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INTRODUCTION

Many of the phenomena of physical science are simple enough and
well enough understood that they are amenable to complete mathemat-
ical analysis without recourse to auxiliary experimentation. There are
other phenomena, however, which, though being made up of well-under-
stood simple systems, are so complicated as a whole as to render com-
plete mathematical analysis difficult or impossible. The distribution of
stress in a complicated machine part, or the flow of water in an irregu-
larly shaped vessel, would constitute examples of the latter kind.

When something must be known about one of these more complicated
problems it is usual, whenever possible, to obtain the desired informa-
tion empirically by direct experimentation. Often, however, the thing
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studied is too large to be experimented with. Or, as in the case of large
engineering structures, the information on a bridge, dam, or building is
needed in advance of designing the structure.

Under these conditions, where mathematical analysis is inadequate,
and where for one reason or another direct experimentation is precluded,
the best remaining alternative is to construct and study a scale model.
This in fact is what is being done successfully in aerodynamical, hydrau-
lic, and mechanical and electrical engineering. Aerodynamical studies
are being made on scale models of aeroplanes in wind tunnels. In mod-
ern hydraulic laboratories such as that of the United States Army Engi-
neering Corps at Vicksburg, Mississippi, harbors, canals, rivers, ground
water flow, and other similar problems are being studied by means of
models. Civil engineers are studying models of buildings, bridges, and
similar structures. Mechanical engineers are making transparent mod-
els of machine parts and studying their stress distributions by the strain
figures revealed by crossed nicol prisms and polarized light. Electrical
engineers are studying both electrical models of electrical systems, and
what may seem surprising, electrical models of mechanical systems.

The geological problems of mountain making and of diastrophism in
general are peculiarly of the type that do not lend themselves readily to
analysis, and the size of the elements involved places them beyond the
range of direct experimentation. In this case also there remains the
alternative of studying such phenomena by means of experiments per-
formed upon properly built small scale models. For more than a hun-
dred years attempts have been made to study the mechanies of the rock
deformation in mountain making by this means. Among the earliest of
such experiments were those of Sir James Hall * who studied the forma-
tion of folds by the use of models, employing layers of cloth in some in-
stances, and of clay in others, to represent strata. A. Daubree? was a
somewhat later pioneer. He performed a wide range of experiments
studying both fracture and folding. For materials, he used glass, plas-
ter, wax, and strips of metal. Later came Willis'® well-known experi-
ments on the mechanics of the Appalachian type of structure. Willis
used a pressure box allowing for a model about a meter in length. The
materials used in his various models were composed of layers of plaster
of paris, and of waxes of various consistencies, weighted from above by
a heavy load of shot.

Subsequently, numerous others have performed model experiments to
elucidate various geological problems. A few of the more recent ex-

1W. Paulcke: Das Ezxperiment in Geologie (1912) Karlsruhe.
3A. .Uwscqmm" Etudes synthétiques de géologie erpérimentale, pt. 1 (1879) Paris,
3 Bailey Willis: The hanics of Appalachian structure, U. S. Geol. Surv., 13th Ann. Rept., pt.

3 (1891-1892) p.. 211-289.
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perimenters have been Chamberlin and Miller,* Mead,® Link,® Hans
Cloos,” Fujiwhara, Tsujimura and Kusamitsu,® Ph. Kuenen,? and Net-
tleton.® Most of these experimenters employed materials ranging. in
strength from plaster to rather soft waxes and clay. Cloos, Kuenen,
and Nettleton differed from the others by using materials of extreme
weakness. In his experiments on tectonic structures, Cloos used an al-
most liquid clay. Kuenen used china clay, vaseline, mineral oil, and
paraffin at a temperature only slightly below that of melting. He tried
gypsum but discarded it as being too strong. Nettleton, in experiments
representing salt domes, employed two viscous liquids of different den-
sities.

Much excellent experimentation has also been done by Adams ™ and

associates, von Karméan?? Bridgman,'® Griggs,'* and others, on the
elastic and plastic properties of rocks. This kind of work provides some
of the necessary data for model experimentation but it is not to be
classed as model experimentation itself. :

Ever since the days of John Hutton ** there have been some geologists
who have maintained a legitimate skepticism regarding the significance
of the results obtained by means of models of plaster and clay, when ap-
plied to mountain structures where the material is hard rock. Besides
the discrepancy in the strengths of the materials in the two cases, there
has also been the disparity in the time required, the model being de-

+R. T. Chamberlin and W. Z. Miller: Low-angle faulting, Jour. Geol., vol. 26 (1918) p. 1-44.

5 Warren J. Mead: Notes on the mechanice of geologic structures, Jour. Geol., vol. 28 (1920) p.
505-523.

8 Theodore A. Link: Experiments relating to salt dome structures, Am. Assoc. Petrol. Geol., Bull.,
vol. 14 (1930) p. 483-508.

7 Hans Cloos: Kunstliche Gebirge, Nat. u. Mus. S kenbergische Naturforschende Gesellschaft,
Frankfort, pt. 1 (1920) p. 225-243; pt. 2 (1930) p. 258-269. See also Einfuhrung in die Geologie
(1926) Berlin.

88. Fujiwhara T. Tsujimura, and 8. Kusamitsu: On the earth-vorter, échelon faults and allied
phenomena, Gerlands Beitriige zur Geophysik, Suppl. vol. 2 (1933) p. 301-360.

9 Ph. H. Kuenen: Negative isostatic anomalies in the East Indies (with erperiments), Leidsche
Geologische Mededeelingen, Deel 8, Aflevering 2 (1936) p. 169-214,

B. G. Escher and Ph. H. Kuenen: Ezperiments in connection with salt domes, Leidsche Geo-
logische Mededeelingen, Deel 3, Aflevering 3 (IT 1929) p. 151-182.

101, L. Nettleton: Fluid mechanics of salt domes, Am. Assoc. Petrol. Geol., Bull. vol. 18 (1934)
p. 1175-1204.

1P, D. Adams and J. T. Nicholson: An experimental investigation into the flow of marble, Royal
Soe. London, Philos. Tr., ser. A, vol. 195 (1901) p. 383-401.

F. D. Adams: An ezperimental investigation into the action of differential pressure on certain’

minerals and rocks, employing the process suggested by Professor Kick, Jour. Geol., vol. 18 (1910)
p. 489-525. . .

13Th, von Karman: Festigkeitversuche unter allseitigen druck, Zeitschr. des Vereins deutscher
Ingenjere, vol. 55 (1911) p. 1749-1757.

18P, W. Bridgman: The physics of high pressure (1931) (New York); Shearing phenomena at
high pressure of possible importance to geology, Jour. Geol., vol. 44 (1936) p. 653-669.

14 David T. Griggs: Deformation of rocks under high confining pressures, Jour. Geol., vol. 44
(1936) p. 541-577.

15 See Sir Archibald Geikie: The founders of geology (1897) London. Also W. Paulcke: Das
experiment in Geologie (1912) Karlsruhe.

- ’ )
INTRODUCTION - , 1463
\

_formed in a few hours by an amount which in the mountain may have

required a million years.

Still another reason for questioning the validity of model experiments
is to be found in the artifices adopted by some of the experimenters.
Willis, for example, found it necessary to load his models of Appalachian
structures with an overburden of 3 to 5 pounds per square inch of lead
shot to make them stay down properly. This, on the scale of his mod-
els, was equivalent to an overburden of something like 100 miles of sedi-
ments. Even then the more competent plaster layers broke into rigid
slabs instead of folding plastically, as even the quartzites in the Appa-
lachians themselves are known to have done.

In view of the diversity of the materials that have been used in model
experiments, and of the wide range of methods employed by various
experimenters, one wonders which, if any, of the results are trustworthy.
Particularly there is the need for an objective criterion to enable one
to determine what the correct properties of a model should be for the
best similarity, when the properties of the original are known, or whether
it is even possible to build a correct model from available materials.

Dating from the time of Galileo ® there has been accumulating a body
of knowledge of how a model is related to its original, or of how the
physical properties of a body change with change of size. During the
last 50 years this body of knowledge has been brought to a high state
of advancement in the various branches of engineering, especially in
connection with the work in modern hydro- and aerodynamic laboratory
practice using scale models.)” Recently Churchill*®* has worked out
the theory for problems involving the conduction of heat.

1t is the purpose of the present paper to derive the general theory
of the similarity between a model and its original for purely mechanical
systems. This theory will then be applied to a number of illustrative
geological problems and a set of model ratios between properties of the
model and the corresponding properties in the original will be deter-
mined. This will enable us, if we know given properties of the original,
to determine what the corresponding properties of the model should be.
The knowledge thus acquired may be used either as a guide in actually
performing experiments or as a criterion for evaluating experiments
which have already been performed. In many cases it will allow one

18 Galileo Galilei: Dialogues concerning two new sciences [translation by Henry Crew and Alfonso
de Salvio] (1914) p. 109-152. New York.
17 Francesco Marzola: Some considerations regarding hydraulic models, Hydraulic Laboratory
Practice, 1926-1929, A.S.M.E. (1929) appendix 13, p. 743-758.
. Alton C. Chick: Dimensional analysis and principle of similitude, Hydraulic Laboratory Prac-
tice 1926-1929, A.S.M.E. (1929) appendix 13, p. 782-827.
L. Prandtl and O. G. Tietjens: Applied hydro- and aeromechanics (1934) Chap. 2. New York.

B8R, V. Churchill: Comparison of the temperatures in a solid and its scaled model, Physics, vol.
6 (1935) p. 100.
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to bring a problem of which he has little sensory experience down to a
scale of things with which he is already familiar, and thereby enable
him to have some intuitive understanding of it, even if no experiment is
performed.

It is possible to extend dimensional analysis (which is what we shall
be using) to include thermodynamic relations accompanying mechanical
changes. To attempt to do this here, however, would complicate our
problem more than the results to be obtained seem to warrant. Conse-
quently we shall confine our attention chiefly to the mechanical aspects
of the problems considered.
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THEORY OF MECHANICAL SCALE MODELS
FAMILIAR EXAMPLES

Before going into the intricacies of the theory of models it might be
pointed out that there are a large number of familiar, everyday occur-
rences that can be shown to be the direct consequence of the dimensional
relations we are to derive and use.

1. Of two animals more or less geometrically similar but of different
sizes, the smaller can fall without injury through a greater height, meas-
ured in multiples of its own length, than the larger. A mouse can fall
without injury a distance many times his own length, a dog fewer, and a
horse fewer still.

2. Of two animals of different sizes but similar shapes, the bodily
motions, (leg motions, voice frequency, heart beat, etc.) of the smaller
have the higher frequency. :

3. A windmill of small radius will turn faster than one of large radius
in the same wind.

THEORY OF MECHANICAL SCALE MODELS 1465

4. Given any two machines having the same rate of output of the same

| product, the one whose parts have the higher frequency will, in general,

be the smaller. For example, a high speed shaft need be only a fraction
the size of a low speed shaft for Eosﬂg_ transmission of power. This

N NN
N~ NN

™~
~_ DN

n= / n = 2 - n = w
Figure 1.—Change of magnitudes of a cube as the length of side is changed

is one of the most important facts confronting the mineral industries
today. .

5. In electrical equipment, for the same power, the higher the fre-
quency the smaller the transformers, generators, condensers, and motors.
Short wave radio parts are very much smaller than those used for broad-
cast frequencies, which are smaller than audio-frequency parts, and all
are smaller than 60-cycle power equipment of the same power.

Although the reasons for the above relations may not be obvious, they
serve to demonstrate the fact that when the size of a body is changed its
various other physical properties also change, but, in general, not pro-
portionally to the change in size.

It shall be our immediate task to investigate how various physical
properties of the body change as its size is changed. Consider a cube
of lead, for example. Now let us enlarge it n diameters without chang-
ing its density. Let n be successively 1, 2, 3, 4, 5, and so on. Let us
then investigate the manner in which the area, the volume, the mass, the
weight, and the pressure at the base of the cube vary for the different
values of n.

When n is 1, we will consider each of these quantities as unity—unit

._muﬂ% of side, unit mass, unit area, unit volume, unit weight, and unit

/ v .




1466 M. K. HUBBERT-—SCALE MODELS AND GEOLOGIC STRUCTURES

pressure. Now let n be 2. The length of side will be 2, the area 4, the
volume 8, the mass 8, the weight 8, and the pressure, which is the weight
divided by the area of the base, 2.

ra) b)

Ticure 2—Two geometrically similar bodies

Let n be 3. The side will be 3, the area 9, the volume, mass, and weight

27, and the pressure 3.
This is shown in Table 1 for values of n up to 5.

TasLe 1. —Changes in physical properties with change in size of body

n Length Area Volume Mass Weight Pressure
1 -1 1 1 1 1 1
2 2 4 8 8 8 2
3 3 9 27 27 27 3
4 4 16 64 64 64 4
5 5 25 125 125 125 5

From this it is clear that the area increases as the square, the volume,
mass, and weight as the cube, and the pressure at the base as the first
power of the enlargement factor of the linear dimension of a cube, gravity
and the density remaining constant.

DEGREES OF SIMILARITY
Geometrical Similarity—Two bodies are said to be geometrically sim-

ilar when all corresponding lengths are proportional and all correspond-
ing angles of the two bodies are equal. This is simply a generalization
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of the familiar definition of similar triangles ?o& geometry, extended
to include bodies of any shape. , :

If we let I, be a length in one of the bodies, and I. the corresponding
length in the other, then

WIH =\, or L=, €))
where A is the constant of proportionality of length of the two bodies.

If the first body is thought of as the original and the second as a replica
of it made to scale, the latter is said to be a scale model of the former.
The model may be either a reduction or an enlargement of the original;
if a reduction, A will be less than unity, if an enlargement, A will be
greater than unity. A is the model ratio of length. It will be observed
that A is the familiar map scale extended to three dimensions.

In two geometrically similar bodies the ratio of corresponding areas is
equal to the square of the model ratio of length.

