 6, and ¢.

4. If N be the normal distance to the surface of the earth, or
to any level surface, and the forces in the first two of the preceding
equations be resolved in the directions of the normal and a perpen-
dicular to the normal in the plane of the meridian, putting cos j=1,
and neglecting the small terms multiplied by sin %, which are of the

second order of the earth’s ellipticity, and letting };D@'P represent

the force arising from the pressure, resolved in the direction of
the perpendicular to the normal in the plane of the meridian, the
preceding equations give, when the fluid is at rest,

%przrnzsingé — Dy 2=y,
(8) -],;,Dg.P = r*a’sind cos 8 — Dy L2 = 0,

1

10, P =—D, 2 =0,

and hence, neglecting the very small terms multiplied by sin j, de-
pending upon the motions of the fluid relative to the earth’s surface,
they give for the fluid in motion,

%DNP =—Dir+r (D8P + rsin®*éd (n + D,w)D, ¢ — g,
(9) ; Dy P = — A D20— 2r Dy Db+ sind cosé (n+ D, 0) Dy,

%D.PP_—_———rzsinzéD?q)— 2rsin?8 D, w D,r
. —27sinbd.coséd D,w D, 8. .
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Integrating, we obtain

P=HO—fygk=H—gk N+ [y NDy(gh),

'i
¥
|
’

(10) = I —gkN 4 [xg NDyk + [y NkDyyg,
= I+ K,
in which 77 must satisfy the following equations of partial dif-
ferentials: —
1 DyH=— Dir4r (D6} 4 rsin®d (n + D, w) D,g,
(11); Dyl = — 2D} — 27 D D,0 -+ r*siné cos d (n+ D, 0) D,g,
I%qu I = —P2sin®d D} — 2 sin®*0 D, 0 D,r

— 27%sindcosd D, 0 D, ¢,

and in which

(12) K= —ghk N4 [xgNDyk + [w Nk Dyg.

Hence H is the pressure arising from the motions of the fluid,
and K that arising from its gravity. If ¢ and % are functions of
N, ¥, and ¢, K is a function of the same.

5. For a stratum of equal pressure, P is constant, and hence

Dy P =0, D, P =0.
If we therefore put X’ and % for the special values respectively
of K and XN, belonging to a stratum of equal pressure, and take

the derivatives of (10) with regard to ¢’ and ¢, and neglect the
very small terms containing D, » as a factor, which, in all ordinary
motions of the fluid, will be shown to be insensible, we obtain for
the general equations of horizontal motions, by restoring the value
of win §(2).

0= Dy K'— 2 D36 + 1*stnd cosd (2u ++ D, ¢) D.g,

(13)

0 :%D(p K —sin?8 D?¢ — 27%sind cosd (n 4 D,¢) D, 8,
in which ’
(14) K =—gkh+fighDyk + fibk Dyy.
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6. If we suppose the fluid to be elastic, and the ratio of the
density to the elastic force or pressure to depend upon the temper-

‘ature, we may put

(15) k=oal,
in which ¢ may be a function of %, &, and ¢. Substituting this
value of % in (14), we get, when g may be regarded as constant,
since in that case the last term of (14) vanishes.
gy DK == Dilge 0+ DfighDi(e D),
— —gaPDyh—ghPDya-tgPDyfihD,e,
Hence, dividing by £ = « P, we get

an } DyE' = — g Dyh — g & Dyloge 4 As,

{
1 ,

DK = —ygDyh—ghDloge + 4,

by changing ¢ to ¢ for the last equation, and putting

Ay = %Dg'/,:]tl)ha,

(18) :
Ay = &D¢ﬁkﬂha.

7. When D, « is constant, that is, when & varies as the altitude,

Ay = Dy I,
(19) "
A= 5. Dy ¥,
in which
e=2D, «a,

depending upon the constant ratio of increase or decrease of «
with 4.

8. When o is constant, or when the fluid is homogeneous, the’
last two terms of (17) vanish, and in the latter case, 2 may repre-
sent the height of the surfice of the fluid above any level surface.

9. In the preceding investigation, the effect upon g arising {from
a change of the figure of the fluid has been neglected. It is small
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in the case of water, and in the case of the atmosphere, entirely
insensible. ’

10. Equations (13), together with the condition that the same

amount of fluid must always occupy a space which is inversely as
its density, the analytical expression of which is called the equation
of continuity, are the conditions which must be satisfied by the
motions of a fluid surrounding the earth, and are sufficient to deter-
mine its horizontal motions, and also the value of %, which gives
the figure of the fluid. When % is determined, equation (10) gives
the pressure of the fluid. As only a very special form of the
general equation of continuity will be needed in this investigation,
it is unnecessary to give it here.

[TO BE CONTINUVED.]

" PROBLEM.

BY J. FOSTER FLAGG, C. E.

Requrep a formula for the strength of a circular flat iron plate
of uniform thickness, supported throughout its circumference and
uniformly loaded; likewise a formula, supposing the plate to be
bolted down. Also find the equation of the curve, for each case,
which should be given to a section of the plate, in order that it may
have the greatest strength with the least material. The problem
may be further varied by supposing the plate square, instead of
round.

We have recently had great need of such formulas on the
Washington Aqueduct, and if they were obtained in a moderately
simple shape, they would, I think, be quite valuable. I know of no
place where the discussion of these questions may be found, although
it is quite possible that it may have been made.




— 9210 —

In a German work on bridges, the following formula is given,
but without investigation ; namely,

,
J— 1
x_s—ihﬁlogcotﬂp,

which is evidently incomplete, since ¢ can have but one value for
any assumed value of z; whereas it should have several values, one

for each coursing joint which depends upon the initial value ¢, of ¢

forz = 0.

THE MOTIONS OF FLUIDS AND SOLIDS RELATIVE TO
THE EARTH’S SURFACE.

[Continued from page 148.]

SECTION II.

ON THE MOTIONS AND FIGURE OF A FLUID SURROUNDING THE EARTH.

11. Tur results obtained in this and the following section, will
be upon the hypothesis that the motions of the fluid are not re-
sisted by the earth’s surface. The motions and figure of the fluid
must be such as to satisfy equations (13), and also the condition
of continuity. To determine them in the general case in which
both & and g are functions of %, ¢ and ¢, would be very difficult.
We shall take here the special case only in which & is a func-
tion of ¢’ which increases or decreases, from the equator to the
pole, and in which g is regarded as constant at all parts of the
earth’s surface, and throughout the whole range of altitude. Equa-
tions (13) become in this case, when the fluid is elastic,

gDsjh=r*sinbcosd(2n+D,¢)D, 9 —r* D} 8 — gh Djlog

20
(20) gDyh=—2r"sinbécosd (n+ D,g) D8 —r*sin*é D} g.

In inelastic fluids we have log % instead of log a.

