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The Viscosity of the Lower Mantle 

D½• P. MCKENZIE • 

Institute of Geophysics and Planetary Physics 
University o/California, San Diego 

The viscosity of the mantle is important to theories of convection and continental drift and 
also to the understanding of the earth's external gravity field. Until recently, however, the 
processes causing creep in solids under the low stresses present within the earth were obscure, 
and there were no estimates of the viscosity of the lower mantle. In this paper the use of a 
stress-independent viscosity is justified, and the Navier-Stokes equation is applied to creep 
within the mantle, to investigate how this viscosity may vary with depth within the earth 
and to estimate the viscosity of the lower mantle from the nonhydrostatic equatorial bulge. 
The viscosity is shown to be 6 X 10 '•ø (stokes), and this high value prevents both convection 
in the lower mantle and polar wandering. 

1. INTRODUCTION 

The viscosity of the earth's interior is im- 
portant in many geophysical problems. It is es- 
sential to any calculations on convection withh• 
the mantle and must govern continental drift 
and tectonics of the crust. Whether polar wan- 
dering takes place will be decided by the earth's 
vis½osily, and the harmonics of the external 
gravity field may perhaps be related through 
the viscosity to temperature differences within 
the mantle. However, until the nonhydrostatic 
bulge was discovered, there was no method of 
estimating the viscosity of the mantle below a 
depth of perhaps 1000 km. The reasons for'this 
..ire (see section 6) that the deformation pro- 
duced by a surface load takes place in the 
upper mantle and never reaches the lower 
mantle, however large the dimensions of fhe load 
may be. Only a body force, like rotation, is able 
to deform the lower mantle. 

The classical method of estimating the kine- 
matic viscosity of the mantle is to measure the 
isostatic uplift after a known load has been re- 
moved from the surface. Haslce•l's [1935] cal- 
culation for the postglacial rebound of Fen- 
noscandia, probably the most accurate of the 
many estimates for that region, gives a kine- 
matic viscosity of 3 X 10 • stokes. The only 
other accurate calculation [Crit•enden, 1963], 
on the uplift after Lake Bonneville dried out, 

•On leave from the Department of Geodesy 
and Geophysics, Madingley Rise, Cambridge, Eng- 
land. 

gave a lower value of 3 X 10 • stokes. Gulenberg 
[!959] showed that the uplift of the Canadian 
Shield is consistent with Haskell's result. 

There was no method of estimating the vis- 
cosity of the lower mantle until MacDonald 
[1963] pointed out that the nonhydrostatic 
bulge could only be supported by a highly vis- 
cous lower mantle. He suggested a viscosity of 
10 '•' stokes, which is supported by the analysis 
given below. Before any calculations can be 
made, it is necessary to show that there is a 
difference between the nonhydrostatic bulge and 
the other harmonics of the external gravity 
field. This difference becomes clear in section 2, 
where the energy stored in each harmonic is 
calculated. The bulge contains more energy than 
any other component. 

Many attempts have been made to relate •he 
rate of strain in a solid to the stress applied, but 
most of the equations produced are empirical 
and are based on laboratory studies under con- 
ditions very different from those within the 
earth. Zharkov [1963] and Gordon [1965] have 
discussed what mechanisms can produce creep 
in a solid when the stress is small, and both 
believe diffusion creep to be the dominant me- 
chanism within the earth. 

Kaula [1963] calculated the elastic shear en- 
ergy in the nonhydrostatic bulge to be 2 X 10 • 
ergs. Table I shows that the gravitational en- 
ergy in the bulge is 2 X 10 • ergs. Thus the 
neglect of the elastic forces will introduce a 10% 
error, which is small compared with the other 
uncertainties. 
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TI:IE [EXTERNAL Gaavm: FIEf,I) then 

The nonhydrostatic part of the equatorial 
bulge was not discovered until the external 
gravity field could be determined from the mo- 
tion of satellites. In this section the gravita- 
tional energy stored in the bulge is shown to be 
much greater than that in any other coefficient, 
and thus suggests it has a different origin. Sec- 
tion 4 requires the gravity field of a layered 
sphere that has small distortions in the surface 
of each layer. The revelant expressions are de- 
rived here because they have not been found 
in the literature. 

Outside the earth the gravitational potential 
U satisfies 

and inside the earth 

V"(y = -4Gp (2) 
According to the usual sign convention which 

is followed here, U is positive everywhere. 
The solution to (1) is 

and (2) gives 

•, [3R•, 2 -- r -• 

m • m 

where R• = 6378 km and is the mean equatorial 
radius and g = GM/R• • = 979.8 era/see •, M 
being the mass of the earth. Uz • are the 
cients of the external field •th R• taken as a 
referenee length; they require slight corrections 
if the mean radius a is used instead. At present 
the experimental errors are greMer than the 
eorreetions. 