4,

4,
where A, and A, are the corresponding areas of the second and first
respectively. This can be seen at once if the two areas are divided into
similar grid-works of n squares each. Then for each square

=N, 2)

and for n such squares

In two geometrically similar bodies the ratio of corresponding volumes

.

18

.ﬂ\m _ 3~w 3 :

V.= b = N 6))

Ns:mﬁas.a @wﬁ..?&@.'ﬁ two geometrically similar bodies undergo

m@oﬂogom:%.mgzmw changes of shape or positions, or both, the two

bodies are said to be kinematically similar provided the time required

for any given change in the one is proportional to that required for the
corresponding change in the other.
123

«Ip = 7y A%v

where ¢, is the time required for the original to undergo a given trans-

formation, ¢, the corresponding time required for the model, and = the
model ratio of time.

/
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Similarity of Velocities and Accelerations—If two bodies are kine-
matically similar the velocities and accelerations of corresponding points
must be proportional:

W .
va_ o _ta_M_
Sldl«hlﬂlvﬁa (5)
51

where v, and v, are the velocities of corresponding points and n the
model ratio of corresponding velocities.
For accelerations:

s
Q» Mm A@v
»
—_—= = o = 7 —2
a Y l, T
t
where y is the model ratio of acceleration.
For angular velocities:

0

o _ta_ 0 1

w 6 61t (M
t

where o, and ®, are the angular velocities, and 6, and 4, the angles of
rotation in the times ¢, and £, in the original and the model respectively.
But
0, = Oe.
Therefore

2

w1

=1 (8)

ER

Dynamic Similarity—In the discussion of geometrical and kinematic
similarity we have described the relations between the forms and mo-
tions of bodies without regard to the fact that they possess mass. As
all bodies possess mass, however, the presence of a gravitational field
and the inertial reactions of mass to accelerated motion set up forces
which have to be reckoned with.

To begin with, we require that our model have a mass distribution
similar to that of the original. What we mean by this is that if dm,
be the mass of an element of volume, dV, in the original, and dm, that
of the corresponding element of volume, dV., of the model, then the ratio

dms - )

&su t.s
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must hold point by point throughout the two bodies, x being the model
ratio of mass.

From the model ratios of mass and length, the ratio of density is ob-
tained directly. Density is defined as the mass divided by the volume.
Hence the model ratio of density 8 is given by :

dm

_p_dV, -

mlm;m@u:i (10)
av,

and is a constant throughout the two bodies.

The forces acting upon any element of mass, dm, occupying an ele-
ment of volume, dV, may be divided into two separate classes, the body
forces and the surface forces. The body forces, as the name implies, are
forces originating inside the body of the volume. In purely mechanical

~ systems the body forces are of two kinds, those due to gravity and those

due to inertia. If we call these respectively f, and f;, we then have

Jy=dm.g (11)

and by Newton’s Second Law of Motion

fi=dm.a (12)

where g and a are the forces per unit of mass due to gravity, and to

- -the local acceleration of the mass, respectively.

The surface forces are forces acting only on the external surface of the
element of volume considered. They are consequently proportional to

' the magnitude of the area acted upon. The intensity of surface forces

is measured by the ratio of the force to the area acted upon, and is
known as the stress.

Hence,
Force

Stress =
Ares’

or is the force acting per unit of area. One of the most familiar ex-

‘amples of stress is pressure, where the force is directed toward the area
-acted upon and normal to it.

Pressure is, however, only a special case of stress. Another special

. case is tension, where the force is directed away from the surface acted

upon, and normal to it. The most general type of stress, however, is that

- in which the force is oblique to the surface. In this case it may be re-

solved into a component normal to, and another parallel to, the surface

- acted upon. The former per unit of area is known as the normal com-
. Ponent of stress, and the latter as the tangential or shearing component.
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The resultant surfate force acting over any volume V is the sum ob-
tained by adding vectorially the products of the stresses by the areas
acted upon over the entire surface. _ A

Surface forces originate in several ways. In the case of fluids at rest,
they consist entirely of pressures. The shearing component is non-

P s

fa) , k) e )
Ficure 3—Types of stress
(@) Pressure; (b) tensile stress; (c) general stress, showing nmormal and tangential components;
(d) shearing stress.
existent. In the case of elastic solids, surface forces result from both
normal and shearing components of stress related to the elastic strain.
In the case of fluids and plastic bodies in motion the surface forces re-

£

- =y

/
4.
&

@) 172, (c)

Froure 4—Equilibrium of forces acting upon an element of mass
(a) in viscous body, (b) in elastic body, (c) general equilibrium between resultant body forces
and resultant surface forces.

sult from, or are related to, the volume change and the time rate at
which the body undergoes deformation. Those resulting from the latter
cause may be thought of as the reststive forces.

We now have body forces due to gravity and to inertial resistance
to acceleration and surface forces arising from pressure, from elastic
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strains of the body, and from viscous resistance to rate of change of
form. In general, each element of mass is in a state of dynamic equi-
librium among as many of these forces as are acting simultaneously, and
we may say that the vector sum of the body forces acting is mncm_, and
opposite to the vector sum of the surface forces.

Let Fg, Fy, F., F,, and F; be respectively the resultant vectors of
forces due to gravity, to pressure, to viscous resistance, to elasticity
and to inertia, acting upon an element of mass dm contained in .,SEBM

@ )
Ficure ..m.lmmsu.?&n@ of forces acting on cor-
responding elements of mass in viscous bodies

(a) Original, (b) model.

dV. As these are all the forces acting, their vector sum must be zero
so we have for bodies undergoing fluid or plastic deformation .

? N-ﬂl_lN«.vl_lN.a"'N‘w‘ : Ava

and for elastic solids

Nun+mwo"|§m. Au.*v

ﬁ%ntmo similarity requires that on each element of mass dm. occu-
v%_mm ﬁ.uEBm dV, of the model the forces acting must be such that the
Boﬁou is geometrically and kinematically similar to the corresponding
Boﬂws of the element of mass dm, in volume dV, of the original. This
moua&ou is satisfied exactly if for each force F, acting on Bm.wm am.
in gw original there is a corresponding vector force F, acting upon Bpwm
dm, in the model, F, having the same orientation as F,, and the ratio
of the magnitudes of the two forces being “

7= ¢ (15)
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where ¢ is the model ratio of force and is constant for all corresponding
forces throughout the two bodies.
We have accordingly

m._n- mqvp'NﬂuH N.nu m‘:.

F, F, F. F. F .
T _Te2 T2 _"22_"R_ g (16)

for all corresponding forces.

We now have as the most general condition for similarity that fwo
massive bodies can be geometrically and kinematically stmilar only pro-
vided the masses of the one, point by point, are proportional to the
corresponding masses of the other, and that the corresponding forces,
point by point, have the same directions and proportional magnitudes.

FORCES DUE TO VARIOUS CAUSES

Statement of Investigation.—It now remains for us to investigate

somewhat more in detail the different species of force that may act upon

an element of mass within a body, for, as we have seen, the ratio of
each of these between the model and the original must be the constant ¢.

Body Forces—We begin with the body forces whose magnitudes by
equations (11) and (12) are

Fy = dmy,
m.m = &93.9.
and by (16) together with (11) and (12) we obtain
Fpp _dmgs _  _ Fa_ dma
m.ﬁ B dmgy =¢= Fy - dmiay qu.
But since
ams _
&3‘5 =¥k
and
% _ Ar—2
. a
then
= Fi = —2
¢ = ﬂ = uAr2 amv

1

By equations (16) we learned that all corresponding forces must have
the same ratio ¢, and now by (18) we learn that ¢ is uniquely deter-
mined by the values assigned to p, A, and r, the fundamental model
ratios of mass, length, and time, which, in the most general case, may
be chosen independently and arbitrarily.

The general case is merely a statement of the fact that where both
gravitative and inertial forces coexist, both must have the same model

THEORY OF MECHANICAL SCALE MODELS 1473

ratio ¢. This fact, however, constitutes a certain duality of control in
that the ratio of inertial forces must be made to fit the ratio of the
gravitative forces, which lessens considerably the degree of arbitrariness
that otherwise would exist. In particular, when both the original and
the model are on the earth’s surface

m—w"\xwu H ".%nyﬂlwu AH@u

in which case

T = A}, (20)
Consequently under such restraint A and r are no longer mutually in-
dependent, for when either is arbitrarily chosen the other is uniquely

determined; only x and A, or x and r remain as completely independent
model ratios.

In separate spherical astronomical bodies, however,

m
Q"NW.MNJ (21)

where g is the attractive force on a unit mass at any point outside the

VA

fa) )
Ficure 6.—Similarity of gravitational forces

_8&,. ma. distance r from its center, and K the universal constant of
gravitation. Then if we had two such bodies; one a model of the other
we should have for the ratios, ,

ms

Ky —
@"L “J\ E—3 yﬂln
a1 mi o ’

Nﬂu.lﬂ
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or

NN.M = I\ = pINTR (22)

While it is not physically possible to alter the constant of mam&gﬁom
it is sometimes useful for theoretical purposes (as we shall see later) to
be able to compute a model as if K could be varied. Equation (22)
enables us to do this in terms of fundamental model ratios p, A, and 7.

Surface Forces—We turn now to the surface forces which, as we have
seen, must be such as to balance the body forces. If we take a small
element of volume dV containing mass dm, the resultant surface forces
over the element must be equal and opposite to the body forces acting
on the mass dm. The surface forces are proportional to the stress and
the area; the body forces are proportional to the mass, and hence to
the volume. If lis a characteristic length of the element of volume, we
have as the ratio of the body forces to the surface forces,

Body Forces _ . B
Surface Forces k 2 @3

which tends to the limit zero as I tends to zero. In other words the
body forces diminish with size more rapidly-than the surface forces, so
that if the element of volume is small enough we may completely neg-
lect the body forces for that element, and focus our attention upon its
surface forces, which must then be in equilibrium among themselves.
This leads us to the conception of the state of stress at a given point
within the body. The criterion of dynamic similarity then tells us that
at every corresponding point within the two bodies the states of stress
must be similar at corresponding times.

State of Stress at a Point.—Let us take an infinitesimal element of vol-

_ ume with lengths of sides dz, dy, and dz, and small enough that the body

forces are negligible compared with the surface forces. We then have as

the condition of equilibrium that all the surface forces must be in

equilibrium among themselves; that is, there must be no resultant force
tending to accelerate the body, nor a torque tending to rotate it.

We resolve the stresses acting on each face into a normal component
and two shearing components parallel to each of the three axes X, Y,
and Z. We designate the normal component by the letter ¢ and we
give it a subscript z, ¥, or %, designating that the face upon which it
acts is perpendicular to the X, the Y, or the Z axis respectively. Each
shearing stress component is designated by the letter = (not to be con-
fused with the model ratio of time) bearing two subscripts, the first
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signifying the axis perpendicular to the face acted upon, and the se
ond the axis to which the component is parallel. “ e
For each pair of faces there is one face for which the outward di-
rected normal (positive normal stress) is directed toward the positiv
end of the axis of coordinates to which it is parallel and one mow swwom

Z
_Qm Y
_ z TOx
Tex
% s
2 “-l-r by
L > »
-1 i —p N d
\ P Tyx
P . dx x
. 1\1 Tyx
_ Fi1GuRre 8.—Equality of
¥ shearing stress couples

X

Clockwise couple tending to
produce rotation about the Z axis
is equal and opposite to the
counter-clockwise couple.

Ficure 7—Stresses  acling on an infinitesimal
elementary cube

the normal is oppositely directed. We adopt the convention that on
any .mmom for which the outwardly directed normal points toward the
@85.5 end of the axis to-which it is parallel, the two components mm
w.rmmzum stress are positive when their vectors point toward the posi-
tive ends o.». the axes to which they are parallel. On the opposite wmo,

of each pair all stress directions become reversed. The normal st mm
are positive when directed outward. e

We then have on the three pai
. pairs of faces of the el
opiped the following components of stress: clementary paraliel

ox Txy Tx; ON the X face,
Gy Ty; Tye on the Y face,
0: T Tsy oOn the Z face.

This number can be reduced wh i
en we consider that th i -
ments about each of the axes must be zero. Then € KPS Te

Txy = Tyx} Txzs = Tax} Tyzs = Ty (24)

This leaves us with six fundamental components of stress:

ox, 0y, 0, normal stresses,
Txys Tysy Tax Shearing stresses.

Princ .
e MHNMQM Stresses.—While ?m.?.o& of this will not be developed here
shown that for any point in a body it is always possible to mm
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ofient the X, ¥, and Z axes that all of the components of shearing

stress vanish:
Tay = Tys = Tax = 0.

In such an instance there remain only the normal components of
stress, oy, oy, and o,, which are then designated oy, oz, and os and are
said to be the three principal stresses at the point in question. If the

% T

92

0z
O T3a

@) b)

9 —Similarity of principal stresses at corresponding points
(a) in original, (b) in model.

FIGURE

magnitudes and orientations of the three principal stresses at any point
‘are known, the components of normal and shearing stress on any plane
through that point can be computed.

In the most general case of stress in rigid bodies or
in motion the three principal stresses are unequal.
all three become equal and all shearing stresses in what

become zero.

Strain—In an elastic body the normal stresses produce elongations in
the directions of the three axes, and the shearing stresses produce shear-
ing deformation.  All changes of size or of shape of a body, or both,
are said to constitute strains. Strains are measured in terms of the ratio
of the increase in a given geometrical dimension to the original value of

that dimension. Thus:

. Increase of volume .
Volume strain = Original volume ’ (25
. _ Increase of length
Length strain = Original longth ’ (26)
. _ Shear displacement
Shear strain = Thickness . (27)

in viscous fluids
For fluids at rest
ever directions
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Eam&&“@.llﬁg relation between strain and stress in elastic bodies
is given by Hook’s Law which states that for a given material

Stress
Strain

This constant is called the modulus of elasticity of the material
As we rm:s. volume strain, length strain, and shear strain mmmommdmm
with appropriate stresses, there must be as many &m.e.mm@ kinds of

= a constant. (28)

/
|/
—
[
&

by
v

~
~

le—dz + €, dz

TN Zr 7 G —> x o
' ] ' dx x
Ficure 10—Elongations parallel to F16ure 11—Shear parallel

azes of coordinates to X axis only

moduli of elasticity, namely the volume modulus, length or Young’s
modulus, and shear or rigidity modulus. “ !