———
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12. To determine completely the motions and figure of the
fluid which, would satisfy the conditions for any initial state of the
fluid, upon the hypothesis that the motions are entirely free from
resistances arising from the motions of the particles amongst them-
selves, would be impossible. But since in all fluids there are slight
resistances to the motions of the particles amongst themselves,
which, however small, eventually destroy all oscillatory or wave
motions depending upon the initial state of the fluid, and reduce the
motions of the particles amongst themselves to the minimum which
satisfies the conditions, it is not necessary to integrate the equations
generally, but merely to satisfy them with the least possible motion
of the particles amongst themselves. Hence both the motions and
density of the fluid at any place, and likewise its figure, must be in-
dependent of the time, and therefore constant.

13. Since D, % in the last of equations (20) can only have a
value arising from an oscillatory or wave motion of the fluid, which
would soon be destroyed, it must be put equal 0, and then the equa-
tion gives by integration for each particle supposed to be entirely
free from the resistances arising from the motions of the particles
amongst themselves,

(21) P sin?é (n 4+ D,g) = ¢,
in which ¢ is a constant depending upon the initial motion of the
particle. Let

R be the radius of the earth regarded as constant,

m the mass of the fluid, and

[ its uniform depth when at rest relative to the earth.

As the quantity of motion in the whole mass cannot be affected
by the mutual actions of the particles upon each other, we have,
even in the case in which the particles are not free from mutual

resistances,

(22) Jrsin*d(n 4 D, ¢) = fe= CUm,
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in which €' is a constant depending upon the initial motions of all
the particles.

The first member of this equation expresses the sum of the areas
projected upon the plane of the equator, arising from the absolute
motions of all the particles for a unit of time, and hence this sum
is constant. ]

14. If we put » for D,¢ belonging to the initial state of the
fluid, the last equation gives, neglecting quantities of the order of
the range of altitude compared with the earth’s radiusy

Om = R [sin*é (n - 0),
P 27
= B [ [y [oksin® & (n + ),
1] 0 0
=2 R'm(n—+ )

¥ — 3 n*

= mevﬁpﬁlw%m é.
:%Rz(n—-}—v').

In the preceding integration £ is supposed to be independent

1 which

Hence,

of ¢. If the density should vary considerably with the latitude, it
would affect the preceding result slightly.

When, by the mutual actions of the different strata upon one
another, ), becomes the same at all altitudes, upon the same
parallel of latitude, ¢ then becomes equal to C, and equation (21)
gives

C 2 4
(23) D, = Rcin® 6 —n= ?Ens;ltﬂ) — .

This value of D, ¢ satisfies the last of equations (20), and since
it gives a uniform motion of all the particles of the fluid upon the
same parallels of latitude, as much fluid flows from any place as
flows into it, while the density, from what has been stated, remains
the same, and hence it also satisfies the condition of continuity.

e
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15. If we suppose the initial state of the fluid to be that of
rest relative to the earth’s surface, equation (23) becomes

(24) D9 = (s — s

substituting this value of D, ¢ in the first of equations (20) we get,
by putting £ for r,

(26) gDyh— R*n*siné cos¥ (9—5—:%;';—— 1)—R2D?é—ghD9/log'a.

Since the last term of this equation is a function of %, the
height of the strata, the equation can only be satisfied by counter
currents of the strata between the equator and the poles; and as
we have seen that the figure of the fluid, and its density at the
same place, are constant, in order to satisfy the condition of conti-
nuity, these currents must be such as to satisfy, for every vertical
column of the fluid, the following equation,

(26) /D =0.

In order to satisfy this condition, %, which is a general integral,
must have a negative constant added to it. Hence at a certain
altitude the last term of (20) vanishes, and the fluid there has no
motion towards or from the equator.

If the density increases towards the poles, this term is positive
for the lower strata, but negative for the upper ones, and hence the
motion is toward the equator below, and from it above. If the den-
sity decreases towards the poles, the motions are the reverse.

If there were no resistances of any kind, the motions would be
continually accelerated so long as the density is different between
the equator and the poles; but where there are slight resistances,
the motions are only accelerated until the resistances become equal
to the accelerating force.

16. Since the last two terms of (25) have a very little effect

upon the value of %, and consequently upon the figure of the fluid,

.
- R
E
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in comparison with the remaining term of that member, unless the
difference of density, and the motion of the fluid between the
equator and the poles, are very great, we shall neglect them, and
determine the figure depending upon the remaining term arising
from the earth’s rotation. Equation (25) gives by integration in
this case, since Dy 4 does not differ sensibly from D, %,

2gﬁ:—R2122(§£1779+ Sinzé) -+ C.

If # be put for the value of /4 at the equator, putting sin d = 1,

we get
290 = — 13 R*n® | C.
Hence,
’ R2p? 4 .
(27) h=K + T;i (—15-—————9 i sin’ 6).

Since one of the terms in this value of % has sin d in the denomi-
nator, whatever be the value of 4 at the equator, it must become
0 towards the poles, and the surface of the fluid meet the surface
of the earth; and this must be the case, however large the terms
which have been neglected. Hence ke fluid, however deep i may be
ol the equador, cannot cxist near the poles.

17. If &, be the value of d where % = 0, the last equation gives

9

(28) sint & — (e &+ 32 sin? ¢ = — 4

which determines &, when 7’ is given.
If we put é, for the value of & where 4 is a maximum, equation
(25), putting Dy% = 0, and neglecting the last two terms, gives

(29) sin? &, —= %,
This gives ¢, = 55° nearly, answering to the parallel of 35°,

where % is a maximum.
If, therefore, we assume %, equation (27) gives the figure which

the fluid assumes, which must be somewhat as represented in the external

e
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part of Fig. (1), the swrface of the fluid being slighlly depressed at the
equador, having its mazimum height about the parallel of 35°; and meeting
the surface of the earth towards the poles.

18. In the applications of the preceding equations we must put

R — 3956 miles = 20887680 feet,

— 2n .
"= s a6 6 — 000072024
= 32.2 feet.
Hence R = 15232 feet, and 1—?';—;2 — 86017 feet.

With these values, if we assume A =— 5 miles, (28) gives
8, = 28° 30’ for the polar dis-
tance of the parallel where the
surface of the fluid, or the stra-
tum of equal pressure, meets
the surface of the earth.

If in (27) we substitute for
sin 4 its special value in (29),
we obtain 2— A = 4002 feet
for the excess of the height of
the fluid at its maximum, above
its height at the equator; which

Hig 1. is a constant independent of the
amount or depth of the fluid.

19. If we put D, ¢ = 0 in (24), it gives
(30) sin?d — sin®é, = %.

Hence, the latitude of no motion of the flud east or west, ts the lati-
tude of the maximum of h.