The spheficaI harmo•cs are defined by 

k(z + 

fo • fo •'• X '"rX •* sin 0 dO t k k/ --- 

The values of U•" are complex and are related 
to the reaI coeffieients defined by 

4) = 7 + 

l m•O 

ß [C, cos me 
through the following equations 

U, ø= C," •,"•' = (C, m -- iS,')/• 

The coc•cicnts C•"' and c . calculated from 
•hc motion of satellites, are of the order of 10 -• 
•o 10 • except for C o the equatorial bulge. The 
zonal harmonic coc•cients are better known 
than the tesseral because they produce long- 
term changes in the orbit parameters and 
may bc measured over a long period from one 
station. The tcsscral coe•cicnts produce only 
short-term changes in the orbit, and thus the 
observations from different stations must be 
combined. Since •t•c relative positions of ire 
stations cannot be determined independently 
with sufficient accuracy, these must also be 
calculated from the orbits. The observaliom 
have only recently become suff•cicnfiy accurale. 
The geoid determined by Izsak [1964] has ele- 
vations and depressions in ttxe same general re- 
gions as that of Guier and Newton [1965]. The 
geoid is the surface of mcan radius a over which 
U is constan• 

= ,. O,,/,)) 

The gravitational potential due to a deformed 
sphere of uniform density whose surface (not 
an equipotential) is 

v, l>>v, (5) 
can be found by requiring U and V U to be con- 
tinuous on the deformed surface [Je•reys • 
Jeffreys, 1950, p. 642] 

U, '• -- (3/(2/-[- 1))V,' 
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The potential 
found from (3), (5), and (6)' 

- [2(• - •)/s] v, • (7) 

When a sphere has several layers of different 
density, the corresponding expressions may be 
found by addition of expressions like (3) 

V• m = --G,n• '• (9) 
With two/ayers 

u • • • v,,,•) (.,•)• (,•, , •, 

Gl '-- 
.,. 2(•- 1) 

--21 .4- 1 g' a g, '-t- 2i"•q,'i '• g2 
In these equations ,o7, "•, ,,U,"% and ,•V,'" are the 
deformation and the potential on the unde- 
formed and dr'formed surfaces, respectively, of 
the boundary radius a,,. Also 

g• = (4wG/3g)a•(,ox- p•.) g•. = (4•G/3g)a•pr 
where/• is the density within the Iayer n. The 
corresponding results for three layers are easily 
derived in the same way. :In all models the den- 
sities were chosen to make •he acceleration due 

to the gravity field on the surface of all layers 
the same as its surface value, g. 

The coefficients of the external field are best 

compared by calculating the energy contained 
in each of them. This calculation cannot be ac- 

curate because the depth of the density varia- 
tions responsible for the coei•cients is not 
known. An estimate can be made by consider- 
ing the earth as a uniform sphere. The energy 
can be calculated by adding a mass m given by 

m= 4x.a•pa dk • • ,1, , 0 < k < 1 
to the surface of a sphere at potential 

V: ga(1- • • 2/-- 1) k ,•,. 
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Integrating over the whole surface, over k from 
0 to 1, and substituting the mass M of the 
sphere for 4•-dp/3 gives 

Z ---- ! • 

or 

47f' 

E = ---•-- gaM 

ß X; X; (z- •)(2z + •) v,•(v,•) * (•o) 
The negative sign occurs because U is taken as 
positive. The analysis above applies to a non- 
rotating sphere. In a rotating frame the energy 
is 

E = _4x' gaM Z Z(l- 1) 3 

ß (2• + •)(vF - •,•)(v, •- •,-). 
H, • are the hydrostatic coe•cients of the grav- 
ity field. If the axis of rotation is that of the 
spherical harmonics, H, • = 0 unless m = 0 and 
l is even. Jeffreys [1963] has calculated H• and 
H,o to be 

--1072.1 X 10 -• and •2.9 • !0 -• 

for the unnormalized spherical harmonics, or 
--479.5 X 10 -• and +1.0 X 10 -• for those used 
here. The energies given by (11) (Table 1) are 
calculated from the tabulated values of C, • and 

u•(vD * = [(c,'7 + 
The agreement between the two determinations 
is not particularly good, especially for the low 
harmonics. However, it is clear that the energy 
in the X• ø harmonic is very much greater than 
that in any other. 