Ha.p the case of our elementary volume we may designate the length
strains parallel to the three axes respectively as e, €, and &, where ¢
is the amount of elongation per unit of original Fsmﬁﬂ ’

mr.aﬁ. strain, from definition (27), involves a distortion of the kind
obtained by shearing a deck of cards, one over the other. This involves
a change of the angle at the end of the deck by an amount § which ma
be taken as a measure of the strain. More strictly the shear is e Em
to the tangent of 6 but when 6 is small this becomes equal to the ammwmu
measure ﬁ.vm 6 itself. Elastic strains seldom are great enough that one
need consider the tangent of 4 as being different from 4 itself.
az.os we relate the stresses acting upon our elementary volume to the
M rains produced. (See Fig. 12.) &, €, and &, are the elongations;
sy, Oz, and 0, are the shears parallel to the X-Y, the Y-Z and the Z um
planes respectively. We then have , o

Ox Oy O3
| Ze2o2op (29)

where E is the modulus of elongation, or Young's modulus; and

Oy Oys  Onx ’ (30)

ﬁrm_mqm G is the modulus of rigidity.
%ﬁﬂowr?mmm it is possible to derive also the volume modulus though
$ no necessity of our doing so for the present purposes.
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"What we are leading up to is the question of what must be done to
the moduli of elasticity in order that the model may be dynamically
similar to the original. We can now write that for similarity the ratio

m
E: e o2 @
B n o« B
€
and that
._-IN
Gy, 6 7 b
G n #2
0,
and more generally that
(Stress)z -
(Modulus), _ (Strain)s _ (Stress)s (Strain),

(33)®

(Modulus); ~ (Stress): ~ (Stress): (Strain)a
(Strain),

We have already seen that all strains of whatever kind are measured
in homogeneous units of length/length, volume/volume, etc. As geo-
metrical similarity requires all corresponding lengths to be proportional
and corresponding angles to be equal in the model and the original, it
follows that all strains are likewise equal. Hence the model ratio of
“strain is unity. : .

Consequently the model ratio of the elastic moduli between the model
and the original is equal to that of stress. Each stress is the ratio of a
force to an area. We have for the model ratio of stress, and consequently
of the moduli of elasticity,

fo

(Modulus), _ (Stress)s _  _ A _ o

(Modulus);  (Stress); T h BN, (34)
Ay

where o is now taken as the model ratio of stress and = that of time, as
originally.

Viscosity.—In the case of fluids we obtain the stresses at a point _o%,

identically the same reasoning as that employed for the case of elastic
bodies and again the six components of stress are:

Oxy Oy, On
Txy; Tyz Toxe

19 Strictly speaking this is true only for isotropic bodies. For anistropic materials the moduli of -

elasticity are functions of the direction. This, however, is not incompatible with similarity pro
vided that the model be given an anisotropy similar to that of the original. .
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Since our interest attaches only to changes of form in relatively in-
compressible materials we may consider the fluids to be incompressible.
In this case we may disregard the normal components of stress, which
tend to produce change of volume only, and focus our m.gm:ao,u upon
the shearing components.

Ju
N.nw d¢

(5

i

dx
Fioure 12—Shear parallel  Fieure 13.—Eelation between rate of shear, velocity
to both X and Y azes gradient, and shearing stress parallel to X axis

In its behavior under shearing stress a fluid differs from an elastic
body in that whereas the shearing stress is proportional to the shearin
strain in the latter, in the case of the former the shearing stress is ?.om
portional to the time rate at which the shearing strain occurs.

If we let dbyy, dby, and db,; be the angles of the shear occurring in

the fluid in planes parallel, respectivel i
, y, to the X-Y, the Y-Z, and
Z-X planes, in the time dt, then we have: ‘ » and in the

dby

Txy = § w&w
dfy,

o=y (35)
d9,x

Tzx |m &“ ;

where £ is the coefficient of viscosity of the fluid.

To determine the model ratio of the coefficients of viscosity, we solve

(35) for £ and take the ratio

& T2 ANQH dt, _

E=n dn a, " (36)

or

[ ¥ = or = u\"Ir7Y, (37)
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where y is the model ratio of viscosities and r, when used as a model’
ratio, signifies that of time.

Reynold’s Number —In the case of fluid motion somewhat more light
is thrown on the requirements for similarity if we focus our attention
upon the ratio of the body force due to inertia acting upon the mass

v+ av

Froure 14—Shearing stress gradient and velocity
gradient

Gradient of shearing stress will produce a mnet
force in the X direction.

contained in an element of volume of the fluid, to the force due to
viscosity acting upon the surface of that volume. In this case we
choose our element of volume large enough that the body forces are no
longer negligible in comparison with the surface forces.

The force due to inertia is equal to the mass multiplied by the ac-
celeration and is directed opposite to that of the acceleration. The net
force due to viscous resistance of the fluid results from the fact that
the shearing stress is greater on one side of the element than on the
other. This in turn is due to a progressive change with distance of the
velocity gradient of the fluid flow. This net force due to viscous re-
sistance has the same direction as the fluid velocity.

We orient our element of volume with its sides parallel to the flow
lines of the fluid, and its ends perpendicular to these flow lines in such
a manner that the maximum rate of fluid shear oceurs between one pair
of its faces.

We choose axes such that the maximum shearing stress is parallel to
the X-axis and acts upon the plane perpendicular to the Z-axis.

Let 7.z be the shearing stress on one face, and let this increase to

O7zx

Tix + % dz on the opposite face. The resultant force will be the
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difference between the products of these two stresses by the areas of the
faces acted upon, and will be directed/toward the positive end of the
X-axis. :

07z
fo = (v + 2 de Yoty — oty

@ﬂu”
a9z

(38)

dr
. d = 97X |
zdydz % av,

[

where f. is the net force due to viscous resistance acting upon the vol-
ume dV. ,

By oncmsg. Bm.v we can express the shearing stress in a fluid in
terms of the viscosity and the gradient of the velocity, since

&NH
= g

dé equals the ratio of the displacement in time dt of the upper layer
over the lower, to the distance separating the two. Hence

dudt db.x du

z " @ T @

%un =

where u is the velocity in the X direction. Consequently

T = M @. .
x T (39)
By combining (39) and (38) we obtain for f,.:
= = - Ju :
fr= % dav = 5 dav. (40)

The force due to inertia is
Ji=dm +a=p-dV . a, (41)
and from (40) and (41) we obtain the ratio
fi _ _pa - dV  _  pa
Je £ %y ou

S LA

_Hm we resolve the members of the right hand term into their constituent |
elements and arrange them in a slightly different manner we get

s
/

Ji __ra P lv
fr ou B W -
p

= R, (42)

m.mﬁ £
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where | is any characteristic length, v a characteristic velocity, v the
ratio of the viscosity to the density, known as the kinematic viscosity,
and R, the numerical value so determined, is a constant known as
Reynold’s Number.

Reynold’s Number, which derives its name from Osborne Reynolds,*
who in his pioneer experiments first appreciated its significance, is one
of the most important quantities in fluid mechanics. If we have a fluid
model dynamically similar to the original we get for the model ratio

R~V Nt (43)

Consequently, for a geometrically similar model of a fluid, the canons
of dynamic similarity are entirely satisfied when the Reynold’s Num-
ber for the model is the same as that for the original, the Reynold’s
Number being, of course, based upon corresponding velocities and lengths
in the two cases.

The Reynold’s Number, in any given case, increases with the velocity
of the fluid, and experiment has shown that in each case at a certain
critical value of Reynold’s Number there is a transition from laminar
to turbulent motion. This transition oceurs in the model employing a
totally different fluid from the original at identically the same value of
Reynold’s Number. .

This criterion enables us to perform model experiments using quite
different fluids in the model from that in the original. A model experi-
ment of an airplane, for example, can be made using water for the fluid
and still obtain results that are quantitatively correct for an original
in air.

The smaller the Reynold’s Number in any particular instance, the
greater the stability of the fluid motion. .

Strength and Plasticity.—So far we have spoken of the properties of
elasticity and of viscosity. Elastic deformation is characterized by the
fact that when a body is subjected to a stress it undergoes a finite strain
proportional to the stress applied, and that when the stress is released

the strain disappears and the body regains its original form. A body

is said to be viscous, on the other hand, if when a shearing stress is
applied the body deforms continuously at a rate proportional to the ap-
plied shearing stress, approaching zero as the stress approaches zero.

It has already been stated that the most general state of stress at a

20 Ogshorne Reynolds: An experimental investigation of the circumstances whether the motion of
water will be direct or sinuous, and of the law of resistance in parallel channels, Royal Soc. London
Philos. Tr. (1883) or Sci. Pap., vol. 2, p. 51
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point inside & body is characterized by the three principal stresses, o,
oz, and o5, at that point. It can be shown that the maximum mgm“aum.
stress occurs on & pair of conjugate planes parallel to the axis of inter-
mediate stress, oz, and bisects the angles between the greatest and the
least principal stresses, o and o;. The magnitude of the maximum
shearing stress is equal to half the difference between the greatest and
the least principal stresses.

_ 01 — o3
Tmax = ||w||».

When
0y = 02 = 03,
Tmax = Ov
and all shearing stresses vanish.

When an elastic solid is subjected to unequal principal stresses it de-
forms elastically, but as the difference between the greatest and the
least principal stresses is made continuously larger a state of shear
strain is reached beyond which the body will not return to its original
form upon release of the stress. The body is then said to have reached
its elastic limit. 1If the stress continues to be further increased the body
will fail by slip, by rupture, by brittle fracture, or else a yield point will
be reached and the body will flow plastically.

The particular stress combination under which a given material fails
by fracture or flows plastically is said to be its strength. Strength is
:o.e a constant but is a dependent variable; it is a function of the three
v.znev,& stresses and of the temperature. The strength of a given mate-
.5& decreases as the temperature is increased, becoming zero in the vicin- -
ity of the melting point. As the intermediate principal stress, o, is E-\
creased the strength of a material as measured by the &mmnosovm m,mwémg
the greatest and the least principal stresses, ¢, and o3, at which fracture
or plastic deformation occurs, increases.

The most common tests made in testing laboratories to determine the
strengths of materials are the application of simple tension, longitudi-
nal oﬁ.vBEmmmmoP and shear stress. These give the tensile mmw.msm% the
crushing strength, and the shear strength, respectively. By a <mwwm¢%
M _more o_mgg_nm experiments Adams and associates, von Kirman
: M%anwsw Qsmm.aw and others have measured the strengths of H.oowm
—r igh confining pressures. The strengths of rocks have been in-

Hﬂmm by a factor of 10 times or more in this manner.

. Sm___m.. Mrmw clear that the strength of a material is neither a simple nor
efined property. For our purposes it is sufficient, however, that

_$trength i i : i
gth is measured in terms of stress. If in the original, failure occurs
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in a given manner at a certain stress, then in the model, for similarity,
failure must occur in the same manner at the corresponding value of
the stress. Hence the model ratio of strength must be the same as that
of stress.

(strength): _ (stress)s _  _ .1 s
(strength);  (stress) o = AT (44)

Many substances, the malleable metals for example, deform plasti-
cally at ordinary temperatures and zero intermediate stress. Most
rocks, however, fail under similar circumstances by brittle fracture.
The above-mentioned experiments with rocks under high confining
stresses have all shown that rocks, brittle under ordinary conditions,
become plastic under high enough confining stress. R

The most important experiments of this kind are those recently re-
ported by Bridgman.* A bar of hardened steel called the “anvil” was
placed between two opposed hardened steel pistons. Powdered speci-
mens of materials to be tested were placed between the pistons and the
anvil. The pressure on the pistons was increased and the anvil was
periodically rotated.

For low pressures of the pistons the specimen would slip at the sur-

face of contact and behave as a rigid body. As the pressure on the .

pistons was increased, however, a point would be reached at which the
specimen would shear internally as the anvil was rotated. By knowing
the area of the specimen and measuring the torque necessary to cause
shear, the shearing strength of the material could be computed. Bridg-
man found that the shearing strength of the materials tested increased
as the pressure on the pistons was increased. The maximum pressure
obtained was 50,000 kg./cm.2, which is equivalent to a depth of 166 km.
beneath the earth’s surface. At this highest pressure the shearing
strength of most materials was increased by a factor of 10 times or more
over its value under ordinary conditions. ‘ N

The manner of failure or of flow is also important. Many substances,
once they reached the plastic state, would flow continuously and could
be made to shear an indefinite amount by continued rotation of the
anvil. Other substances could never be made to flow continuously. In
the latter, shearing stress would build up to a maximum and then be
released by sudden jumping and crackling as the anvil was rotated.

On a few of the substances treated the shear stress increased about
10 times as the velocity of shear was increased 10,000 times. In most
of the materials, however, there was no measurable change of the shear-
ing strength as a function of the rate of shear.

n p, W. Bridgman: Shearing phenomena at high pressure of possible importance to geology,
Jour. Geol:, vol. 44 (1936) p. 653-660.
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The fact that in plastic deformation the shear stress necessary to pro-—
duce plastic shear is very nearly independent of the rate of shear &m.. ,
ferentiates this type of deformation from viscous shear, where the stress
is proportional to the rate of shear. Plastic bodies undergo elastic de-
formation until, under the conditions obtaining, the shear stress equals
the shear strength; then they shear plastically at constant values of the
shear stress, which is essentially independent of whether the shear move-
ment is slow or rapid.

