
Guided reading – Earth Eccentricity

Eccentricity is defined as:

$$e = \frac{a}{R}$$

Taking a maximal eccentricity of 0.058 for earth's orbit around the sun we can calculate the distance difference between perihelion and aphelion as follows:

$$\Delta r = (R+a) - (R-a) = 2a$$

The corresponding intensity difference is however proportional to one over the distance squared:

$$\Delta I = I_{close} - I_{far} = \frac{\sigma}{4\pi (R - a)^2} - \frac{\sigma}{4\pi (R + a)^2} = \frac{\sigma}{4\pi} \left[\frac{4Ra}{\left(R^2 - a^2\right)^2} \right]$$

The decrease (in percentage) with respect to zero eccentricity is:

$$\% \Delta I = \frac{\Delta I}{I_0} \cdot 100 = 100 \frac{\sigma}{4\pi} \left[\frac{4Ra}{\left(R^2 - a^2\right)^2} \right] / \frac{\sigma}{4\pi R^2} = \frac{4R^3 a}{\left(R^2 - a^2\right)^2} \cdot 100$$

Setting $R \approx 150 \cdot 10^6$ and $a \approx 0.058 \cdot R$ in the last equation we get:

$$\Delta I \approx 23.35\%$$