There are several possible methods of pro- 
duc•g slight deviations from spherical s•- 
merry of the density distribution, but it is di•- 
cult to undersland why the axis of rotation 
should also be the axis for these deviations. 

Yeffre•s [1963] believes that the manfie has 
finite strength and has supported the density 
differences required for the gravity field since 
the earth was formed. •owever, considerations 
of the mechanisms involved in creep in solids 
at high temperatures and low stresses do not 
support. the idea of finite strength 
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TABLE 1. The Gravitational Energy in the 
External Gravity Field* 

m 2 3 4 5 6 

112 14.5 6.8 0.0 
0 

108 13.1 3.6 0.0 

i 24.1 6.9 1.0 
5.0 1.3 1.0 

2 17.8 13.6 5.0 4.1 
5.6 0.8 0.9 7.6 

9.8 9.7 0.4 
3 7.8 1.1 11.6 

1.1 6.7 
4 1.2 6.4 

9.9 
5 4.6 
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oœ magnitude too small to explain the satellite 
measurement. 

Another suggestion [Wang, 1966] is that the 
nonhydrostatic bulge will vanish when the re- 
bound of formerly glaciated areas is complete. 
This effect (discussed in appendix 3) is also an 

0.7 order oœ magnitude too small to explain the 
0.8 servations. 

0.3 Thus the original suggestion of Munk a•d 
0.5 MacDonald [1960] that the nonhydrostatic 
1.6 bulge is caused by the earth's angular decciera. 
5.3 tion is still the only mechanism yet discussed 
9.2 which can explain the observations. The dil- 
l.6 forenee in energy between the bulge and 

11.,i other harmonics is then explained by the dif- 
6.8 ference in their origins. The earth's viscosity can 
9.5 })c calculated on the basis of this hypothesis. 
7.8 

1.7 3. Cnw, w,r wrr•N ,r• 
14.6 No further progress can be made without an 

equation re]ating stress to the rate of stra• 
within the earth. •any complicated empirical 
equations have been published with very little 
discussion of the mechanisms by which the solid 
is deformed. These mechanisms will be discussed 

in a later paper, where it will be shown ihat 
diffusion creep is dominant if the stress is small 
(less than about 10-•'•,, where • is the shear 
modulus). Creep of this nature in a homogene- 
ous solid obeys the Navier-Stokes equation and 
thus justifies the use of a stress-independent 
viscosity. • earth model consistent with both 
the rates of postglacial uplift and the nonhydro- 
static bulge is related here to the properties of 
mantle rocks. 

The nonhydrostatic equatorial bulge produces 
shearing stresses which cause the earth to creep 
toward hydrostatic equilibrium. If the stress is 
•su•cient to cause dislocations to move through 
the crystal, the only creep mechanism is dif- 
fusion of aloms or vacancies along gra• bound- 
aries or lhrough the crysial lattice [Gordon, 
1965]. Herring [1950] shows that the diffusion 
creep rate • depends linearly on stress a 

a = • V•/•0•r• • (•) 
where R is the mean crystal radius, V, the 
atomic volume, and D the diffusion coe•cient. 
D is related to the enthalpy, •H, required 
produce a vacancy or •terstitial atom 

* Energy in units of 1.56 X 10 •s ergs. Upper 
values, Guier and Newton [1965]; lower values, 
Izsak [1964]. 

1963; Gordon, 1965], nor does such a theory 
explain the orientation of the excess mass. An- 
other cause of the density irregularities may be 
a temperature distribution with smalI differences 
from .spherical symmetry, caused either by 
convection or by the nature of the solutions to 
the heat conduction equation when the conduc- 
tivity is a function of temperature. Since Tozer 
[1965] shows that the Coriolis force can be 
neglected throughout the mantle, the only way 
in which the rotation can affect convection and 

heat flow is through the boundary conditions, 
which are given on a spheriod rather than on a 
sphere. Under these conditions a theorem due 
to yon Zeipel [Eddington, 1926] prevents the 
surfaces of constant pressure from being iso- 
thorns, and slow circulation will take place un- 
less the earth has finite strength. The equations 
which govern the flow are complicated, and no 
solution has been attempted. In any case it is 
unlikely that this effect is important, since the 
earth's surface features show no symmetry about 
the equator. Some idea of the order of magni- 
tude of the nonhydrostatic field is obtained in 
appendix 2. This calculation, suggested by G. E. 
Backus and It. H. Dicke, gives a value of 1.6 X 
10-' for the nonhydrostatic U2 that is an order 
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where Do is a constant which varies little with 
pressure and temperature. Thus the creep can 
be described by a kinematic viscosity v, given 
by 

•, = (10kTR2/Dom,,) exp (AH/kT) (14) 
where m, is the mass of an atom. The main pres- 
sure and temperature dependence of the vis- 
cosity is through the exponential letre. In the 
laboratory, T is generally small and creep takes 
place by the movement of dislocations, a process 
which cannot operate below the yield stress. 
Under these conditions a solid has finite strength 
because diffusion is far too slow to be measured. 