20. If sin?0 < 2 in (24), D, ¢ is positive, but if sin®d > 2, it
is negative. Hence, befween the parallels of 35° and the poles, the motion
of the fluid is eastward, bub between those parallels and the equator @ s
toward the west.
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21. The lineal velocity of the fluid east or west relative to the
earth’s surface is & sin 8 D, 9. Representing it by +”, equation (24)

gives
o 2 .
(31) o = Bu (5o —sin 0).
Putting sin 6 = 1, this equation gives »”" = — I Bn = 508

feet for the velocity of the fluid westward per second at the equa-
tor. Towards the poles it is evident, from an inspection of the
preceding equation, that the velocity must become very great.

The east and west motions of the fluid, as well as its figure, are
represented by Fig. (1), the different lengths of arrows representing,
in some measure, the different velocities of the fluid.

22. The whole lineal velocity of the fluid east, arising from both
the earth’s rotation and the velocity of the fluid relative to the
earth’s surface, is R sin 8 (n 4 D,¢). Representing this by v,
equation (24) gives

(32} n __ 2Rn

= g0
Hence this velocity is inversely as the distance from the axis of
rotation, which is a necessary consequence of the preservation of
areas, as shown in §13. For as the fluid in moving from the equa-
tor towards the poles approaches the axis of rotation, it must have
its velocity increased, and in receding from the axis it must be de-
creased, just as a planet is accelerated in its perihelion but retarded
in its aphelion. The reasoning, therefore, of those who, in attempt-
_ing to explain the trade winds, assume that the fluid, in moving
towards or from the equator, has a tendency to retain the same
lineal velocity, is erroneous.

23. If] instead of a state of rest relative to the earth’s surface, we
suppose that the fluid has an initial angular velocity, we must put
n -+ v instead of # in the preceding equations.

gd




ON PRACTICAL GEOMETRICAL METHODS OF LOCI.

BY D: H. MAHAN,
Professor of Engineering in the U. 8. Military Academy, West Point; N. Y.

Eprror oF THE MAaTHEMATICAL MoONTHLY :

Sir,— Permit me to call the attention of your younger mathe-
niatical readers to the subject of the practical geometrical methods
of loci, as affording both an interesting and profitable exercise in the
use of mathematical instruments, particularly for those who are pur-
suing scientific studies with the view of becoming civil engineers or
architects. I have selected two cases out of the many that have
fallen under my notice in their applications to practice.

Prob. To inscribe within a given rectangle another, one side of
which is given.

Let A B be the given rectangle; b the one to be found, the
side @ ¢ of which is given.

An examination of the Fig. will show that the
diagonals of the two rectangles pass through the
same point 0. From O then, with any assumed
radius O o describe an arc, and from o’ set off
the chord @' ¢ = a¢. If the point ¢ falls with-
out B (), take any radius 04" << Od’ and repeat
the same construction, thus determining the point

¢’ within B €. Having, in this way, found as

many points ¢, ¢’ &c., as desired, on either side of B ¢ draw through

them the line ¢’ ¢¢”, &e. This line will be the eus of the required

conditions, and the point ¢, where it intersects B €, will be one

angle of the inscribed rectangle to be found, from which the others

are readily determined by the inverse order of the construction.
Remark. This problem finds an application in Howr’s Truss for
VOL. L 29
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PS QT
fnally 7 oves — Trvie
eycloid proved in Proposition 8. So that an arc of a cycloid is the
brachistochrone, or curve of quickest descent, under the supposed

which is precisely the property of the

conditions.

The points 7' and ¢ in Fig. 1 are in the base of the cycloid, so
that, in Fig. 2, the lase of the cycloid must pass through the point from
which the descent begins ; this condition is often not distinctly men-
tioned. If the two points A and 7 be nearly on a level, the arc may
be almost the whole cycloid.

THE MOTIONS OF FLUIDS AND SOLIDS RELATIVE TO i
THE EARTH’S SURFACE. '

[Continued from page 216.]

SECTION III.

ON THE MOTIONS AND FIGURE OF A SMALL CIRCULAR PORTION OF FLUID ON THE
EARTH’S SURFACE.

24. Wg shall, in this case, suppose that e« is a function of \
the distance from the centre of the

flid. It will be more convenient,
therefore, to express our general
equations (20) in terms of other po-
lar cotrdinates, of which the pole
P, Fig. 2, does not correspond with
the pole of the earth. Regarding %
the earth as a perfect sphere, let |

w be the distance in arc of the new
pole P from the pole of the earth; also let

¢ be the distance in arc from the pole P,




- ®
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u the angle §P O between ¢ and the meridian,

¢ the alternate angle ¥ O P.

If in equations (20) we put n=0, they become the equations
of horizontal motions in the case in which the earth has no rotary
motion, and the pole of the codrdinates can in this case be assumed
at pleasure. Hence, when the earth has no rotation, by putting ¢
for 4, and p for ¢, we have

gD, h=r*sing cos ¢ (D, ¢ —r* Di¢—ghD,loga,

(33) g Duh=—27sing cosg D, ¢ D,u—r*sin’o Dy,

When the earth has a rotation, we must add to the second
members of these equations respectively the terms D, ¥, and D, F,
in which ¥ is the part of P, equation (10) depending upon the
earth’s rotation, and must satisfy the following equations,

Dy F=2rnsind cosé D, g,
Dy F=—2r"nsinécoséd D,é8.

Since 4 and ¢ are functions of ¢ and u, we must put

D, F=DyF.D, 0+ Dy F.D, g,
D F=DyF.D, 84Dy F.D, .

Hence, substituting the preceding values of Dy # and Dy F,

we get
D, F=27nsinbcosd (D,9 D,8*—D,6.D,¢9),
(34) D, F=27nsinbcosd (D9 D,6—D,6.D,qp).

Now, from the relations of the different parts of a spherical tri-
angle, we have
cos 8 == cos y cos ¢ — sin y sin g cos i,

(35)

sin W cos p -+ cos W sin g cos u

cot = sin 1 sinu

Hence, taking the derivatives and reducing, we get

€os W sin Sin Y Cos @ cos
Dp é pasny - e + . ¢ L

n —— COS8 &
sin & ?
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siny sin p sin . .
Dpéz-———ﬁly:——smg sin &,
ginfg _ sing

pq):sinw sinpg ~ sin#’

€08 Wwsing -+ sinwcosgcosp g
sin? i sin @

sin g cos e

D;AP=

2 J—
iy =55

D,bé=D,6.D,0+ D,6.D,u=— cose D o —singsine D, u,

D, ¢ =Dp(p.D,Q—}—D#tp.D,‘u:§%p‘9+S‘“QCOSE D,u

sin
These values being substituted in (84), we get
7 D,,F:Zrznsingcoséﬂ,y;
D#F:—ZvrznsingcoséD,Q. _
- If we add these values of D, F and D, F respectively to the
second members of (33), we get for the equations of motion, in

(36)

terms of ¢ and p, when the earth has a rotation,
gDph=1"sin ¢(2ncos0+ D,ucos9) D,u—r* D} 9g—ghD,loga,
gDFk:—2rzsing) (ncos 8 +D,‘u cos 9) D, o —7* sin? ¢ D}y,
in which cosd has the value in terms of ¢ and p,in the first
of (35).