This independence between the shear stress and the rate of shear in;
plastic deformation makes it possible to increase the speed of a Em..maaM
process without materially altering the magnitudes of the stresses in-'
volved. This enables us to distort the time factor in models of mountain
making so that in the model an amount of deformation may be made in’
a few hours which otherwise should have required very much longere.
time, without any effective loss of similarity—a point that we mvmm.zsv
return to later.

m~aﬁ§o-§aom~.€.|wmmw%m solid, fluid, and plastic bodies there are
materials such as sealing wax which deform elastically to stresses of
short duration and yet deform viscously to extremely minute shearin
mﬁammwm of long duration. Maxwell 22 has called these &am&noé%aogm |
materials. Under large enough stresses these bodies fail like ordina
mo_HEm. Mg:um wax fractures brittlely. v

n such materials the coefficient of viscosity is quite hi
of deformation cannot be speeded up vm%oum%m oomﬁmwh mwm”wuﬁﬂwmae“”“
when the stress reaches a certain critical value the substance fails b
“%cham. &wﬁm analogy with other substances it is highly probable gmum
by vﬂmmmmw mm 9“ mmma“wmm an elastico-viscous material can be made to fail

There is much evidence to indicate that rocks i i
materials of very high viscosity. The transition to MMM %MMWM&MW%MM
eurs under suitable stress differences and we then get more rapid defor-
mswaosm such wm.BocsSmu making. Viscous movements are exemplified
in the post-Glacial uplift of the Great Lakes region and of Scandinavia

RELATION BETWEEN MODEL RATIOS AND PHYSICAL DIMENSIONS

muww%h.mﬁi& %Sam.le mechanics, all quantities are measured by
P! Dzwa%ms Sﬂﬁozm of three fundamental units: mass, length, and
:.%m w ﬁ.w.am other %ms. armm.m fundamental ones are said to be de-
by SQ niities. me physical dimensions ?* of a quantity are expressed

¢ number of times and manner in which the fundamental quanti-

—_————

J. Clerk Maxwell: O
: the dynamical th i
3P, W. Bri . n the cal theory of gases, Philos. Mag., vol. 86
W. Bridgman: Dimensional analysis, revised ed. (1931) Yale GM?.<W8MM (1863) p. 134,
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ties are involved in the measurement of that quantity. A dimensional
expression is an expression, usually housed in brackets, of the symbols
M, L, and T, representing mass, length, and time, respectively, where
each symbol has an exponent signifying the number of times it occurs.
A positive exponent signifies that the symbol belongs in the numerator;

a negative exponent signifies the denominator; and a fraction signifies
a root. For example

[Dimension of quantity] = [MPL*T°];
[Velocity] = [M°LT-Y| = [LT]; (45)
[Force] = [MLT-.

A physical equation is valid only provided every term has the same
dimensions as every other term. It is physically not permissible, for
example, ever to do the equivalent of adding horses to apples—a pro-
cedure employed regularly and as a matter of course in economic com-
putations.

It will be noted, and can be shown to be of general validity, that when
an expression for the model ratio, in terms of g, A, and = is of the form
pu* A 7°, the dimensional expression in terms of M, L, and T is of the form
M*® L* T°. This important fact enables us to write by inspection the
model ratios for all mechanical quantities from their dimensional for-
mulas. This is done in Table 2 for the more commonly used quantities.

Alternative Fundamental Units.—Frequently it, is convenient to express
the model ratio in terms of ratios of density, velocity, viscosity, accelera-
tion, or strength, taken as fundamental rather than in terms of those
of length, mass, and time. " Any three such ratios will serve equally well
provided only that they contain the ratios of mass, length, and time.

Transition from one set of ratios, taken as fundamental, to any other
may be made quite readily by setting up the appropriate equations of
transformation. For example, suppose we wish to take the ratios of
length, density, and acceleration as fundamental. For equations of
transformation, we have

A=\ A=A
8 = ur—? or w=0O0N . (46)
vy = A2 T o= Vw,<|w

By means of these equations any quantity may be transformed from
either set of units to the other.
SPECIAL CASES
General Statement.—We have now covered the essential theory neces-
sary to enable us to compute the properties of any kind of a mechani-
cal model—rigid, plastic, or fluid—provided the properties of the orig-
inal are known. Before we proceed to the computation of actual mod-
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els, however, there are a number of aspects of the general theory to
which attention paid now will forestall serious difficulties later on.

In setting up our basic criterion of dynamic similarity—that all {orces
of like kinds must be proportional—we chose the ratio of the forces due

TasLe 2—Model ratios of mechanical quantities

Quantity Dimensional Model
Formula Ratio

ADEIE. oot 10 1
TN T L2 A2
VOIUIME. e v eveeeee e et e L3 pX
CUIVABULE. « e v v eveee e e e e L~ A1
FLOQUENCY . « « v v v vneeeneem e e e s T 71!
VElOCIEY « « v v v v e LT A
Acceleration. ..ot LT ATT2
Angular velocity. ... T 71
Angular acceleration. . ...l T T2
DENSIEY « e eneeae e ML™3 . MNT3
MOmMENEUDL . « « e e eeeeeeeeatea e MLT™! BATT?
Moment of momentum....................... ML2T PN

- Angular momentum. . ... ... MLT—! I
FOTCE. « o v e v e ve et e ceiaai ey - MLT— MATT2
TORQU. « ¢« v v e v eveeeraee e e D MLT— HNT2
Workandenergy.........oooivviniienan.. MLT™? uNITT2
POWET. .ottt ML2T—3 phr—s
ACHION. o vttt e et e ML2T™! I
MMEmm ...................................... ML™T™2 uNTITT2

1123 1+ J U e Lo

Ewmeo modulus. .. ...covvii e ML™IT2 tyw#l»
S.macm;%.. TR TTRETTRETPERETREEE ML pNTITTL
Kinematic viscosity............ ..ot LTt At
Gravitational constant. . ..................... MLAT2 PTINITT2

to inertia, uAr2, as the standard to which all other forces have been
«sm% to conform. We encountered at once, however, a certain duality
in the controlling factor of the force ratio owing to the fact that where
,cog. the model and the original are on the earth’s surface, the same
gravity, g, acts in both cases. This at once forces us to set the ratio of
acceleration, Ar2, equal to unity, whereupon A becomes equal to r* for
all such experiments. ‘Consequently under such restrictions A and = are
no longer independent ratios, but rather are so related to each other that
the choice of a value for either uniquely determines that for the other.
Suppose, for example, that we wish to make a model of some earth
phenomenon which required a million years. We wish to perform our
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experiment within a few hours. The time ratio would be of the order
of 10, ‘

In such an instance, A, which is equal to r*, becomes 10#, and if the
original were the earth itself, the model would have to be about the size
of & molecule.

Suppose that on the other hand the original is of the order of 100 kilo-
meters in length and we wish the model to be a convenient size for labora-
tory use. A value for A of 107 would give a length of 100 centimeters
for the model. . Then r, which is A}, would become 10-%. If the origi-
nal time were 108 years, the corresponding time for the model would be
103 or 3,160 years.

A somewhat similar difficulty is encountered in a problem such as this:

It is known that a small flywheel made of a certain material will explode
at a certain angular velocity. It is desired to know the corresponding
velocity of a geometrically similar, larger flywheel made of the same
material.
_ Our strict theory of similarity tells us nothing whatever about such
a problem. It tells us instead that if we change the size of the wheel we
also must change its strength, and hence its materials, or else the two
cases will not be dynamically similar.

It is this objectionable inflexibility of the strict theory that we now
must find a way to circumvent, for otherwise in models of geological
phenomena either length or time will always be getting out of bounds.
If we choose the time ratio to suit our experiment the length ratio be-
comes such as to render the model sub-microscopic in size; or if we
choose the length ratio for convenience, the time ratio becomes such
that the time required is much longer than that available for making
the experiment. . :

A key to the solution of the difficulty is found when we return to first
principles and scrutinize carefully the requirement for dynamic simi-
larity—that all forces of a like kind must be proportional. We have
already remarked that we have a duality of control in that there are two
body forces, one due to inertia and the other due to gravity, both of
which must simultaneously be satisfied. In general, both these forces
do exist and, if they exist, both must be satisfied. The ratio of the

forces due to inertia is pAr? and that due to gravity is :ww which on
, } 1
the earth’s surface is equal to p. Consequently, in such cases

p 2 =p, or ATi=1,

as remarked before.
Inertial Forces Negligible—Suppose, however, that in certain instances
both forces do not exist simultaneously or, if they do, that one of them

THEORY OF MECHANICAL SCALE MODELS 1489

is negligible in magnitude as compared with the other. Consider for
example & static structure in which the acceleration and hence the force
due to inertia is zero; or a slowly moving viscous or plastic body in
which the acceleration is so nearly zero as to produce forces of only
infinitesimal magnitude. In such cases, while there is no incorrectness
involved in basing the ratio ¢ of the forces upon the inertial ratio deter-
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Ficure 15—Special cases of force
equilibrium

(a) As force due to inertia approaches zero,
the resultant body force approaches that due
to gravity; force equilibrium without inertia
in (b) fluid and (c¢) elastic body.

mined v%..&a-n, dynamic similarity no longer depends upon our doing
so. In this case the equilibrium of forces for elastic bodies becomes

Fy4-F.=0, (47)

F,+F.-+F,=0, (48)
for viscous and plastic bodies.

ogwo.zmq in such cases the real controlling factor is not the body force
due to inertia, for this is practically non-existent, but is instead that
force due to gravity which on the earth’s surface is quite independent
of the model ratio of time employed in the particular experiment. Con-
.mmnzwbz%, in cases where the acceleration is so small that forces due to
nertia are negligible the canons of dynamic similarity are entirely

satisfied if we choose the model ratios p, A, and r arbitrarily and make
all forces conform to the ratio

and

T i ﬁ = tQ@ Aﬁuov
M« mnm vg 18 e.ro model ratio of the acceleration due to gravity and may,
or the earth’s surface, be set with negligible error equal to unity. Then

$ = u=0N. (50)
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" The same result is achieved if we factor Ar? out of all the general
model ratios for the derived quantities, such as stress, strength, vis-
cosity, and the like when and ‘where needed.
For example:
Strict Model ratio

model neglecting
Quantity ratio inertia
Force : uNr2 i
Stress pN 1772 pA?
Strength pAT1r72 w2
Viscosity ANt pA "2

Since Reynold’s Number was derived from the ratio of the inertial to
the resistive forces it will be noted that as the inertial forces become
negligible, Reynold’s Number approaches zero. We have already seen
that for the general case, dynamic similarity requires that the Rey-
nold’s Number for the model be equal to that for the original. This
placed us under the severe restriction that

A
2=,
v

é

as a necessary requirement for similarity. In those cases where the
inertial forces are negligibly small, we can now violate this restriction
and obtain dynamic similarity when the Reynold’s Numbers are no
longer equal in the two cases, though quite small.

Gravitative Forces Negligible—Another special case is the one exem-

plified by the flywheel in which the acceleration due to gravity is negli-
gible compared to that of the motion of the body. In such an instance

we may completely neglect the forces due to gravity and base the force
ratio entirely upon the ratio of the forces due to inertia. This gives us
throughout equations identical to those we have already derived from

the strict theory with the exceptions that the relation

which was formerly imposed by gravity, is now no longer required msmw
can, when gravity is negligible, be completely ignored, A and r being

taken as independent variables.

Resistive Forces Negligible—We have still another special case when .
the forces due to resistance are so small in comparison with those due

THEORY OF MECHANICAL SCALE MODELS 1491

to gravity, to inertia, and to pressure, that their effect is negligible
Quch cases are to be found in the flow of fluids of small viscosity »Eosmm
Jarge orifices, in the flow of water over a weir, and in the movement of
poats at high velocities.

3

~n

@l b)

Ficure 17.—Force
due to resistance
negligible

Ficure 16.—Inertial force large compared with gravite-
tional force
(a) fluid, (b) rotating solid.

Whereas, for the general case, dynamic similarity could be achieved
only when the proper viscosity ratio

o= A,

was m.pammmm. in this case the ratio of the viscosities may be ignored, or
by using the same fluid in both cases, be made equal to unity.

Similarity Based on Resultant Body Forces—An effective way of chang-
ing the force ratio of static structures is to base the model ratio of force
on the vector sum of the forces due to accelerated motion and those due
to gravity, without regard to the ratio between these two kinds of body
*owow. This enables one to obtain similarity for the case in which the
original is a static structure acted upon by gravity, and the model is a
geometrically similar static structure being whirled in a centrifuge

The model ratio of force then is .

_ (body forces)s _ me T+a). a

(body forces); myg =Ry

¢

~ The length ratio A is arbitrary. The time ratio = is not involved. The

stress ratio is given by

c=dgt=p2 2= -2,
g g
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In particular if the stress in the model is made equal to that in the
original, the same materials can be used in both. Then

=1,
6=1,
and

a==

This tells us that if the model is reduced by a length ratio of 1/ uooP
o must be made equal to 1000g, if the same materials are used. This
is the basis of Bucky’s?* experiments employing a centrifuge to test

mine models.

Summary of Special Cases—To summarize, we find that the mechani-
cal properties of any model can be completely specified, when the prop-
erties of the original are known, in terms of the three fundamental model
ratios g, A, and r of mass, length, and time. We distinguish the gen-
eral case and three special cases as follows:

1. General case.
Independent fundamental ratios: g, A, and r.

Av == o‘.ﬁ - R,mh Y I)\m.

Therefore,
ve=7v = M7
o = uht 2
2. Special cases.
A. Both the model and the original are at the earth’s surface.

Fundamental model ratios: g, A, and .
mm = Yg = N = Vﬂlw

[
Therefore, = AL

Hence, the independent model ratios reduce to two: p and A, or p and 7.
B. The forces due to inertia are negligible compared with those due

to gravity; Reynold’s Number s small.
Fundamental model ratios: g, A, and 7.

b = WYe;
AT S )
vg = 1 at earth’s surface;
A independent of 7.

3t P, B. Bucky: The use of models for the study of mining problems, Am. Inst. Min. Metall.

Tnw  Tach Puh 495 (1031).
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C. QS,R due to &.@S.@ is megligible compared with that due to
inertia, or else 1s eliminated from consideration by the arrange-
ment of the experiment.