Kaula [1963] finds that the nonhydrostatic 
bulge produces a maximum shear stress of 
about 10 s dynes/cm", or about 10-'• within the 
mautle. His solution is not unique. This stress is 
probably too small to move dislocations, and 
thus creep will be by diffusion. Since both pres- 
sure and temperature are, to the first approxi- 
mation, functions of r, the radius, the viscosity 
will also only depend on r. In this case the flow 
will obey equations similar to those given by 
Alterman et al. [1959] for the corresponding 
elastic case. These equations are given by G. E. 
Backus (personal communication) and could be 
solved for various temperature and pressure dis- 
lribufions. However, the uncertainties in T and 
in lhe constants in (14) are as yet too great for 
such an analysis to be justified. The same 
method as Alterman's is used for the calcula- 

lions in section 4, but with a maximfire of three 
layers only. The flow in each layer lhen satisfies 
the Navier-Stokes equation 

Dv 
- O,v + (v.V)v 

= rV•v q- V(U -- p/p) (15) 

V'v=O 

where p is the fluid pressure and •, stands for 
•/0•. MacDonald [1963] has shown that the 
viscosity required to produce the nonhydrostatic 
bulge is about 10 :• stokes, which is very much 
grealer than the value of 3 X 10 -• estimated by 
Haskell [1935] for the postglacial uplift of the 
Baltic Shield. The movement of the earth's sur- 
face under a load of radius • 1000 km* is de- 

* ~, order of magnitude of. 

termined by the creep rate in the upper mantle 
above about 1000 km. However, flow produced 
by the bulge will penetrate into the lower man- 
tle, which therefore must have a much greater 
viscosity than the upper mantle. 

The temperature gradient in the lower mantle 
is close to the adiabatic, and in the upper man- 
tle it is very much greater. Tozer [1965] finds 
that the viscosity changes little along an adia- 
bat; thus if AH remains constant throughout 
the mantle the viscosity should decrease stead- 
ily with depth to its value in the lower mantle. 
Since the viscosity increases by five orders of 
magnitude between the upper and lower mantle, 
AH must increase. The phase change from an 
olivine to a spine! lattice probably takes place 
between 300 and 600 kin, and the movement of 
silicon from tetrahedral to octahedral coordina- 

tion takes place between 600 and 900 km. The 
dense phase in the lower mantle has a higher 
bulk modulus and hence a higher activation en- 
ergy for vacancy formation than the less dense 
phases in the upper mantle. Thus a good model 
for movements within the earth with time scales 

of about 10 • years or greater probably has a 
surface shell 1000 km thick with a viscosity 
-• 10 • stokes overlying a lower layer of vis- 
cosity •, 10 -• stokes, which in turn surrounds an 
inviscid core. There is general agreement that 
the boundary between the upper and lower man- 
tle is a phase change and thus depends on pres- 
sure, whereas that between the •ower mantle 
and the core •s a composition change and hence 
the volume of the core is constant. These bound- 

ary conditions must be satisfied by the solutions 
to (15). The difference between the viscosities 
is sufficiently great for the lower mantle to be- 
have as a rigid core for movements in the upper 
mantle. Also, flow within the lower mantle be- 
haves as if both the core and the upper mantle 
were inviseid fluids; thus the transverse stress 
vanishes at both surfaces. A more accurate esti- 

mate of the thickness of the upper shell can 
probably be ealculated from the uplift rate of 
areas with varying diameters, and it may explain 
the apparent difference in upper mantle vis- 
cosity as calculated from the shorelines of Lake 
Bonneville [Crittenden, 1963] and from the 
Baltic Shield. 

Three models are considered here' model 1 

is a homogeneous earth; model 2 has an inviseid 
core and a homogeneous mantle; and modeI 3 is 
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the one described above and is the most like 
the actual earth. In all models the stress van- 
ishes at the outer surface. The ne• section 
contains the mathematical solutions to (1,5) 
with the appropriate boundary conditions. 