25. When sin ¢ is so small that the last term of the value of
cos & may be neglected in comparison with the first, we have

(37)

cos 8 —=cosw cos ¢, which being substituted in the last equations,
they become
gD, h=r*sing coso(2ncosy -+ D,u) D,u—r* D} o—ghD,loga,

(38) gpykz_;_272sin gcosQ (ncosy ++.D,u)D,o—*sin’g Dju.

These equations are similar to equations (20), having ¢ and p

instead of & and ¢, and, instead of », having n coswy, which is the
earth’s angular velocity of rotation around the axis, corresponding
with the pole P (Pmrcr’s Analytical Mechanmies, §25). Hence we can
treat these equations precisely as equations (20) in the last section,
and, instead of (21), we get

i NPT

L
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(39) P sin ¢ (ncosy + D, u)=c,
and, instead of (22), we get

(40).  fur*sin*¢ (ncosy + D u) = f,.c = Cm.

On account of the term which has been neglected in the value
of cos 8, these equations cannot be used for large values of ¢, and

hence we may put sing =¢. Let
\ s = R be the lineal distance from the centre,
§ be the value of s at the external part of the fluid,
# be the initial value of D, u.
The last equation then gives, putting R for r, -
N Om=f, $#(necosy 4-u),

Tl 2n s

= [nfufs R s’ (necosyw 4-u),
0 0 0 .
=4 s%m(ncosy +o'),

V in which
H ) [ 2n s
} ‘ srszVJ#.f kst
' Hence,

(41) C=1%5%(ncosy +).

In the preceding integration % is regarded as a constant. When,
by the mutual action of the different strata upon each another, D
becomes the same at all altitudes at the same distance from the
centre £, ¢ becomes equal to (', and equation (39) then gives

(42) Dp= 5 — ncos Lp:ﬁ(_’ﬂs_"ij; u')

Ren’y ye o T eosy.

26. If we suppose the initial state of the fluid to be that of rest

¥ relative to the earth’s surface, the last equation becomes
sl?
(43) D= (55—1)ncosy.
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Substituting this value of D, in the first of equations (38), it
becomes, by putting & for » and cos¢ =1,

(44) gD h=rcosty (S —s) — Dis—gh D, log c.

This equation is similar to (27), and, like it, can only be satisfied
by means of an interchanging motion between the internal and ex-
ternal part of the fluid; and the remarks following that equation
in § 15 are also applicable to this.

27. By omitting the last two terms in the preceding equation,

as was done in equation (25), (§ 16), we get by integration,
2gh—=—n?cos’y (g%-}- 32) + C.
Hence, eliminating C, :

2 2 /4
(45) h=k+”g?6w—grﬁﬁ

Since one of the negative terms in this value of 2 has s in the
denominator, it must become equal 0 towards the centre where s
vanishes. Hence the fluid, however decp i may be ot the external part,
cannot exist at the centre. '

28. If we put s, for the value of s where 2=0, the last equa-
tion gives

(46) 0=# 25350 —5—4),
from which we obtain s, for any assumed value of %'

Since s, is very small, the terms $s* and — s} may generally be
omitted in the last equation, and it then becomes

n cos W §'
(47) SO= T
If we put s, for s where % is a maximum, equation (44) gives,
p q g
by putting D, % = 0, and neglecting the last two terms,

s

(48) "=
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Equation (45) determines the figure of the surface of the fluid,
which is very slightly convex towards the

B criernal part, and meels the surface of
the carth near the centre c, as represent-
Fig. 3. ed in Fig. 3.

If we assume %, or «b, Fig. 8, equal 5 miles, and ac¢=100
miles, equation (49) gives ¢ e= 2 miles nearly.

29. Equation (43) gives the angular velocity of gyration, which
must be very great near the centre, where s is small.

Putting D, u = 0, it gives

(49) §=—= i;— = $.

Hence, at the distance of s,, which is the distance of the maximum of h,
there is no gyratory motion.

In the northern hemisphere, where coswy is positive, if s <¥
D, u is positive, but if s > s, it is nega-
tive. Hence the inner part of the jhwd
gyrates from right to left, but the external
part from left to right, as represented in
Fig. 4. In the southern hemisphere,
where coswy is negative, the gyrations
are the reverse.

30. If the fluid is of uniform density,

and every part gyrates with the same Tig. 4.

angular velocity u, it satisfies equations (38) by satisfying the fol-
lowing equation :
gD, h=2suncosy -+ su?,

since all the other terms vanish ; and this motion also satisfies the
condition of continuity. By integrating, we get

(50) gh=%su(2ncos w4 u) 4 C.

This is the equation of a parabola. Hence the surface of the jluid,
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relative to the earth's surface, is the surface of a paraboloid. If the portion
of the fluid is so small that the earth’s surface may be regarded as .
a plane, it becomes absolutely the surface of a paraboloid ; and when
the angular velocity of gyration is great in comparison with that of
the earth’s rotation, 2 » cos y may be omitted, in the preceding equa-
tion, in connection with .

If u=—2ncosy, or u=0, %4 is constant, and then the sur-
face of the fluid is a level surface. If » is negative and less
than 2ncosy, the surface is convex; in all other cases it is
concave.

31. If the whole of a gyrating mass of fluid has a tendency to

move in the direction of the meridian with a force V, if we regard
the forces which act upon each part of the fluid in the directions of
the meridians as parallel, we have, using R for r,

SO S

V:meyU:jle—LD{;P.

The error arising from régarding the forces in the directions of
the meridians parallel is of the second order of their deviation from
parallelism, and consequently very small, unless the lateral extent
of the fluid is very great.

From the last equation and the second of equations (9), omitting
the term containing D, r as a factor, since it can produce no sensible
effect, we get

V=/[,[—RD}04 Rsindcosd (2n-+ D,9)D,¢].

If in this equation we substitute for D, ¢ its value in §24, and

for D} 8 its value derived from that of D,¢ in the same section, and

also for cos 4 its value in the first of equations (35), putting e=—=p,
since the meridians are regarded as parallel, and omitting all terms
which give 0 by integration, we get

RV=-—2nsiny f,s*cos’ uD,u,

(51) =—ansiny [,&D,p.
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If D,p, the angular velocity of gyration, is positive, V' is nega-
tive ; but positive, if D, u is negative. Hence if the fluid gyrates from
right fo left, the whole mass has a tendency to move towards the north ;
but if from left to right, towards the south.