Fundamental model ratios: g, A, and =.

\ is independent of 7;
¢ = pAri

D. Force due to viscous resistance negligible as compared with other
forces.

Fundamental model ratios: g, A, and r.

r = Al at earth’s surface;
¥ independent of u, A, and r; may be equal to unity.

E. Similarity based upon model ratio of total body forces.
, Fundamental model ratios, g, A, and ¢.

$ =2
g1

when ‘
ay = Qa
and g =
az > > .

ILLUSTRATIVE EXAMPLES -

Introduction.—Before proceeding with geologic problems it perhaps
io&m vm useful to demonstrate the theory we have developed by ap-
plying it to a few simple illustrative examples.

Viscous Fluid—Suppose we have a barrel of tar and a cannon ball.
Hr.m cannon ball is placed upon the tar and sinks slowly to the bottom.
dem this for our original, we wish to construct a dynamically similar
model on a reduced scale. What must the properties of the model be?

We proceed first by means of the general theory. g, A, and = are our
.?S%ng_ model ratios. We derive the remaining ratios that are of
interest to us:

Viscosity ratio, ¥ = uh\lry
Velocity ratio, 7 =AY
Density ratio, 5 = a3,

mmﬁm now make use of two special circumstances: that gravity is the
me in the model and in the original, and that the motion is so slow
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Consequently, We may use the same materials in both wheels, giving

that the forces of inertia may be neglected. This corresponds to Special .
_ for the strength and density ratios:

Case B already discussed. g, A, and = are independent, and ¢ is equal
to u. So long as the inertial forces may be neglected in the model,
dynamic similarity is achieved when
¥ = uN"r,

7 =N
§ = w73

If the density of the model is made equal to that of the original then
8 becomes equal to unity, and

o = tyi_.q.lw = Hw
60=pA? =1,

from which

A=r,

and the ratio of angular velocities becomes

= @ a1
b= @ N
whence . .
= Static Structure—For a static structure all the accelerations due to
! motion are zero. The model is completel i
= N\l pletely determined by th
= ratios p and A, y the model

Thus for a given length scale A we can vary the ratio of viscosities ¢
widely and still obtain dynamic similarity. This enables us to adjust
the time scale to our convenience.

Flywheel—A small flywheel explodes at a certain critical angular
velocity. At what veloeity would a dynamically similar large flywheel
explode?

If we solve this for the case where gravity is the same in the model
and the original we choose model ratios p and A and determine = by

6= My
and
o = t.y|m‘

determine the ratio of the forces, and of the stre
sses and
- of the materials. v e and the strengths

If the ratio 8 for density is employed instead of p,

the fact that 8 = ph7d
A2 =1 ¢ = Mww.
g = .
For the derived model ratios we obtain for: When 8 is unit d
: nity, corresponding to the fact that th ity i
Strength: ¢ = u\lr = aNY i both the model and the original, e density is the same
Angular velocity: 9 o= h .

w1 o= A

That is, the angular velocity at which the wheel will explode change

with the size of the wheel as 1/V/A, but by the strict theory this is tru
only when the strength of the material has been changed by a facto
pAE
In this case, however, the forces due to gravity are negligible and so.
by neglecting gravity, the ratios A and = again become independent.

The model ratios then become

.EM”M mwmw_.m us Fma if a structure mw increased, for example, 100 times
0 ﬁumﬂwﬁnm the strength of its materials must also be increased
bt ww “a is to support a oowg%on&sm load. Since in actual
et es K._Q.ngm of the materials rarely are increased by such an
:mooEmﬁmom_ H..Omﬁg.pm weakness mbcmd be compensated by departure from
e simi mﬁ&# For this reason, small animals have spindley
, ge animals have massive legs.

Strength: ¢ = p\r%
w2 -1

Angular velocity: — =7

w

. Flow of Water Ov )
. er Weir—The constants of a model i
- over a weir are to be determined. el of weter flowing
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Solving for the general case first, we choose p, A, and r, the latter two
being related by A+ =1. The derived model ratios that are of interest

then become:
a=ANt= A,

Velocity:

Density: 5 = uhy,

Viscosity: ¢ = pAlrt = -t
Discharge: W” = Nrt = AL,

Since in this case it is impossible to have both & and ¢ set equal to
unity simultaneously, this tells us that we can have the model dynami-
cally similar to the original only provided a liquid of different kinematic
viscosity from that of the original is used in the model.

We may avoid this restriction by noting that the frictional forces are
th the remaining forces (Special Case D). Then

negligible compared wi
we can ignore the viscosity altogether and use water in the model as

well as in the original. We obtain in this manner:

g =N1= v.w.

Velocity:

Density: s=ui=1,
Discharge: W” = Nr1 = Af,
Viscosity: v =1

This tells us that for fluids of low viscosity flowing over geometrically
similar weirs (or through orifices), the discharge increases as the length
ratio raised to the power 5/2, where the same fluid is used in both in-
stances.

MODELS OF GEOLOGIC STRUCTURES
PROCEDURE

General Statement—In the light of the foregoing development we are
now prepared to answer a question propounded earlier in this paper:
What should the mechanical properties of the materials of a geological
model be in order that the model may give results which are dynami-
cally similar to the original? We shall derive the answer to this ques-
tion for a number of cases of geological importance. By applying a
similar procedure anyone can solve any other particular problem that
may be of interest to himself.

Before proceeding with this, however, perhaps it should be made clear
that in this paper it is only intended to show how to determine the
necessary specifications for the geological models in order that they
may behave in a manner similar to the original. In many cases it may
be difficult or impossible to obtain materials having the properties
specified. Fortunately the theory enables us to vary the specifications
somewhat widely, so that with a variety of materials it will frequently
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pe possible to adjust the model ratios until an approximate fit is ob-
tained. The present paper is only a guide to the experimenter to give
him & means of knowing to what extent his model materials do satisfy
the requirements of similarity. It does not purport to foresee or to solve
the experimental difficulties to be encountered in actually building a
model.

There is still another thing about geologic models that perhaps should
be mentioned. That pertains to boundary conditions, and the: manner
in which the deformation is to be induced. The geologic model is likely
to have boundaries that do not exist in the original. This may not be
serious if these boundaries are remote from the region of the model being
studied. The method of inducing deformation in the model necessarily
involves assumptions regarding the stress relations in the earth, and
the model accordingly will vary with what the experimenter mmm“:Bom
to be the case. Variation of these assumptions should then lead to varia-
tions of the experiment. These, however, are problems that the in-
dividual experimenter must solve for himself.

. Granite Qﬁ.@mwlwwou purely illustrative purposes let us begin with the
EEU.S% wOmmmEm kind of problem. Let us imagine a cube of flawless
mam:;m,ﬁwo w__owﬂbmgum to the side, resting upon a plane, horizontal, rigid

ase. e wish to determine the properties of a d i imi
‘model 20 centimeters to the side. smasmieaty sielar

This is a static problem and hence a speci
pecial case of the m
theory. The model ratios of interest to us are: ore general

Fundamental ratios: pand A
Acceleration: y=0;v, =1
Density: 5= ty-«n
Force: b = py, = p
Stress and strength: ¢ = ¢\ =8\

The ratios of length, density, and strength are th
us most, for they determine the size, ?omMosw?%. Mbmsmm%wwwmm“mﬂm
Mwo Bommw materials. The length ratio A is determined from the prob-
em as given to be 105, The density of granite is 2.7; that of con
venient anmw materials would range between about 1.5 rcm 2.7 QE&H
M,Mm_mem.wgsu“um a:.w value of § to be in the range from 0.5 to Ho From
_u e the model ratio of strength may be determined. If 8 is 1.0, ¢ will
e %pzﬁ to ».:.9. 10-3. If 8 is 0.5, o will be 5 X 1078, .
o mww M“Msw:‘omw Hm.a us .Bme the n.msm#% of the model the same as that
o Holw. ‘Ews in this. case 8 will be unity and ¢ will be equal to A,
b o~ is means that the strength of the model materials will
of goa .no of the strength of granite. Taking the crushing strength
nite to be 2 X 10° dynes/cm? or 29,000 lbs./in* we find that the
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‘model material must be a brittle substance that will crush under a stress

of 2 X 10* dymes/cm? or 0.29 1bs./in?.

Since the pressure at the base of the model would be 5.3 X 10* -
dynes/cm?, which is about 2.7 times as great as the crushing strength
of the material, it follows that the model would be too weak to stand .

unsupported and would collapse under its own weight.
That this is not an absurd result may readily be seen when one com-

putes the pressure at the base of the original cube of granite, which will
also be found to be 2.7 times as great as its crushing strength so that the

original would likewise collapse under its own weight. Therefore the
strength we have chosen is the proper one if the model is to behave in
a manner dynamically similar to the original.

Mountain Range—We take up now a larger unit. We choose a moun ,
tain range for the original and again we wish to know the model ratios
and essential model constants. This is the same kind of a special case
as that discussed for the granite cube. Aside from occasional earth
quake motions of small magnitude, the accelerations are sensibly zero
and may be neglected. The model ratios are the same (algebraically)
as in the case of the cube, and in particular the ratio for strength is

o = 6\

For the original, suppose the width is 200 kilometers, the density 3.0
and the strength of the materials 9 % 10° dynes/cm?, or the strength of
granite under surface conditions. For the model let the width be 1 meter
and the density 1.5. This gives for A a value of 5 107, and for 3 a
value of 0.5. Then o, which is 3, becomes 2.5 X 107, Consequently
the strength of the model would have to be:

Model strength = ¢ X (Strength of original) = 5 X 10° dynes/cm?.

Since on such a scale rocks are known to deform principally by Emmsw
flowage, the model material would need to be more plastic than brittle.
The above figure for strength is taken merely as an approximation and

for illustrative purposes. Actually the strength of rocks is known to in-

crease with increase of confining stress—that is, with depth in the earth
The strength also, however, decreases with increase of temperature, whicl
also increases with depth. Consequently the actual strength of rocks
at a given depth within the earth is unknown except by rather indirect

considerations.

When one is actually making a model each part of it should have the

strength so chosen as to give the model the same strength inhomogenel

ties as are known or assumed to exist in the original. Neglecting for.

present purposes the inhomogeneities it is significant that the value of
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,,, 5.0 X 10° C. G. 8. for A“&m over-all strength of the model materials corre-
sponding to the case given is the right order of magnitude. This corre-
~ gponds to a material so weak that a cube of it (density, 1.5) larger than

33 centimeters to the side could not support its own weight. Butter
at ice box temperature would be much too strong. Vaseline or very

_ goft clay would be more nearly correct.

Post-Glacial Uplift—A somewhat different kind of problem is that
exemplified by the gradual uplift that has been occurring in the regions

~ of the Great Lakes and of the Scandinavian Peninsula since the retreat

of the last ice sheet. Nansen ** and Daly ** have presented data which

 appear to indicate that both in North America and in Europe this uplift

has ooocﬁmm.ws a manner similar to the uplift of the surface of a barrel
of tar following the removal of a weight. If this be so then the move-

~ment would oceur as true viscous flow in an elastico-viscous medium
~ having very high viscosity.

For our purposes we shall make the assumption that the departure

“from sphericity in the areas affected by post-Glacial uplift is slight
,,. _enough that they may be represented by a model having a plane surface.

We shall also assume that the earth has uniform viscosity to great depth
Our model will then consist of a large vessel of viscous material, the

surface of which has been depressed and is later returning to equilibrium.

If we knew the over-all viscosity of the earth we could, from the model

“ratio of viscosity, determine the proper viscosity for the model. If
«, however, we regard the earth viscosity as an unknown to be mwnmzﬁmnmm*
A the model theory should tell us how to compute the earth .&mco&am

from that of our model. The results in either case will not be exact be-

:cause of the simplifying assumptions made, but th i
, ey shoul
“eorrect order of magnitude. Y should give us the

- ~"We choose in this case the fundamental model ratios g, A, and + of

length, mass, and time. We note that we are dealing with a fluid type

~of motion having an extremely small Reynold’s Number and that all

accelerations are sensibly zero. Consequently the inertial forces are

~ negligible as compared with the resistive forces. Under these circum-

stances g, A, and r are to be regarded as mutually independent model

,ESom from which we write the desired derived ratios:

Acceleration: vy=0;v =1,

m.oam." b = pve = i
Velocity: 7= M1

Stress: g = ty-n‘

Density: b = tvﬂu“

Viscosity: ¥ = a1 = u\r = S\r.

—_—

: «uﬂmz.ﬁnu.Om Nanse 7 7 T, 7
; n: The eerth’s c ust, its surface, fo £ i i
A n ; ¢ N , ‘ ms, and tsostatic adjustment (1928) Oslo.
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The ratios concerning us most are those of density, length, time, and
viscosity, and we see that that of viscosity is determined when the other
three are chosen.

The radii of the depressed regions both in North America and in Eu-
rope are of the order of 1,000 kilometers. In the model, to avoid bound-
ary effects, it is necessary that the viscous medium be of much greater
extent than just the depressed area. In order to do this and not have
the model inconveniently large, suppose we give the depressed area a
radius of 10 centimeters. This would give a value for A of 1077,

The total time elapsed since the beginning of the ice retreat is unknown
but is about 25,000 to 35,000 years. What is more important for the
present purposes is, however, the time interval between successive
amounts of uplift as shown by old shore lines. This appears to be known
with some degree of accuracy in certain cases. The ice retreat itself
required some 10,000 to 15,000 years.

To keep the model time within limits we may set = equal to 107 For
this time ratio an amount of uplift requiring 10,000 years in the original
would require slightly less than 9 hours in the model.

The density of the original may be taken as 3.0; that of the model
materials will probably be near 1.0, giving a value of 0.33 for 3. From
these ratios that of viscosity is obtained:

¥ =8\ = 3.3 X 107%

An experimental difficulty will be recognized at once when the amoun
of uplift is considered in comparison with horizontal distances involved
The total uplift is of the order of 250 meters as compared with a radia
distance of about 1,000 kilometers. For a model with a 10-centimete

equilibrium position. Consequently, if the amount the surface is de-
pressed is increased by a factor B, with the radius of the depression kept
constant, the shearing stress throughout the model will be increased by
the factor B and the velocity of displacement will likewise be increased
by the factor B.