4. MODEL CALCULATIOATS 2 

There is no analytic solution %0 (115) in a to- 
'rating frame, and thus certain approximations 
must be made before a solution is attempied. 
Even the angular rotation cannot be taken as 
constant because the nonhydrostatic bulge is 
produced by the deceleration. The first part of 
tt]is section justifies the approximations made, 
and the second contains solutions of the simpli- 
fied equations for each of the models discussed 
in section 3. The difference between the vis- 

cosity calculated for a homogeneous sphere, 
model 1, and model 2, which contains an in- 
viscid core, is small. Allowance for the phase 
change in model 3 requires an order of magni- 
tude increase in the viscosity. 

Fortunately, the flow toward the hydrostatic 
figure is very slow, and many terms in the full 
equations can be neglected. The equations for 
the flow of a viscous incompressible liquid in a 
rotating frame are 
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+ vlu - Wp 

V'v=O 

O,v + (o x r+ 2• x r 

+ • x (• x r) + (v-v)v 

= •v% + v(u- •/•) 
Since the bulge is about 10 4 cm greater than 

the hydrostatic, and corresponds to the hydro- 
static figure of about 10 • years ago, [v[ • 10 -•o. 
Si•larly 

[• • •0 -• [•[ • •0 -• 

The bulge will be governed by the larges• 
•erm containing • or •, which in this case is the 
• x (• x r) term. Thus (16) may be written 

2 This section contains no arguments or conclu- 
sions that are essential to the understanding of 
the problem. It may be omitted by those who do 
not want to study the detailed mathematical solu- 
tion to the e. quations of viscous flow. 

co r2 J 3•/• x•ø(ø) 

It is more convenient to work with dimensionless 
quantities•7, %, 6 ), 6l, and •', defined by 

• _ av q! = U/ga 6) = r/gap 
(R: r/a •: gat/•, 

Equations 17 may then be written in terms of 3, 
a dimensionless number 

0 = V•; r 

q- $'"V ql (P co a ,, .... •,-x. (o) 
:•x/g g 

o = v.•7 (•8) 
where 

5 '2 = ga' 
The bulge is caused by the time dependence of 
(,), wlfich may be written 

w = oo,, exp (-yt/2) = •oo exp (-rU2) 

Since the hydrostatic bulge is proportional to 
•,?, 1/• is il•e relaxation time for lhe hydro- 
sinitc bulge. The value of ¾ may be found from 

-v/• = •/• 
Equ,'dion 18 becomes 

0 = 

+ •v[q•- m + 
0 = V-•7 

where 

(19) 

•o = - •oo•/ax/• g 
Equation 19 must be solved with the appropri- 
ate boundary conditions. For a homogeneous 
sphere which has been slightly deformed, lhe 
condition that the lransverse stress should van- 

ish on the deformed surface is, to the first ap- 
proximation, the same condition as that ii 
should vanish on a sphere, radius a. Thus 
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- 6t sin 8 
= o (•o) 

on 6t = 1, where O • stands for O/O•!, etc. The 
normal stress • must vanish on the deformed 
surface, (R = 1 -[- V, and does not vanish on 

(21) 
=0 

The kinematic condition is that the rate at 
which the surface is deformed must equal the 
normal velocity 

• o• = [•Y-a•]•.• (2•) 
There is no solution to these equations with 
•[ • 1 because the force driving the circulation 
is •5 •. Substituting 

in (1S) gives 

-v•%=v x(v x•) 

= v[• - e + 

v.% = 0 

The boundary conditions become 
, 

•.•+• = •[a,,,(•.a•)]•., (s•) 
• = [•-a•]•.• 

Equation 20 is unchanged. The rest of this 
section contains the exact solution to (23) with 
boundary conditions 20 and 24. 

Two approximations have been made in the 
derivation of (23). The first is that a region of 
constant •scosity separated by sharp spherical 
boundaries is a good model for the mantle and is 
probably valid. The second is that buoyancy 
forces due to temperature variations can be 
neglected. It has been shown (section 2, appendix 
2) that these forces are unable to produce the 
observed gra•ty field by themselves, but it is 
di•cult to prove that they cannot interact 
through the two noOnear terms, • = •(T) and 
v. VT, to produce the observed field. However, 
such effects are neglected. 
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The Laplace transforms of (23) and (24), with 
respect to •' are 

v x (v x •(%)) = v[•(•) - 

+, + r x• (o) 
V'•(•O = 0 (26) 