If every part of a cylindrical mass having its axis of revolution
vertical has the same angular velocity of gyration as in the case of
solids, calling this velocity u, the preceding equation gives for the
accelerating force in the direction of the meridian,

V s?un siny s'?usiny

e STusiny 2

(52) .oom 2R _ 2Rn X B
_ s'% w sin ¢ g __ g usinyw _s’_2
- SRn X9 58w B

32. If a body move in the direction of ¢ or s with a velocity
v= D, s, and p be the direction of a perpendicular to it on the left,
we obtain from the last of equations (36) for the deflecting force in
the direction of p, arising from the earth’s rotation,

— DuF
DPF_RSine_——-2Rncos.éD,Q,
s 0 D, :
(53) —_———2ncoséD,s=—2CO;:n ‘5 R,
L 2c030D,s>< g ___ 2gvcos?t
—  Ra 289 — 289 Rn

This force is negative in the northern hemisphere, and positive
in the southern. Hence in whatever direction a body moves on the sur-
Sace of the earth, there is a force arising from the earth’s rotation, which
deflects it to the right in the northern hemisphere, but to the left in the
southern. This is an extension of the principle upon which the
theory of the trade winds is based, and which has been heretofore
supposed to be true only of bodies moving in the direction of the
meridian.
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points by #" 5 and 2" 7", and the intercepts of the axes of reference
by « and 8 ; then, by known properties * of great circles ares, we

have
1 1
(1> ’T:_(_ﬁ y:'—B7
(2) y=—Ca+8,
(3) ==t

o
The elimination of « and 3 from (1), by means of (2) and (3),
will obviously satisfy the required conditions of the problem. But
the elegant solution of the problem by Mr. Osporze in the last
Moxiny, page 292, by an entirely different method, would seem to

render further remarks unnecessary.

THE, MOTIONS OF FLUIDS AND SOLIDS RELATIVE TO
THI EARTH’S SURIFACE.

{Continued from page 307.]
SECTION 1V.
ON THE GENERAL MOTIONS AND PRESSURE OF THE ATMOSPHERE.

33. By the general motions of the atmosphere are meant all those
motions produced by a difference of density between the equatorial
and polar regions arising principally from a difference of temperature.
If the motions of the atmosphere were not resisted by the earth’s
surface, the results of the preceding sections could be at once applied
to them without any modifications, and hence towards the poles

there would be a very rapid motion eastward, and in the equatorial

* These properties, and many other analogous oncs, of great circle arcs, it is pro-

posed to investigate in subsequent numbers of the MoNTHLY.

B SR
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regions towards the west, and the atmosphere would entirely recede
from the poles, and be also depressed about 4,000 feet at the equator,
as has been shown in section (2). Although the preceding results,
when applied to the atmosphere, are very much modified by the
resistances of the earth’s surface, yet they will be of great advan-
tage in explaining its general motions ; for as there can be no resist-
ance until there is motion, the atmosphere must have a tendency
to assume, in some measure, the same motions and figure as in the
case of no resistances. Hence, towards the poles the general motions
of the atmosphere must be towards the east, and in the torrid zone
towards the west; but as these motions, In consequence of the
resistances, are small in
comparison with those
in the case of no resist-
ances, instead of the at-
mosphere’s receding en-
tirely from the poles, as
represented in Fig. 1,
page 215, there must
be only a comparatively
small depression there,
as represented in Fig. 5,
and instead of its being
about 4,000 feet lower

at the equator than at

the place of its maximum height near the tropics (§18), there
must be only a very slight depression there.

34. The force which overcomes the resistance of the carth’s sur-
face to the east and the west motions of the atmosphere depends

upon the term in the least of our general equations (13) containing
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D, & as a factor, which depends upon the interchanging motion of the
fluid between the cquatorial and the polar regions, and hence the
term must vanish at the equator and the poles. All the east or west
motion of the atmosphere is consequently destroyed by the resist-
ances at these places, and hence as D, & vanishes there also, there is
a belt of calms at the equator, called the equatorial calm belt, and
there must be also a region of calms about the poles.

35. As the motion of the atmosphere is east towards the poles
and west near the cquator, somewhere between the equator and the
poles there must be a parallel of no motion east or west, which, in the
case of no resistance, was determined upon the hypothesis of an
initial state of rest, and found to be at the parallel of 35°% § (18). In
the case of the atmosphere this parallel is entirely independent of
the initial state of the atmosphere, and depends in a great measure
upon the law of resistance, and hence it cannot be accurately de-
termined. It is evident, however, that the east and west motions
of the atmosphere at the earth’s surface must be such that the sum
of the resistances of each part of the earth’s surface multiplied into
its distance from the axis of rotation, must be equal 0, else the ve-
locity of the earth’s rotation would be continually accelerated or
retarded, which cannot arise from any mutual action between the
surface of the earth and the surrounding atmosphere. Now, as the
part of the carth’s surface where the motion of the atmosphere is
west is much farther from the axis than the part where it s cast,
the latter part must comprise more than half of the earth’s surface,
unless the velocity of the eastern motion towards the poles is much
greater than that of the western motion near the equator. There-
fore, since one-half of the earth’s surface is contained between the
parallels of 30°, the parallels of no east or west motion at the earth’s
surface must fall within these parallels, and they are accordingly found

to be near the tropics, on the ocean. Hence the maximum height
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of the atmosphere, as represented in Fig. (5), must also be near the
same parallels.

36. The increase of pressure arising from the accumulation of
atmosphere near the tropics, caused principally by the deflecting
forces (§32) arising from the more rapid east and west motions of
the atmosphere in the upper regions, where there is least resistance,
gives the atmosphere a tendency to flow from beneath this accumu-"
lation hoth towards the equator and the poles, since the motions, and
consequently the forces, which cause this accumulation, are much
loss near the surface. But on account of the greater density of the
atmosphere towards the poles, it has a tendency also to flow, at the
carth’s surface, from the poles towards the equator. Between the
parallels of greatest pressure and the equator, these tendencies
combine, and produce a strong surface current, whieh, combining
with the westward motion there, gives rise to the well-known north-
cast wind in the northern hemisphere, and the south-cast wind in
the southern hemisphere, called the trade winds. But between the
parallels of greatest pressure and the poles, these tendencies are op-
posed to each other, and the one arising from the accumulation of
atmosphere near the tropics being the greater in the middle lati-
tudes, causes the atmosphere to flow at the earth’s surface towards
the poles; and this motion, combining with the general eastward
motion of the atmosphere in those latitudes, gives rise to the south-
west wind in the northern hemisphere and the north-west wind in
the southern hemisphere, called the passage winds.

37. Near the poles, the tendency to flow towards the equator
secems to be the greater, and causes a current there from the poles,
which, being deflected westward (§32), causes a slight north-east
wind in the north frigid zone, and a south-east wind in the south
frigid zone. DBut this is only near the eartl’s surface ; and the gener-
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al tendency of the atmosphere in the upper regions must be towards
the cast, as will be seen. .