Consequently, if the uplift in the undistorted model is a given amount
in a certain time, the uplift in the model having distortion will be 8
times that amount. In particular, if in the undistorted model an up-
O lift equal to any given fraction of the initial amount of the depression
occurs in time ¢, an amount of uplift equal to the same fraction of its
- original depression will occur in the same time ¢ in the model having
: distortion. In other words, the depressed surface approaches its equilib-

rium position as a negative exponential function of time, or

h = hee™®,

where h, is the initial amount the surface was depressed, b the amount
of depression still remaining at time ¢, e the base of natural logarithms
and a a constant. ’
When the distortion factor 8 is known, all that is necessary in order
to obtain the correct displacement is to divide the observed displace-
ment by B. ;
: Once the model ratios are determined we may proceed in either of two
_directions, depending upon what is considered as known and what is un-
known. Suppose that for the earth something is known of the amount
of uplift and the time required, and it is desired to know the earth’s
coefficient of viscosity. Then, since

radius the depression, to scale, would be only 2.5 107 centimeters Y = & _ AT
This is a difficulty that would remain for any size of a model not to & ’
large to work with. Direct measurements of such small displacement _the viscosity of the earth is obtained by
would require probably some optical device such as an interferometer. -
To avoid the difficulty inherent in small displacements, let us conside £ = m\m = wm.wl
p

the possibility of introducing distortion by depressing the model by a
amount equal to the correct depression multiplied by a factor 8. So
long as the amount of depression remains a small fraction of the radial
distance the flow lines in the viscous material remain essentially un
changed. The velocity of flow, however, and also the rate of shear ar
directly proportional to the shearing stress and inversely to the viscosity :
Since the viscosity in the model with distortion is unchanged, the shear-
ing stress varies with the distortion. ‘
Shearing stress in this case results from the fact that the model is not
in static equilibrium. It is proportional to the displacement from th

In this case 8§ and A are chosen and = and &,, the model ratio of time
and the viscosity of the model, are determined by direct Bowmcwmgmi,
If, on the other hand, r and &, are regarded as known, &,, the viscosit :

- of the model, may be computed. o Y
‘SH._M. %Mm om.umm M?QP we E.ﬂ\m m?mwn@ taken the model ratio of viscosity
_ Mmmw&w N*X o|H . By semi-theoretical, mm.Bw-mx@oZBmim_ considerations
o8 concludes %m.ﬁ the earth has a kinematic viscosity of 2.9 X 102
. 8. Gutenberg cites figures of the same order of magnitude, or

—_—

7N A : ; :
Haskell: The motion of a viscous fluid under a surface load, Physics, vol. 6 (1935) p. 265.
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"slightly less. This would give for the viscosity itself about 1022 C. G. 8

Taking this figure, we would obtain for the model

£ = &y = 3.3 X 10" C.GS.

This is about the viscosity of asphalt at 40 degrees Centigrade.
A lower viscosity for the model can be obtained by reducing the time
required by the model, and hence further reducing the model ratio.

Salt Dome.—Although rock salt is crystalline and not fluid, there is-
much evidence that it deforms under long-time stresses very much as if
it were an elastico-viscous material of high viscosity. Assuming tha
salt flowage is a viscous-like phenomenon we may derive the model ratios
for a salt dome. ;

This is a special case of the general theory like that of the post-Glacial
uplift. The movement is assumed to be viscous in character. The forces
of inertia are sensibly zero. g, A, and + may be taken as independent

model ratios. The derived model ratios of interest then are:

Acceleration: vy=071.=1
Veloeity: n =AY,
Force: = Vg = My
Density: & = u\73,
Stress: o = uk"? = 8),
Viscosity: ¥ = ar = O\r.

The appropriate physical constants of a salt dome in the Gulf Coast &

region are given by Nettleton %:

Depth to mother salt: 20,000 feet
Density of salt: 2.2

Depth
(feet)
0 1
2,000 2.
4,000 2.
2
2

Density of sediments:

6,000
8,000
10,000  2.39
20,000  2.47

The average area of salt domes in this region is between 1 and 2 squa
miles.

The age of the mother salt bed is as yet uncertain. Barton *° presents:
evidence that it is at least as old as Lower Cretaceous, and possibl
older. He also shows that there is evidence that uplift of the domes
has been occurring from early Eocene to the present. :

287, L. Nettleton: Fluid mechanics of salt domes, Am. Assoe. Petrol. Geol., Bull., vol. 18 Cﬁ*,‘
p. 1175-1204.

20 D. C. Barton: Mechanics of formation of salt domes wth special reference to Gulf Coast sl
domes of Tezas and Louisiana, Am. Assoc. Petrol. Geol., Bull., vol. 17 (1933) p. 1025-1083.
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According to present radioactive time determinations the beginning
of the Cenozoic was about 60,000,000 years ago.

The viscosity of salt is a somewhat uncertain quantity, depending
upon whether flowage takes place predominantly by plastic w&o_.Bmscu

TasLr 3.—~Properties of original and model salt dome

Original Model Ratios Model
Radius 105 cm. A=5X10 5 cm.
Height 6 X 10° cm. “ “ 30 cm.
‘H..E—O—nuwmmm Om aH.O 70 “ 113 > :
mother salt determined mM”_B:Mm%oSR
" Time of 6 X 107 years or =101 2X1
formation 2 X 10% sec. VAM.%WM&:WV
Salt: 101 C.G.8. ¢ =on =5 X 10718| 5 X 102 C.G.S.
Viscosity To be determined ¥ = \r Viscosity of model to
T to w.o measured ex- be chosen arbi-
perimentally trarily.
" Shearing Sediments: ¢ =056 =5X10"5 .
strength 108 C.G.S. 5 X107 CGS.
e Salt: 2.2 §=1 igi
Density Sediments: 1.9—2.5 Same as origina!

igmu the crystals themselves or by a slow process of solution at points
Mm higher stress mua reprecipitations at points where the stress is less.
aboratory experiments are likely to give values due to the former types

~of deformation, while the infinitely slower natural movement may be to

a great extent due to the latter cause.
gwmmz.y as in the cpmm.&. the post-Glacial uplift, we may do either of two
Ings: we may consider the viscosity of salt as known and solve for

,www .mmcvon viscosity for the model, or we may choose a known viscosity
el e _Bom& and, v% Q.m&maBmE:m experimentally the model ratio of
Ume, solve for the viscosity of salt as an unknown. If the laboratory

v ..
alues for salt viscosity are the same as those effective in salt dome

g .
ow these two alternative procedures should give the same results.

Gutenberg ® cites for rock salt viscosity a value of 2 X 10*® C. G. S.

—_—

meu
: o Gutenberg: Handbuch der Geophysik, vol. 2, pt. 1 (1931) p. 539. Berlin
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The more &.83 experimental procedure is to regard the viscosity of
- salt and Em eE&.Smmm of the mother layer as unknowns to be determined.
~ The experiment is then set up and varied to determine what model con-

layer. On this there is no direct information. Barton, by an indirect stants are necessary to give the best kinematic representation of a true

method, arrives at a figure of about 700 feet. This might be taken as salt dome. From these models, the length, the time, and the density
model ratios are then computed. From the latter the viscosity, et cetera

valem/sec : of the original may be computed.

: The quantities taken here are only approximate and for illustrative
purposes. They are, however, the correct order of magnitude. They
indicate that of the experiments which have been performed on model
: representation of salt dome formation, those of Nettleton, employing
asgm two viscous liquids, or a liquid and a wax, are the most nearly dimen-
sionally correct.

" at 18° C. and 25X 107 C. G. 8. at 81° C. Taking an intermediate
value, we may consider 10*® to be the correct order of magnitude.
There remains one major unknown—the thickness of the mother salt

Ficure 18 —Physical meaning of a

viscosity of § X 10° C. G. S. : . .
. : . Impacting Meteorite—A problem of some contemporary interest is

a trial thickness in the model, but it would be wise to try different ex- . that wm the nature of the *.Swo that a large meteorite of given size and
~ velocity would make upon impact with the earth. This is not a problem

periments in which the salt thickness is varied from one to the other.

We are now able to set up the dimensions for an “original” salt dom ‘that lends itself readily to mathematical solution, and the occurrences

of such impacts are too few to afford adequate observational data. It

and determine the constants for the model. Rather than taking the . .
nitial conditions before there was a salt dome, we will define our mode Temains to be seen if the H.bomo_ mmowiasm can be applied. That is, we
ratios in terms of the end-product—the domes as we now see them. : Msmw mrEoma of a wmogozeo to impact a model of the earth’s surface
For the conditions given the significant results are that the mode ;,,MWMMMHEM_W Mwwmwnﬁﬂwﬂrgm mo %w_ (including, of course, the hole) is
equivalent of salt must have viscosity of 5 X 102 C. G. S. The sedimen  This case is the Bogm MMMEW : bl . g
being intruded, if regarded as plastic, must have a shearing strength o ' resistive forees all pl genera’ pOSSIbe where inertia, gravity, and
about 5 X 10* C. G. 8. : tundamental mod Mv m% an important part. .<<m ogomm #, A, and 7 as
To give physical meaning to these figures, imagine in each case a one : odel ratios and obtain ?m desired ratios:
centimeter cube of the material, one pair of whose faces are acted upo . Acceleration: ve =1,
, T

tress couple produced by a weight suspended from ag Velocity:

by a shearing s yliz
string passing over a pulley. A liquid of viscosity of 53X 10 C. G. : Density: N :w.l.l '

means that a shearing stress couple of 500 dynes will produce in the . Force: b = uh? = = 8\,

material an amount of shear of unity (shear angle equal to 45 degrees) § : mﬂ&.ﬁ . o = p\lr = 8,

in one second. The force per square centimeter required to do this MMHMWM No duli: °Z Ww.

500 dynes, or approximately the pull of gravity over.a 0.5 gram mass. " This gives us the necessa del rati )

A strength of 5 X 10° C. G. S. means that plastic flow would occW €  model once the properties MW MMM e H..wgﬁm to enable us to set up the
under a shearing stress equivalent to the pull of a 5-gram weight per  concerned only with large mete .noEme are mmmﬁbmg. We are here
square centimeter applied tangentially. If the model is made smallend  original to be a nickle-iron mvrmn“ Mw.w ﬂm%ﬂ%”%ﬂ%ﬂmm Hmeﬁﬂw amw_m eﬂm

, er. e velocity

or the time shorter, the strength and viscosity of the materials will be ~of such a meteorite may be expected to be of the order of itud
. ! rder of ma
ooz.mmvo.u%zm_% nmmc.omm. . . ;_gm m.u;r*m orbital velocity. At such a velocity a Emﬁmoamw :M M%m
Knowing the physical properties of the model, the experimental pro- magnitude would possess so great an amount of kineti oL s
cedure would consist in setting up a suitable arrangement of parallel would not be appreciably slowed mosd b ow inetic energy that it
layers, with the equivalent of the mother salt at the bottom. By some Meteorites have been observed with <m~o05% Mm QEMMZM mqmmﬁwmvrmg.
S ilometers

manner a doming motion is initiated and allowed to continue. Per second. Let us assume a velocity of 50 kilomet d
: meters per second.
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An idea of what might be expected is obtained from the fact that when
bird shot from a shot-gun is fired into a bank of soft mud, an individual
shot will make a hole about the size of a man’s fist. . The physical
-~ constants in this case are not far from correet for a model of the i t
of a large meteorite. impac

Tor the model let us use for the meteorite a sphere of lead or of amal-
gam (to obtain the proper strength) 0.5 centimeters in diameter. This
would give for A the value 5 % 10~5. The model ratio for velocity then

would be

n =\ =4/5 X 10 =7 X107

Glacier—It &6:5 be of great importance if a model could be specified
and the materials found that would behave in a manner dynamically
similar fo ﬁ he mboﬁwBosd of ice in glaciers. Insofar as the movement of
ice In m_mw:mu.m is a purely mechanical phenomenon, this can be done and
" the model ratios for strength, and for viscosit i :

y are identicall

as those employed elsewhere. ally the same

Taking the velocity v of the original to be 5 X 10° cm/sec, we may
solve for the velocity of the model projectile, .

vp = qvy = 7 X 107 X 5 X 10° = 3.5 X 10¢ cm/sec.

This is about 1/3 of the velocity of an army rifle bullet, or somewhere

near that of a pistol bullet.
The strength of the model material is 8\ times that of the original.

Taking § to be 1.5 we get
c=0=15X5X107°="75X 1073,

Strength: g = B8\,
Viscosity: Y = 8Ar.