•(e)•=•+, = 2[O•(•(•O-a•)] (27) 
•(•) = 

The surface of the sphere is taken as unde- 
formed at • = 0 because the initial conditions 
have no effect on the solution. The divergence 
of (25) gives 

v• •(•) - •(e) + • + r 
Thus 

•(•) - •(e) + •' +r •-x•ø(o) 

a,.','(s) must be found from the boundary con- 
ditions. The other solution containing (R -z-• is 
excluded because it is infinite at the center. The 

form of (25) suggests a solution of the type 

+ l,,F(o•, •)c•,(o, •)} (so) 
P, B, and C are the vector spherical harmonics 
defined in Morse and Feshbach [1953], but 
normalized so that their integrals over a unit 
sphere are iT. Substitution of (29) into (25) 
and the traction equations shows that no solu- 
tion containing C is possible; thus there is no 
solution to correspond to the torotrial magnetic 
fields or torsional oscillations in elastic theory. 
Equation 26 gives 

(Pt ' ' 

and (25) becomes 

•(• + •)/,,F - 

= •(•) •' • (a0) 
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The solution to (30) is 

where b•(s) must be found from the boundary 
con•tions. •(v) and the values of •(•) and 
•(%) on the deformed surface may be expanded 
in spherical h•mo•cs 

Equation 7 relates Vf(s) and •f(s); equation 
27 gives 

= 2 (l -- 1)b• • -- 2(2• + 3) a• (32) 
•oth transverse equations give 

+ z(z + = 0 
The expression in •he first bracket is equal to 

(l --{- 1)(/ -- 2)b' l•(l -}" 3) • z -- 2i2/ +3) a• 
Elimination of az% bz m, and 6• • from (28), (31), 
(32), and (33) leaves 

0 = I q- s Vz,•(s) +s+ F &•o 6,2 (34) 

7' l 
-- •/[2(/q- 1)2+ 1] 

r• is the dimensionless decay time for a surface 
disturbance which only contains spherical har- 
monics of degree 1. The true relaxation time is 
w'•/ga. Equation 34 shows that rotation affects 
only the Y :•o harmonic of the gravity field 

vJ() = + x;O½ + r) 
K• = 2/19 

Inversion of the Laplace transform gives 

Vaø(f) = aoKoe -rr 
- r) 

ß {1 -- exp [--(Ka -- r)rl} 
Since •he no•ydros•atic bulge is small corn. 
pared •th •he hydrostatic, K a >> F; als0 
fKa >> 1. Hence (35) becomes 

2oe- r r Ka 

As v • 0, F • 0 and (36) gives •he hydrostatic 
potential, Wao(D 

Both V• o and Wa o are measured on the deformed 
surface. The corresponding coefficients, •a0 and 
H•0, on the surface of a sphere •th • = 1, my 
•hen be found by using (7). Thus 

•o_ tiao ;%0_ waO 
• • 0 H• W• ø 

r r 

When this equation is expressed in measured, 
rather than dimensionless, parameters, it be- 
comes 

v-- AK•gaw/2(--&) (37) 

Where •o and & have their modern values. The 
value of A was obtained in section 2 and is used 

in section 6 to calculate the viscosity. Such $ 
calculation is justified only if & has remained 
constant over the last 10' years. 

The earth is not a homogeneous sphere, but 
contains a fluid core and a mantle whose proper- 
ties vary with depth. The external gravity field 
can still be used in calculating a viscosity, but 
the theory becomes more complicated. A model 
with a fluid core and a homogeneous mantle is a 
better approximation to the earth than a homo- 
geneous sphere is. However, the gravity field is 
then caused by distortions at both the earth's 
surface and the core-mantle boundary. Since the 
flow takes place in response to the gravity field, 
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the flow at the outer surface is caused by the 
shape of both the outer surface and the core- 
mantle boundary. For this reason the model 
must be described in terms of its two normal 
modes and the rotation included as a generalized 
force on both. Fortunately, the decay time for 
both modes is short compared with that for the 
rotation, and therefore the normal modes need 
be found formally only. 

Flow within the core in response to movement 
of •he core-manfie interface obeys (19) with 
•0 

v =o 
Px 

where p• and p2 are core and lower mantle 
densities, respectively. Thus the pressure within 
the core, (P•, is hydrostatic. 

-r• 2 o 5'• - p--• [q% + f•oe fit X. (0)] -+- const (39) 
The normal stress is continuous at the core- 
mantle boundary, • • a. 