38. Since the atmosphere near the tropics can have no motion
in any direction at the carth’s surface, there are calm belts there,
called the tropical calm belts. Near the polar circles, where the
polar and passage winds meet, there must also be calm belts, which
may be called polar calm belts. The motions of the atmosphere,
therefore, at the earth’s surface, if they twere not modified by the
mfluence of continents, would be as represented in the interior of
Fig. (5), in which the heavy lines represent the calin belts. On
account of the influence of the continents, these belts are somewhat
displaced and irregular, and on account of the varying position of
the Sun, they change their positions a little in different seasons of
the year.

The southern limit of the polar winds in the northern hemi-
sphere, and also the limit between the trade and passage winds, has
been determined by Prof. J. H. Corrry, from the discussion of a great
number of observations at different points, and given in a chart, in
his treatise on the winds, published in the seventh volume of the
Smithsonian Contributions.

39. That the atinosphere is depressed at the equator and the
poles, and has its maximum height near the tropies, as has been
represented, is indicated by barometrical pressure. It was formerly
thought that this pressure, at the level of the ocean, was very
nearly 30 inches in all latitudes; hut it is now well established that
it is much less towards the poles than near the tropics, and also a
little less at the equator. Says Captain Witkes: “The most re-
markable phenomenon which our observations have shown is the
iregular outline of the atmospherc surrounding the carth as indi-
cated by the pressure upon the measured column at different parts

of the surface. Our barometrical observations show a depression

=
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within the tropics, a hulging in the temperate zone, again undergo-
ing a depression on advancing towards the arctic and antarctic
circles” The mean of all the observations, as given in the Report
of the Exploring Fxpedition, from Cape Henry to Madeira, taken
between the parallels of 287 and 32°, was 31.215 inches ; at Maderia,
latitude 32° 53, 30.176 inches; and in the rainy belt between the
parallels of 8° and 12°, 29.987 inches. After passing the equator
there was a slight elevation, again reaching its maximum near the
tropic of Capricorn. Beyond this there was a gradual depression
until about the parallel of 55°, where the barometer was rapidly
depressed below 29 inches.  After doubling Cape Horn and pro-
ceeding towards the equator, the height of the barometer gradually
increased again to its usual height in the middle and equatorial
latitudes. On sailing south again, in the Pacific Ocean, a depression
of the barometer was again observed. The mean of all the observa-
tions taken on 22 days, in sailing from Callao to Tahiti, between the
parallels of 10° and 15°, was 30.109 inches ; and of those made on
32 days, between the parallels of 15° and 20°, was 30.147 inches.
The mean of the observations made on 5 days, after leaving Sydney,
hetween the parallels of 35”7 and 45°, was 30.305 inches; of those
made on 7 days, between the parallels of 45° and 55°, was 29.790
inches; of those taken on 8 days, between the parallels of 55° and
65°, was 20.378 inches.  The mean alzo of all those taken along the
antaretic continent was 29.040 inches.

40. Says Siv Jawes Ross (Voyage O the Southern Seas, Vol. 2,
p- 888): ¢ OQur barometrical experiments appear to prove that
the atmospheric pressure 1s considerably less at the equator than
near the tropies; and to the south of the tropic of Capricorn,
where it is greatest, a gradual diminution occurs as the latitude
i« increased, as will “be shown from the following Table, derived

from hourly observations of the height of the column of mer-




— 372 —

cury between the 20th of November, 1839, and the 31st of July,
1843.

EXTRACT FROM ROSS’S TABLE.

LATITUDE. PTRESSURE. LATITUDE. PRESSURE. 1 LATITUDE. PRESSURE. E
J e —_ ‘
inches. inches. ‘ inehes.
Equator, 29,974 | 42°53' 29.950 l ade 52! 29.360
13° 0/ S. 30.016 | 45 © 29.66L | 60 O 29.114
22 17 30.083 | 49 8 29.407 1, 66 0 20.078
34 48 30.023 @ 51 33 29.497 “ 74 0 28.928 |
54 26 20.347 | i

41. The following table, first published by M. Scrotw, and re-
duced here from millimetres to English inches, shows that there 1s a
similar bulging of the atmosphere in the middle latitudes, and
depression at the pole in the northern hemisphere, as has becn

observed in the southern hemisphere.

.

PLACE. LATITUDE.  IRESSTURE. PLACE. LATITUDE.  PRESSURE. |
inches. inches.
Cape, 33° 0'S. 30.040 | London, 51° 30/ 29.961
Rio Janeiro, 23 S. 30.073 | Altona, 53 30 29.937
Christianburg, 5 80 N. 29.925 | Dantzic, 54 30 29.925
La Guayra, 10 29.928 | Konigsberg, 54 30 29.941
St. Thomas, 19 29.941 | Apenrade, Hd 29.905
Macao, 23 50.039 | Edinburgh, o6 29.851
Teneriffe, 28 : 50.087 | Christiana, 60 29.866
Madeira, 32 30 30.126 : Bergen, 60 29.703
Tripoli, 53 30.213 | Hardanger, 60 29.700
Palermo, 38 30.036 | Reikiavig, 64 29.607
Naples, 41 30.012 | Godthaab, 61 29.603
Florence, 43 30 29.996 | Eyafiord, 66 29.669
Avignon, 44 50.000 | Godhaven, 69 29.674
| Bologna, 44 30 30.008 | Upernavik, 73 29.732
\\ Padua, 45 30.008  Mellville Izle, 74 30 29.807
| Paris, 49 20.976  Spitzbergen, 75 30 29.795
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By the above method the function «® may easily be differentiated.
1
We have D a*=m«"; where am =— 271828 ... - (2718 .. )" =@,

or m is log ¢ in the system of which the base 15 2.7182818. ...

THE MOTIONS O FLUIDS AND SOLIDS RELATIVE TO
THE EARTHS SURFACE.

[Continued from page 373.]

43. The pressure of the atmosphere may be obtained from the
first of equations (9). The terms in the equation depending upon
the motions of the atmosphere are insensible, and consequently
may be omitted. The term 27 depends upon the acceleration or
retardation of the vertical motion of the atmosphere, and is of the
same order in comparizon with ¢ as the rate of its acceleration or
retardation in comparizon with that of a descending or ascending
free body, and hence in all ordinary motions of the atmosphere it is
insensible. Restoring the value of o in (§ 2), the largest of the re-
maining terms is 27 sin? d 2 D, ¢, which is of the same order in com-
parison with 72, as the cast or west motion of the atmosphere in

comparison with the motion of the rotation of the earth on its axis.

But »#*= ,1; ¢ only, hence the term is entirely insensible. We
may therefore put
Dy P oy
P g

Using the common system of logarithms and putting M for its
modulug, we get by integration

(54) log " —log P=Mayg N,

in which 27’ is the pressure at the earth’s surface.
Hence
(55) Dy log P = Dy log P — Mg N Dy e
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By means of this equation the second of equations (9) becomes,
by putting e for £, (§6), and omitting the very small term
27 D,r D, 6,

(56)  Dy'log P'— My N Dy’ « =M« [r*sinfl cos 0 (2n—+Ds q) D, — 7 D 0].