Unfortunately, however, the peculiar movement of ice appears t
derive its unique characteristics from the unique properties om sm%o
- This takes us into the realm of thermodynamies, which, while not ocm .
gide the domain of model theory or technique, is _om%owa the scope m
 the m«ommb». paper, which is confined to purely mechanical systems P >o

Mow.&cmww..n_o mﬁwﬁw._vwéw: be made to specify the Eo@mm&om um..ucwnmm
or a glacial model. ew T i
o o e e be mad, emarks regarding the nature of the prob-

The ?.S properties of ice that distinguish it most markedly from ordi
nary mo_a.m are its low melting point and the fact that it expands u .
mo_wm&omsg. The internal bodily deformation of glacial ice is :owob
mm& phenomenon, but rather a plastic flowage involving in part sh ;
&%F%Emi. within the ice crystals and, in part, the moﬂmm; melting mmm
?mmwsm%% w&uxmmgm_ amounts of the ice crystals. i
- Flow by s earing within the crystals is ili i

tion of ordinary crystalline mo_EM The MHMWWMMB M_H_HMH. M.MMMMM QMMMH.B@-
“the o.aao&.m is a process peculiar to ice and is the result of _oomr %_ S_omz

Em:Em. point and the fact that ice expands on freezing ey

oowﬁwm%omms% ﬂmomm of ice a.o be pressed together in a heat-insulated

il et .v _>d the points of greatest pressure the melting point

by Spﬁmnwc - M e Mé the temperature .& the box; melting will oceur
e :m vwo E.hmm. me .232.. will flow to the region of reduced
gl Mm e %mmﬁbm ?.Ea is again normal. This may be an infin-
o g s _,z.om. he thawing, ro€m<.mb can take place only provided
tioh . mﬂ m@mw supply of heat available—79.7 calories per gram—
done on e m_ %ﬁS excess of the .Wmmﬁ produced by the mechanical work

ystem. This heat is most readily provided by re-freezing

_the water d 79.7
o produced, thereby obtaini i i
: . ining the required 79.7 calories per

1f we take the surface materials of the earth to have a shearing strength
of 10° dynes/cm?, the material for the model will have a strength of
7.5 X 10* dynes/cm?, and a density of about 3.5. ‘

The strength of the projectile would have to be correspondingly re-
duced. A nickle-iron meteorite would have a strength of the order of
5 % 10° dynes/cm?® and & density of about 8. The model projectile should
have a strength of about 4 X 10° dynes/cm? and a density of 12. Some
forms of amalgam having these properties might be found. Since the.
inertial forces are dominant there is little difference at high velocities
between the impaet of a liquid and of a solid. Hence the effect should
be nearly the same if lead were used.

For strict dynamie similarity the modulus of compressibility of the
model should be reduced from that of the original by the factor o. This
is probably impossible to do experimentally, but it is doubtful if the
error introduced by not doing so is great. .

The effect of the air has been neglected. It is known that in the case
of the Siberian meteorite the air wave was destructive to local forests
For velocities several times that of sound the air wave is distinctly an
after-effect whose magnitude is small as compared with that of th
meteorite itself, and may be neglected for present purposes.

For an approximate model of the impact of the meteorite specified W
obtain the following: a ball of lead 0.5 centimenter in diameter fire
with a velocity of 350 meters per second into the horizontal surface of
material having a density of about 3.5 and a shearing strength of 7.5 X
10* dynes/cm?. A material of the latter properties can be made using clay.
loaded with a proper amount of lead oxide to provide the correct density-
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Consequently we have a closed thermodynamic system wherein melt-
ing takes place due to the depression of the melting temperature at points
of high compressive stress, the water so released flowing to points of
lower pressure, and for each gram of ice melted the latent heat being
supplied by the re-freezing of one gram of water. The work done, in

insulating properties, the results are quite different and no re-freezing
occurs.

In glacier ice at or near melting temperature this process necessarily
takes place. The pressure is supplied by the weight of the ice, each

o¢c__T

T z,
A}
Y T o6 T z
~ ]
_ * A 4
1
d 1 v
—\ Ns Melting ! 2 No
Jdz - I L1 P melting
d AR MY AN i y SNV R RNY
I _ 1
> : . < I x
Ficure 19.—Block of ice cut by wire and by a ¥ ) S
cotton cord ' dg 1 x| dg
| | _
p4 4
case the pressure is due to weight, is derived from the loss of gravita-
tional potential energy by the system as a whole. o )

In order for this process to occur it is necessary only that the tem-
perature of the ice be above the depressed melting point. The ice need
not be in a heat-insulated container for the process to occur partially
as is shown by a familiar experiment. The experiment consists in taking
a large block of ice and bridging it across two end supports. Two
metal weights are suspended from the ice, one by a wire passing ove!
the top of the ice and the other by a cotton cord of the same diamete
as the wire. The room is at ordinary temperature.

After an hour or so it will be observed that the wire has cut som
distance into the ice, but that the water has re-frozen behind the wir
leaving no trench. This may be continued until the wire has passe
all the way through the ice without cutting it into two pieces. In the
case of the cotton cord, the movement is much slower, leaving an ope
cut behind, for in this case the water does not re-freeze. ;

The explanation is that the metal wire is a good conductor of hea
The ice melts beneath the wire; the water flows around to the top ©
the wire; the latent heat of melting beneath the wire is supplied b
metallic conduetion from the freezing water above the wire. This pro-
duces a closed thermodynamic system.

Were the wire non-conductive of heat the system could not work.
Consequently when the wire is replaced by a cotton cord having hea

Ficure 20.—Temperature gradients
(@) In rock and in glacier with melting at bottom. (b) Without melting.

_ infinitesimal amount of melting resulting in a shortening of some length
~always in such a direction as to lower the center of mass of the m%mame
The integral of this effect throughout the body of a glacier would of
iteelf constitute glacial flowage.
a8 Another characteristic of glacial motion rendering it unique is the dis-
: ,053. surface of slip between the moving ice and the bounding bed-rock.
Q%E_ motion is essentially laminar, and one usual characteristic of
, FEE.Q. flow is that the velocity is zero at the boundary.
This surface of slip is due largely, if not wholly, to the low melting
~ temperature of ice. There is an important effect, discussed by Lagally *
though first called to my attention by T. S. Lovering, due to the mo,é
~of heat from the earth’s interior. ‘
, %Mmsm&ﬂ. an .mom-m:mon of thickness Z,. Let T, be the temperature at
wBocom. om Wrm ice pma T, that at the bottom of the ice. Let dg be the
o ) % of heat ooa:.um out of the ground in time d¢ per unit of area, and
¢ the amount passing through the ice. Let K, be the thermal conduc-

——

2 M. Lagally: Me i
y : chanik und Thermodynamik des stati itrd
;,w.oouv«amw, oipp, Vel B (), L L ationaren Gletschers, Gerlands Beitrige zur




1510 M. K. HUBBERT—SCALE MODELS AND GEOLOGIC STRUCTURES

tivity of ice and K, that of the rock beneath. Let the whole system
be in a steady state of flow, that is, not changing with time.
The amount of heat escaping from the ground per unit area in time

dt will then be
%_v
&Q = INN ¢ A&N u. &«-

where Z is positive downward. And the amount passing through the
ice will be T

& Qap - Q.o
&Qﬂ'lmu‘ &N —.R«'lﬁu. Nu_ . dt.
A&lﬁv and’ m@.v are the thermal gradients in the ice and in the ground
dZ 1 “\dZ 9
respectively.
Now we differentiate two cases: (1) all of the heat flowing out of the

ground passes through the ice and

dg = dg;
(2) part of the heat from the ground does not flow through the ice, and
&Qu < &Q. :
The limiting upper temperature of the ice is 0° C. so that
T,20°C.,and T; 20° C;;
also v
ﬂdu W qu.
In other words the temperature gradient in the ice will always be
from a higher temperature at the bottom to a lower one at the top, the
limiting case being when both temperatures are the same. The bottom

temperature may be equal to or less than 0° C.
Since the amount of heat flowing through the ice is given by

T,— T,
dg, = —~ K » uN_. - dt, .

and since this cannot be greater than the amount of heat coming from
the ground, it follows that
dq, Z dg,

or that :
SH - ﬂ-o = .NMN. . A.&l“uv .
Z 1 < K 1 dzZ 2

Since the thermal conductivities are constant and the geothermal
gradient is constant by hypothesis, it follows that the thermal gradient;
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in the ice can never exceed a certain critical quantity. If it is equal
o this critical value, the bottom temperature of the ice will be equal
to or less than freezing temperature; if it is less than this critical value
_the bottom temperature of the ice will be at freezing temperature B:M
the heat from the earth will undergo fractionation, one fraction bein
conducted by the ice and the other serving as the latent heat of BmEzm
for the ice at the surface of contact with the bedrock. e
This latter condition is favored by either great ice thickness or high
‘surface temperature. Taking the thermal conductivity of granite to be
008 C.G.S. and of ice to be .006, and the geothermal gradient as 1° C
per 30 meters, we obtain as the maximum value for ice a gradient of 1° O.
per 25 meters. This means that for an ice thickness of one kilometer %m
mean annual temperature would have to be below —40° C. if the bottom

~of the ice is to be below freezing. For surface temperatures greater

han —40° C. the bottom of the ice will be at freezing temperature and

g part of the heat from the earth will be spent in producing melting

This leads us to the conclusion that in most actual glaciers during most

,_,om :5. time the bottom temperature is actually at freezing and that at
‘such times the ice is continuously melting at the contact.

. This fact is sufficient to account for the surface of slip at the contact
of a glacier with bedrock. In the absence of contrary evidence it appears
- doubtful that a glacier would slip on the bedrock were the tem %Maﬁ
low enough to prevent bottom melting. ’ .
It is these unique properties of water in its liquid and solid phases

that make it difficult if not impossible to construct a satisfactory model

of a glacier.

~O%<Em to the ?ow \.&,_mn there is a strong similarity between the dis-
wo.Sam and re-precipitation of salts in a saturated solution to relieve
%n»_.ms.omm, mnm.ﬁro melting and re-freezing of water in the manner
escribed, there is a possibility that a suitable glacial model might be

,,mmsmoa using some soluble solid and properly controlled interstitial

water. Even if possible, the worki i
, orking out of the details -
mm..mgs problem of considerable magnitude. 1 presents & e

&W"”“M.Mmm:wﬁlﬂgm brings us to the last of our models—that of the
. aoos wn e. As we have remarked before, the strength of the earth
S ce :EM_% known, but &.:m density and rigidity moduli are
ot rigidit y M«Mv nown as a ?E.Léoz of depth. The over-all modulus
i, ﬁ.mm Mm dm earth as determined in various ways is of the order of
about 25 o1 Mw eel. The mean density of the earth is 5.52, ranging from
The w.a i~ ?m surface to about .5 at the center.
G o g o.m &?.w earth materials increases with increase of pressure
: ases with increase of temperature. Bridgman’s recent work




-shows that at confining pressures equivalent to a depth of 166 kilometers
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;influenced only by its own field and that of the corres i
. ) ondin
of the solar system. There will then be a model value ow mamimwamwmh
determined by the value chosen for y, which in the general case need
ot be equal to that on the earth.
Taking 8, A, and y as fundamental, the derived model ratios become:

in the earth, ordinary solids increase in shearing strength commonly by
a factor of ten times or more. This is at ordinary temperature, 0 We
do not know how much this would have been reduced at temperatures

probably existing at such a depth.
When the shearing stress was equal to the strength of the material,

in Bridgman’s experiments, any amount of shear could be produced at Velocity: n = Arl = Myl

a stress approximately independent of the rate of shear. ; Angular velocity: e R ™ !

The over-all strength of the earth is probably not greater than that Gravity: u,. -

of ordinary steel, so we should not be greatly in error by assuming it I Y

to have such a strength. MES@E:& constant: g = uTINr? = 8Ny,
With this assumption, our problem becomes essentially that of deter- mmﬂmw ! ¢ = E,Hu-w 8\,

mining how a body having the density distribution and motion of the Strength: M..l.. %,,\ 2 = §\y,

earth together with the strength of steel should behave under the influ-
ence of its own forces, or of such other forces as we might imagine to
be impressed upon it. Steel balls of our everyday experience, for ex-
ample, rebound elastically when dropped upon a steel anvil. Would an
elastic earth having the strength of steel rebound if it should collid
with a rigid plate at a velocity corresponding to that of the steel bal
dropped on the anvil?

To answer these and similar questions we must bring the earth int
the domain of our direct observation. We must define the propertie
of a body having shape, velocity, density, strength, ete., which an

For the magnitudes of the fundamental model ratios, the mean radi

~ of the earth is 6.37 X 10® cm. so it is convenient to wr\m the mod _:m

- radius of 63.7 cm. (about 2 feet) corresponding to a value for A of Mo.w

o .Ha also is ..uo=<¢ama to let the model have the same density as the ori .

Em.r. making 8 equal to unity. The proper angular velocity will Ma

obtained for the model if we also choose y equal to unity; that is, a
b

one-gram mass would weigh the same on the surfa :
it does on the surface of the earth. ce of the model as

With the fundamental ratios given, the values—

strictly similar to the corresponding properties of the real earth, excep §=1,
that the model must be of proper size to be conveniently observed, th =107,
criterion of similarity being that of dynamic similarity as previousl Y=4 .
defined. we can now write the numerical values of the derived ratios:

For convenience we wish the model to be of a size readily observed Period: T =Ny} =105 =3 5. .
about that of a large terrestrial globe. We wish it to rotate at a rate Velocity: 7 = Mvyh = 10-35 n..m.mm XXH%.._
fast enough to be readily observed, and yet not so fast that one has not Angular velocity: ©4 _ \oioh = 1005 = 3,16 X 10° ’

time to see the surface details. This would mean a rate of about onef Gravity: “ .
; b " Ye = 1,

or two revolutions per minute.

From such general specifications we determine our fundamental model ; Gravitational constant: Mm =5\ ly = 107
ratios and derive the remaining ratios that are of interest. Instead off Force: .h -y = 108 '
taking u, A, and 7 to be fundamental, let us choose 3, A, and y of density : Stress and strength: o = eﬁwu 10-7.

length, and acceleration. Then we set up the appropriate equations o

- Then if we know th i
transformation: e magnitude for a property of the earth we can

- determine the appropriate corresponding magnitude for the model. This

W = Vy w A\ = s is done in Table 4.

= A~ or b= W "

3= e = Nyt . mvm.wwqu have the mﬁ@o_momﬁoum for our model of the earth. It is
oid of mean radius 63.7 em. It moves through space =§.§. the

In this case it should be noted that we imagine our model to be com

influence of its o itati
pletely removed from the present earth’s gravitational field, and to be wn gravitational field and the fields of a model sun,

- moo
e n, ete., of a model solar system. The mean radius of its orbit is
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15.0 km. It rotates once upon its axis in 27.3
its orbit with a mean translational velocity of 9

making one complete revolution in 2.77 hours.

The density of the mo
The over-all sheari

at its center.

TasLe 4 —Properties of the original and

LOGIC STRUCTURES

seconds and moves in
44 meters per second,

del varies from 2.7 at the surface to m._oo:,a 10

ing strength of its materials is 4 X 10°

a model earth
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‘4 density of 5.52 and the strength of cold steel w i
: o ould, if th
were the size of the earth, exhibit properties very similar to Mrwvrmww
a sphere of soft mud of radius 63.7 cm. se o
Perhaps a better way to visualize this is b . .