The k•emafic and transverse s•ress boundary 
countions are •he same as in (32) and (33) bu• 
are •aken at • = a. In Laplace •ransform space, 

becomes 

•2od X•ø( O) 
- + ....... s + r 

The solution ;o (30) now contains two more 
terms 

M before, •b• •, •b•% •a• •, and •a• • must be 
determined from •he boundary conditions, and 
the rotation affects the harmonic with l • 2 and 
m = 0 only. The transverse stress and 
mafic equations may be combined to give 

(4. 

A 2 = 

2 
1 1 c• 

a 2 7 

8 1 1 8 . 

8 a 1 .• 8 j 
The boundary conditions for normal stress give 

D V2 ø .+- s +"r.J = Baa.o (43) 

(w)" = (d', 

B 2 = 

D = 
1 -- P_L 0 

p2 

0 I 

8o• '• 3• 2 • 
Equations 42, 43, and 9 can be combined to give 

C[Va ø -[- Wf2o/(S-[- F)] = sVa ø (44) 
where 

C = G•(B•E•) -•D 

and E• is the first two columns of (A•)-•. The 
motion of the core-mantle interface is coupled 
to •hat of the surface of the off-diagonal terms 
in C. The normal modes can be found by diagonal- 
izing C. We choose S so that 

S-•CS = [:0• O]=A 
and 

¾a 
Then (44) becomes 

0 

= - eo 

. r) 

0 

(ao/(S + r))As-w 

o 

S-•W 
X• 

(s +' X•)(s + r)] 
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Inversion of the Laplace transform gives 

r• • 0 S- = - - 
0 

As in the case of the homogeneous sphere when 
v--• 0, F --• 0 and the hydrostatic value (o.•ø(t ') 
is given by 

(o•.ø(t -) = -- i2oe -rrlS-xW 
where ! is the unit matrix. Thus 

•,.,o(•) _ •o(•) = _ •or•-•A-•s-•w 
v•O(•) - w..O(•) = S[v,•O(•) - •',(•)] 

= - •2opd- r•C-'W (45) 
and 

= = - (40) 

U ø- H=" P(F=G, C W)..,. (47) .o ,HO = F 
The subscript 2 refers to the second component 
of the vector concerned. The expression on the 
right of (47) can be evaluated and 
where K• is as given by (34). 

In the third case, another layer is introduced 
to represent the upper mantic. The viscosity 
of this layer must be • 10 =, or about five 
orders of magnitude smaller than •hat of 
lower manfie. Thus an approximate solution 
can be obtained by neglecting the viscous forces 
due to deceleration in the upper mantle. The 
boundary between the upper and lower mantle 
is a phase change, which takes place at constant 
pressure. Thus (38) gives 

• W(9 + (•o/0 + r)) = 0 (•s) 
on the bmmdary. Since the normal stress 
dependent of O, the pressure coe•cient, 
•mediately below the boundary and within the 
lower mantle is 

P•'(s) = 2[Od•,z']•=, (49) 

The gravitational and rotational potentials are 
continuous everywhere; hence (43) becomes 

--2[Oa[:.•'•]a=• = •a2øa s -[- •.a•. ø (50) 
This equation can be combined with the trans- 

verse stress equations and the kinematic bound. 
ary condition at the core-mantle boundary t0 
give a matrix as above. When the result is 
written in the form of (47), the expression 0n 
the right is P/lOK.o for an upper mantle thick. 
ness of 300 kin, and one of 1000 km gives 
I'/15K..,. Thus the viscosity required to produce 
the external gravity field is increased by factors 
of 10 and 15, respectively, over that for the h0. 
mogeneous sphere. The viscosities for this model 
are an order of magnitude greater than for 
either the homogeneous sphere or for the two- 
layer model because all the nonhydrostatic field 
is caused by distortion of the core-mantle bound. 
ary. Since the gravitational potential drops as 
•:• • 0.1, the distortion required, and hence the 
viscosity, is greater. The deformation from the 
hydrostatic ellipticity is ~ 1 kin, or ½bout an 
order of magnitude less than could be detected 
by core reflections. 

Tf the viscous stresses in the upper mantle 
cannot be neglected, •he factor on •he right of 
(47) must lie between I•/1.4K.,. and P/15•, de- 
pending on the v•ria•ion of viscosiW with depth 
in •he upper mantle. 

5. TT-IE ANGULAZ< DECEZmaa'rzoN 

The analysis in section 4 applies only if the 
angular deceleration has a time constant long 
comparison with that of the bulge, which is 
•-2 X 10 • years in the three-layer model. As- 
ironomicai observations cover only the last 150 
years, but until Wells [ 1963] found daily growth 
lines on corals they were the only measurement 
of the dcceleration. 