44. Tn the case of the atmosphere, there must be a term in equa-
tions (9) to-represent the resistances to the motions; and this term
in the second of these cquations may be denoted by (¢) D,¢ in the

second member.  Putting

(D7) W={(g)D,6+r»D;8é,

I will represent the forece which overcomes the resistances to the
motions of the atmosphere between the equator and the poles, and
also its inertia.

Since D, g is generally very small in comparison with 2z, it
may be omitted in equation (56), which then becomes, by means of
equation (57),

(58) Dylog P'— Mg NDy o= Ma(2nsinécos¢ Dyg—r W)

45. Tt will be shown, that » W is very small in comparison with
272 nsin & cos 0 D, ¢ ; and hence, if D, ¢ were known, the preceding
equation, neglecting the term 7 W, would give approximately the
pressure of the atmosphere at the earth’s surface. But since we do
not know the value of the term denoting the resistances in the
last of equations (9), we cannot determine the value of D, ¢; there-
fore, since Dy log I’ can be determined from observations of the
barometric pressure, we shall use the cquation to determine D, ¢,
from which we casily obtain the east or west motion of the atmos-
phere.  Denoting the veloeity of this motion per hour by #, we shall
have

(59) v=3600rsiné¢ D, g.

46. The ratio of the density to the elastic foree decreases 5 for




P

every degree of Fahrenheit. But as a higher temperature is always
accompanied by a greater amount of aqueous vapor, the density of
which is less than that of the atmosphere, the rate of decrease has

been found to be 15 for every degree. Let

o be the value of « at the equator, and

i the difference of temperature hetween the equator and the poles.

If we suppose the temperature to decrease from the equator to
the poles as the square of the sine of the latitudes, we shall

have
o = (14 254cosd).
Hence
Dy a=—3; ¢ isin & cos 0.

By means of the last three equations, equation (58), putting R

1 .
for » and e for ———, is reduced to
Mo g

(60) »= pfﬂlllio_aﬁ)(p g Dy log P/ 24 igsin 0N 4 W),
Since the variation of ¢ with the altitude can produce no sensible
effect in the results, « has been regarded as a function of the lati-
tude only. We must, therefore, take the mean value of ¢ belonging
to the atmosphere at the equator at all altitudes, which we will as-
sume to be that belonging to the temperature of 32°
47. By means of observations of P at different altitudes, equation

- . .1 .
(54) gives the value of T which, at the temperature of 32° has

been determined to be 60156 feet; which, consequently, is the value
of ¢. The difference between the mean temperatures of the equa-
tor and the poles is about 60°; we shall, therefore, in the following
applications, put ¢ = 60.

48. The value of Dy P in the preceding equation can be deter-
mined approximately for any latitude from the preceding tables of

barometric pressure. Since the covrdinates of pressure given there
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have been deduced from observations made in different longitudes
and at all seasons, they are somewhat irregular; but cobrdinates can
be assumed with regular differences, and such that the interpolated
~ values of the codrdinates of pressure for the latitudes given in the
tables will very nearly correspond with the pressures given there ;
and then, from these coirdinates, the approximate value of Dy log P’
can be determined. In this manner the values of Dy P in the fol-
lowing table have been determined, except the first, which has been
assumed.  The third column of the table contains the values of » at
the eartl’s surface, neglecting the term W, which will be shown to
have, in general, a very little effect. The fourth contains the co-
efficient of &, and the fifth the value of » at the height of 3 miles.

TABLE.

Latitude. ‘ Dy, log P v, (N=0). " Coeff. of V. ‘ v, (N =3 miles). |
75 N. —.0060 — 2.7 miles. 2.33 ~+ 4.3 miles.
65 0000 0.0 3.87 . 11.6

55 —+-.0188 + 99 5.34 25.9

45 -}-.0080 —+ 4.5 6.71 246

30 L0000 0.0 8.49 25.5

15 —.0060 —10.0 9.70 19.1

15 S. —+-.0060 —10.0 9.70 19.1

30 —.0147 114 8.49 36.9

40 —.0372 -}-23.4 7.36 45.5

50 —.0295 —+15.3 ' 6.07 33.5

60 —.0133 } -+ 6.0 4.61 19.8

|

49. The term W, and its effect upon the value of », cannot be
determined, but they can be shown from observation to be, in general,
very small ; and, since W is positive, as may be seen from equation
(75), when the motion is from the north towards the south, and
negative when the contrary, except when the motion is retarded, and

the term » D7 8 arising from the inertia of the atmosphere is greater
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than the resistances, its effect for the most part is to increase the
value of » algebraically where the motion is towards the south, and
decrease it where it is towards the north. In the regions of the
trade winds about the parallels of 15°, the current at the surface of
the earth is stronger than at any other parallel, and as the resistances
at the surface must be much greater than in the upper regions, the
term W must be greater there than in any other part of the atmos-
phere. If »==0, equation (60) gives, since V=0 at the surface,
W =r¢g Dylog P’; and from the preceding table, when » = — 10
miles, W=0. Now, we know from observation that the velocity of
the atmosphere westward at the parallels of 15° cannot be much
less than 10 miles per hour, and hence W is small in comparison
with e g Dy log P’, which at that parallel is itself small; and hence
the effect of W upon the value of v in the higher latitudes, where
the value of cos d in the denominator is much greater, must be very
small. Very near the equator the formula for the value of v, equa-
tion (60), fails practically, since, on account of the small value ‘of
cos & there, the effect of W may be very great.

50. If the motion of the atmosphere cast in the higher latitudes
and west near the equator, be that given in the preceding table, or
by equation (60), it must cause the observed difference of barometric
pressure in the different latitudes; and hence, from what we know
of those motions of the atmosphere from observations, there can be
no doubt that they are adequate to account for this observed differ-
ence of pressure.

51. 1t is evident, where the motions of the atmosphere are re-
sisted by the earth’s surface, that all the conditions cannot be satisfied
by a motion at the surface from the poles towards the equator, and
by a counter motion in the upper regions. For we have seen (§ 35),
that the atmosphere at the surface of the earth must have an eastern
motion in the middle latitudes; but it cannot have such a motion,
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unless it also have a motion towards the poles, in order that the de-
flecting force (§18) arising from this motion may overcome the resist-
ances to the eastern motion. But it is evident that there cannot be
a complete reversal of the motions in the middle latitudes, but some
portion of it must flow towards the poles in the upper regions, else
the castern motion there could not be greater than at the surface,
which the conditions require. The motions, therefore, must be
somewhat as represented in Kig. (3) The part of the atmosphere
next the cartl’s surface in the middle latitudes having a motion
towards the poles, extends to a considerable height, since it gener-
ally embraces the region of fair weather clouds, as may be seen by
observation.