: . y means of dynamic eff

. It was 888%& earlier that a sufficiently small sphere ow cold Mﬁwmmﬂ”
 bounds elastically when dropped upon a steel anvil. Imagine such a

Property Original Model Ratio Model
Mean radius 6.37 X 108 cm. 1077 63.7 cm.
Mean radius of orbit | 1.50 X 10% em. 1077 1.50 X 108 cm.
: Figure 21.—Physical mean-
Period of rotation | 8.6164 X 10¢ sec. 3.16 X 10™* 27.3 sec. ing of a shear stress of 400
(Sidereal Day) dymes/cm *
Period of revolution | 3.156 X 107 sec. 3.16 X 10~ | 9.98 X 10° sec. : ,mﬁ_g.mg gm. size of the earth to impact against a rigid plane surf
(Sidereal Year) (2.77 hours) “while moving at the earth’s orbital velocity of 29.8 km/ ool
-it then rebound elastically? ' sec. Would
i .9 10° cm. . .16 X 107 44 X 1 . X
EMM_oMWE 2.98 X 10° cm./sec 3.16 X 10 9.44 X 10% cm./sec ; Our Bo.mm_ msm.Eom. us to answer this question. We can imagine the
- ~ model fo impact against such a rigid plane while moving at its orbital
Mean density 5.52 1 5.52 : ,;MMFSQ %m m.pﬂ meters/sec. From the definition of dynamic &Bzmzww
“the result for the model impact would be simi
Mass 5.98 X 1027 gm. 10 5.98 X 10° gm. _if the earth itself were to have such an wﬂmﬁwﬁﬂo ,MSM@WOME rw v% "
_meters/sec. i i . S ocity of 9.44
Pressure at 100 km. | 3 X 10% dynes/cm? 10~7 3 X 10° dynes/cm? “on erm\m“&rum MMMM\M“MM%% 0 eWo meﬂ:zm_ velocity attained by a body
. in ;
depth , ;mnms. g freely from a height of 4.54 meters (14.9
Shear strength 4 X 10° dynes/cm? 107 4 X 10? dynes/cm? MZo% if we can conceive what would happen if a 6.6-t h
soft mud having the i : . 6-ton sphere of
Gravitational 667 X 10-8 cm? 107 0.667 o dropped from mm:mmmrmwmmwwﬁomnwoamgm and a diameter of 4 feet were
constant - gm. sect BT . seet 2 very good idea of eet onto a concrete pavement, we will have
il oollision m_Sw: M&m& would happen if our earth were to have a
) ] : ; moving at its orbi i
dynes/cm?. 1Its gravity will be the same as that of the earth but the Instead of rebounding elastically like a mmﬂhmw_mﬁwmmmoﬁw .Mw wo._.w km/sec.
, it would splatter,

gravitational constan

" as that for the solar system,

The matter of most concern to us i

to be the model equivalent of an eart
A material having a shearing strength
to shear plastically under a shearing

to the weight of a 0.4-gram mass app

meter of surface. It is difficult to think
but, as a first approximation,

That is to say that

strength

where near correct.

t of its material

s will have to be 107 times as large
or 0.667 cm3/gm sec®.
s the strength which has been taken
h having the strength of cold steel
of 4 X 10? dynes/cm?® would begin
stress equivalent to the force due’
lied tangentially per square centi
of a substance having such
very soft mud would be some
a sphere of a substance having

although having the strength of cold steel.

SUMMARY AND CONCLUSIONS

At th inni : .

,wnrmamaw ”w mwwﬂwm. of this paper we pointed out certain of the difficulties

occur on a scale smEﬁm @ proper iden of geologic structures when these

tion of rocks (at of tens or rﬁ:&.mmm. o.w kilometers. Our direct observa-

roat stronth rm:% one time) are limited to small specimens possessin
gth, hardness, and rigidity. Yet our geological owmmzmﬂoum

;_mros us that on a1
‘Putty. a large scale these same rocks have been deformed like
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‘E%mm the smaller the body the greater its relative stren

" gth. Thus ]
could probably carry on his back two or three dogs of his own size; cﬂamﬂﬂhp.aom
~that & horse could not carry even one of his own size.” ' e

" Other data confirm the small-scale observations that the magnitudes
of the specific physical properties of the earth as a whole are about the -
same ag those obtained by direct measurement on small specimens, em-
bodying great strength and rigidity.

On the other hand, numerous attempts have been made by means of
small-scale model experiments to produce results resembling observed
geologic structures such as oceur in mountain ranges and elsewhere.
Invariably it has been found that the experimental results only re- ;
sembled the original structures in those cases for which the model mate-
rials possessed great weakness instead of great strength. This has led
to a paradox of an earth whose materials by every known test show
great strength, yet whose repeated deformations suggest a material of
great weakness. ,

The resolution of this paradox has been one of the principal purposes
of the present paper. To do this, extensive development and use ‘has
had to be made of the methods of dimensional analysis. While the
present analysis has been confined strictly to mechanical systems, the
methods outlined here are equally applicable to thermodynamical, to
chemical, and to electro-magnetic systems. :

Should this not have been made sufficiently clear heretofore, let it
again be emphasized that the methods of analysis employed here are
neither original nor new. In his Two New Sciences Galileo ** has an
excellent treatise upon the subject of the manner in which the various
physical dimensions of a body change with size. That Galileo’s under-
standing of problems such as we have been discussing was by no means
superficial can be seen most easily by quoting his own summary.

Sir Isaac Newton ** contributed further to th j i i
‘of Sir George Stokes,** Helmholtz,*® and Wmuﬁw_w“mmeM.BmW%MMMWMHSWm
: ods have come into wide use in studies of fluid vaowmaom Toda og-
- methods are being more and more widely used in all ﬁrm QoE&Mm M
. engineering and of applied physics and chemistry. In the present pa .
the tools that have been evolving for 300 years are merely borrow wm wﬁ.
~use in solving problems of a slightly different kind. e
By the use of the methods of dimensional analysis the paradox of
earth, apparently both strong and weak, vanishes completely. We o
that m\s.mumz.ﬂ and weakness are purely relative terms devoid om. Bomu.mam
unless the size of the body is specified. Quantitatively, strength s
specific term describing only a specimen of material om a given s mu
the strength of a body of another size must be determined cm an _ma.?
We g<m. made the analysis and learned that quite generally WQ. mmwmmm.
of material having a given specific strength, the over-all mﬁmum% of m&%
; wo&\ taken as a whole decreases with increase of size. Thus m
“bodies of a given material are strong; large bodies of the .mpBo Bmmwbm.H
are weak, and the larger the body the greater its weakness Oonﬁu.mm.wm
& we are to obtain an idea of the weakness of a large anw by ovmouwwu
tions .Bmmm on a small one we must artificially weaken the smaller bod
,ﬁoddwm it into similarity with the larger one. Otherwise we will m W%
the mistake of substituting for an earth whose specific strength is of Mrm
order of that of steel our experiences with small steel balls. Steel .
we have seen, when it occurs in the form of small steel vm:m.“ is mﬁmbwm.
13

“steel, if it occurred in a bal i
ol a ball the size of the earth, would be very, very

“From what has already been demonstrated, you can plainly see the impossi-
bility of increasing the size of structures to vast dimensions either in art or in
nature; likewise the impossibility of building ships, palaces, or temples of enormou
size in such a way that their oars, yards, beams, iron-bolts, and, in short, all
their other parts will hold together; nor can nature produce trees of extraordinary
size because the branches would break down under their own weight; so also it
would be impossible to build up the bony structures of men, horses, or other
animals so as to hold together and perform their normal functions if these anima :
were to be increased enormously in height; for this increase in height can
accomplished only by employing a material which is harder and stronger than
usual, or by enlarging the size of the bones, thus changing their shape un
the form and appearance of the animals suggest a monstrosity. . . .

« . Clearly then if one wishes to maintain in a great giant the same proporti
of limb as that found in an ordinary man he must either find a harder and strong
material for making the bones, or he must admit a diminution of strength
comparison with men of medium stature; for if his height be increased inordinately
he will fall and be crushed under his own weight. Whereas, if the size of a body
be diminished, the strength of that body is not diminished in the same proportion;

mowu aw.m ﬂmg of what we have now seen it is instructive to appraise
9 e of the better-known model experiments that have been made in
,Mu owwuv&m Mo represent mountain-like structures. Most of the experi
menters have made the mistake of usin i .
g materials whose specific

Mﬂwﬂmgm 39,@.5:&_ %oo great. Bailey Willis,** for example, W_ his
ssion of his experiments on Appalachian structures showed plainly

g
zM“ um»wn Newton: Principia, Bk. 2, Prop. 32.
eo : 7

oy <o=nwm oﬂ”ﬂ“ﬂ.n.w:%uaﬁ 5..& mathematical papers, vol. 1 (1880). Cambridge Press
‘vnnsohﬂi. et .A:E@:.& eber ein Theorem, geometrisch &hnliche Bewegung fliissiger u.No. er
kademie. dur i ung auf das Problem, Luftbellons zu lenken, Monatsberichte di 3
= Omomo R _mm—.. Berlin (June 1873) p. 501-514. ' richte der Honigl
; o . i . S

ynolds: An erperimental investigation of the circumstances whether the motion of

water will be direct or si f T rall
P sinuous, and of the law of resistance in pa allel channels, W.Ouaw.— Soc. London
. r

B
Philos. Tr. (1883) or Sei. Pap., vol. 2, p. 51

% Bailey Willi
| s: The m i i
B2 (1801-1802) p. g g T cian strueture, U 8. Geol. Surv., 13th Ann. Rept.

32 Qalileo Galilei: Dialogues concerning two new sciences (1914) p. 130-13L. Maemillan Co., N

York.
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that he understood qualitatively the necessity of using materials of -
less specific strengths than the originals. He failed however to deduce
this reduction factor quantitatively, with the result that most of his
materials were much too strong. This accounts for the fact that his
model structures had to be loaded with an overburden of buckshot
equivalent to a depth of rock 1.5 to 2.5 times the length of the model,
or if the original were 100 kilometers long the overburden equivalent
to that of the model would have been from 150 to 250 kilometers—a
geologically impossible amount. Even then the more brittle materials -
broke into rigid slabs.

Experiments using materials somewhat more nearly correct have re- |
cently been made by Kuenen. In some of these experiments Kuenen
has employed paraffin floating on warm water, and certain mixtures of
paraffin, vaseline, and mineral oil. Nettleton’s experiments with salt
domes using two viscous liquids of different densities are very nearly -
dimensionally correct.

The best experiments of all that have come to the author’s attention
however, are those of Hans Cloos * representing a wide variety of tec-
tonic structures. Cloos actually built his models to conform to simply
deduced criteria for similarity. He reasoned that if an original earth
feature were composed of rocks strong enough to support a column
10 to 20 kilometers high, a model reduced by a length factor of 1/50,000
would have to be composed of a material that would support a column -
1/50,000th as high as that supported by the original materials, or a .
column 20 to 40 cm. high. It will be noted that this result coincides
with the one we have deduced for a similar case, provided the density
ratio is equal to unity.

The models made by Cloos display an uncanny resemblance to struc-
tures one actually sees in the field. The material used was wet, half-
liquid clay too soft to stand without lateral support. In one place
Cloos describes it as having the consistency of thick cream. In spite
of this it deformed by fracturing into minute blocks so small that the
integrated deformation appeared continuous. ; :

The earliest explicit application of the method of dimensional analysis
to tectonic structures so far discovered is a paper written in 1912 by
Koenigsberger and Morath.®® Taking their clew from a study by Helm-
holtz on the theory of hydrodynamic and aerodynamic models, they -
developed the theory in a simplified form for application to geologic
models. They arrived at the conclusion that for a length ratio of 107,
and a density ratio of unity, the model materials for a mountain strue-:

ture would need to be reduced in strength by a factor of 10-° from the
* gtrength of the original.
Koenigsberger and Morath also performed some model experiments,
~ employing for their model materials a mixture of paraffin, vaseline,
m:ﬁm-vmaogw Ramsay-fat (Ramsayfett), and machine oil. For load-
ing materials iron filings and lead powder (?) (Bleipulver) were used.
Iron oxide and chromium oxide were added to give different colors to
the separate layers. Experiments were made on scales of 1/100,000,
1/50,000, and 1/25,000.
 In an abstract presented to the International Geological Congress in
- Washington, Koenigsberger ** again made brief mention of the applica-
_ tion of model theory to a study of the size of folds.

- The most significant thing about this earlier work is that it seems to
have gone very nearly unnoticed. There is evidence that it had the
~ misfortune of being 20 years ahead of its time. The theory developed
then was limited in scope but was entirely correct as far as it went.
~ Bucky’s work on mine models, employing a centrifuge to increase the
body forces has been mentioned. This is still in a state of evolution,
~ but shows great promise as an experimental technique. It is practically
difficult to have a centrifuge that will handle a model more than a foot
~or so in length, with an acceleration greater than a few thousands of

times gravity. The models, however, can be observed by means of a
~stroboscope, and photo-elastic models can also be used. The method is
~ unique, and may be expected ultimately to yield results of great im-
- portance, which are otherwise unobtainable.
Maillet and Blondel +* have made a more extensive use of this method
in working out the properties of a model of the earth. By allowing
- some unnecessary restrictions and by an unfortunate choice of funda-
mental ratios they obtained a model of the earth having a radius of
0.04 millimeters which, though dimensionally correct, is much too small
to be of use.
There may be others who have contributed to this problem who have -
been overlooked. If so the oversight is accidental and unintentional.
In any case the evidence is that in remote parts of the world the geo-
logical professional is already awaking to the importance of so powerful
a tool as that afforded by the method of dimensional analysis and cor-
3.3@ made scale models, for the solving of problems that have not
Yielded satisfactorily to methods of attack previously employed.
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