52. It is scen, from the results given in the preceding table, that
the eastward motion of the atmosphere in the middle and higher
latitudes must be greatest in the upper strata, and that in the re-
gion of the trade winds, where the motion is westward at the surface,
it must be towards the east above. This is also evident from the
general consideration, that the whole amount of deflecting force
castward arigsing from the motion of the atmosphere towards the
poles is equal to the deflecting force westward arising from its mo-
tion back towards the equator, and that the deflecting force eastward
is principally above where there is less resistance than near the sur-
face.  Hence at the top of Mauna Loa in the Sandwich Islands, and
on the peak of Teneriffe, both of which places are near the tropical
calm belt at the surface, a strong south-west wind prevails. Hence,
also, “on the eruption of St. Vincent, in 1812, ashes were deposited
at Barbadoes, sixty or seventy miles eastward, and also on the decks
of vessels one hundred miles still further east, whilst the trade wind
at the surface was blowing in its usual direction.” The eastward
motion of the atmosphere above, in the latitudes of the trade winds,

is also confirmed by observations made on the directions of the
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clouds at Colonia Tovar, Venezuela, latitude 10° 26/, as given in the
Report of the Smithsonian Institution for 1857 (p. 254). While
the motion of the lower clouds was in general from some point
towards the east, the observed motion of nearly all the higher
clouds was from some point towards the west.

53. From what precedes, the limit between the atmosphere
which moves eastward in the middle latitudes and westward nearer
the equator, which at the earth’s surface is at the tropical calm belt,
must be a plane inelining towards the equator above. And since, ac-
cording to (§51), the atmosphere near the earth’s surface cannot
have an castward motion, unless it also has a motion toward the
poles ; this plane near the cartl’s surface must nearly coincide with
the one which separates the atmosphere moving towards the poles
from that moving towards the equator, in the trade wind regions,
and hence the latter must also incline above towards the equator.
This explaing the winds at the peak of Teneriffe, which at the top
always blow from the south-west, while at the base they blow alter-
nately from the south-west and north-east, changing with the seasons.
As the tropical calm belt together with this dividing plane changes
its position with the seasons, as will be explained, in the latter part
of summer when this plane is farthest north, it still leaves the top of
the peak north of it while the base is south of it; and hence the
wind at the top always blows from the south-west, even when
at the base it blows from the north-east. As this plane moves
south in the fall, more of the peak aradually becomes north
of it ; and hence the south-west wind, which always prevails at the
top, gradually descends lower on the sides of the peak until 1t
reaches the base. Hence, when this plane reaches its most southern
position, in the latter part of winter, the south-west wind prevails
at both the base and the top.

51, Tt is seen, from the first of the results given in the last table,
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that if the barometric pressure increases near the poles, as it seems
to do, at least in the northern hemisphere, the atmosphere at the
earth’s surface must have a westward motion there; and as it cannot
have this motion unless it also have a motion toward the equator,
so that the deflecting force arising from this motion may overcome
the resistance to the westward motion, the wind there must blow
slightly from the north-east, as has been shown in (§37). This,
according to Professor Corrin’s chart of the winds, already alluded to,
seems to accord with observation.

55. The depression of the atmosphere at the poles and at the
equator, and the accumulation near the tropics, may be explained in
a gencral manner by means of the principle in (§32), that when a
body moves in any direction in the northern hemisphere, it is deflect-
ed to the right, and the contrary in the southern. The atmosphere
towards the poles having an eastward motion, the deflecting force
arising from it causes a pressure towards the equator, and the
motion near the equator being westward, the pressure is towards
the poles ; and hence there must be a depression at the poles and at
the equator, and an accumulation near the tropics. Since this de-
flecting force is as cos 8, it is small near the equator; and, conse-
quently the depression there is small.

56. According to the preceding tables of barometric pressure,
there is more atmosphere in the northern than in the southern
hemisphere. Says Sir James Ross, “the cause of the atmosphere
being so very much less in the southern than in the northern hemi-
sphere remains to be determined” This is very satisfactorily ac-
counted for by the preceding prineiple; for as there is much more
land, with high mountain ranges, in the northern hemisphere, than
in the southern, the resistances are greater, and consequently the
eastward motions, upon which the deflecting force depends, is much
less; and the consequence is, that the more rapid motions of the
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southern hemisphere cause a greater depression there, and a
greater part of the atmosphere to be thrown into the morthern
hemisphere.

This also accounts for the mean position of the equatorial calm
belt being, in general, a little north of the equator. But in the
Pacific Ocean, where there is nearly as much water north of the
equator as south, its position nearly coincides with the equator.

For the same reason the tropical calm belt of the northern
hemisphere is farther from the equator than that of the southern
hemisphere ; and, on account of the irregular distribution of the
land and water of the two hemispheres in different longitudes, it
does not coincide with any parallel of latitude. In the longitude of
Asia, where there is all land in the northern hemisphere and the
Indian Ocean in the southern, this belt, which is also the dividing
line which separates the winds which blow east from those which
blow west, is farther from the equator than at any other place, as
shown by Professor Corrix’s chart.

57. In winter, the difference of temperature between the equator
and the poles, upon which the disturbance of the atmosphere de-
pends, is much greater than in summer; this causes the eastward
motion of the atmosphere in either hemisphere during its winter
to be greater, while in the other hemisphere it is less. Hence a
portion of the volume of the atmosphere in winter is thrown into
the other hemisphere; but, although the volume or height of the
atmosphere is then less, yet, being more dense, the barometric pres-
sure remains nearly the same. The difference at Paris, and in the
middle latitudes generally, between winter and summer, is only
about % of an inch.

On account of this alternate change with the seasons of the
velocity of the eastward motion of the atmosphere in the two hemi-
spheres, the equatorial and tropical calm belts change their positions
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a little, moving north during our spring, and south in the fall
When the sun is near the tropics, the true law of the decreasc of
temperature from the equator to the poles varies from that which
has been assumed, (§46), and is then different in the two hemi-
spheres, which doubtless has some effect also upon the position of

the calm belts.
[To be Continued.]

METIIOD OI' SOLVING NUMERICAL EQUATIONS.
BY DASC(:;GREENE,
Professor of Mathematics in Rensselaer Polytechnie Institute, Troy, N. Y.

Tur most direct method of resolving a numerical equation of
any degree, is to transform it in such a way that its first member
becomes a perfect power of the same degree; the solution is then
reduced to extracting the root of its second member.

If the first member can be made a perfect nth power by the
addition or subtraction of a munber, the solution will be effected
by simply extracting the ath root of the absolute term.

Thus, if the given equation be

P —3824F32=15,
subtract . . . . . . . 1l=1;
then (z—1P=2"—3" 4+ 32—1=14,
v—1=y 14, and 2 =11y 14.

If; however, it should be necessary to add terms involving z,
then the quantity whose nth root is required, will be a polynomial,
with numerical coefficients, and of a degree inferior to the nth.

Thus, if we have
P+ TP+ ba=18,
add §—+T2=8—2+ Tu;