Mu. nk and MacDonaht [1960] discuss tl•e his- 
torical variations in the lcnglh of day, which 
they separate into two parts--one due 
tidal exchange of angular momentum between 
the earth, the sun, and the moon and the other 
due •o some internal cause, probably motions 
within the fluid core. The only information used 
to achieve this separation is astronomical ob- 
servations of the orbits of the moon, the sun, 
and Mercury and a comparison between the 
heights of lhe sun and moon tides. They esti- 
mate the present deceleration to be 5.3 x 10 -= 
rad/sec 'ø if the friction in the oceans is linear, or 
5.8 X 10 -= rad/sec 'ø if, as seems more likely, lhe 
friction depends on the square of the velocity. 
The second value is used for all the calculations 
made in section 6. The acceleration due to in- 
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ternal causes fluctuates with a time scale of 
about 20 years, but it has not produced any 
long-term changes since observations began. 

Observations on Middle Devonian corals have 
been used recently to calculate the deceleration 
over a period of 350 million years. Wells [1963] 
and Strutton [1964] have suggested that ridges 
on the epithcca of some Paleozoic corals cor- 
respond to daily, monthly, and annual growth 
and hence reveal the number of days in a 
month and a year. Runcorn [1964] finds that 
these observations require the earth's decciera- 
tion and moment of inertia to have remained 
constant since Middle Devonian time. These 
results, though still slightly uncertain, support 
the extrapolation of the modern observations. 

In tile analysis ill section i it was more con- 
yentent to use an expression for the ang•]ar ve- 
locity of the form 

co -' coo cxp (--'yt/2) (51) 

where • and •00 are constant and • = --2&/•o. 
Equation 51 fits all observations as well as a 
straight line does; however, there is no physical 
reason why it should be preferred. 

Though Runcorn found that the coral results 
required no change in the earth's ,moment of 
inertia, the collapse of the equatorial bulge must 
produce an internal angular acceleration and a 
decrease in the moment of inertia. This effect is 

discussed here to show that it can be neglected. 
If C and zi are the time-dependent moments 

of inertia about axes passing through the pole 
and the equator, differentiation of MacCullagh's 
formula [Jeffreys, 1959, p. 40] gives 

dt dt dt 

To the first approximalion the mean moment 
of inertia remains constant 

dC dA. 

+ = o 
Je/]reys [1959] shows that Y.• is proportional to 
•'•; thus 

(2/oo)&, -- (1/Y•) dYe/dr (54:) 

where &, is the total angular acceleration. due to 
all causes. Apart from external forces the angular 
momentum of the earth must remain constant 

+ = o 
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where &• is the acceleration produced by proc- 
esses in and on the earth. Equations 52 to 55 
may be combined to give 

&, = --(4y.•Ma•/3C)5, 

For the earth C • 0.33Ma•; thus 

•, = --4.0•, (•) 

(1/C) de/dr = 4.0(Y•/•)•, (57) 
Thus 

&• = 2.3 X 10 -a4 rad/sec a 

(i/C) dC/dt = 3.3 X 10 -2ø part/see 

Since the probable error in &, is ,-., 10 -=•, the 
acceleration due to the collapse of the bulge is 
too small to be detected. The change in C since 
Devonian time is only 3 parts in 10 •, which is 
well within Runcorn's estimate of the experi- 
mental uncertainties. These results are not 

changed when the finite viscosity is included. 
This section shows that large changes in &, 

or C since Devonian time are excluded by the 
coral results. Thus the equations derived in 
section 4 can be applied to the earth. 

6. DAMr• A•O V•scos•z • ½ 
NONHOMOGENEOUS EARTH 

In previous discussions oœ the earth's viscosity, 
Haskell [1935], Gold [1955], and Munk and 
MacDonald [1960] have considered a homo- 
geneous earth only. Substitution of A -- 9.8 X 
10 -•, K• = 2/19, o•--- 7.3 X 10-• tad/see, 
5: = --5.8 X 10-" rad/sec •, g = 9.8 X 10 • 
cm/sec% and a = 6.4 X 10 s cm into (37) shows 
that a viscosity of 4 X 10 • stokes is required to 
produce the observed equatorial bulge, and this 
value is not consistent with that derived from 

postglacial uplift. Thus a homogeneous earth is 
too simple a model and a layered earth must be 
used. Also, in a homogeneous earth the charac- 
teristic time for the damping of the Chandler 
wobble and for the collapse of the nonhydrostatic 
bulge are the same and are related to the time 
required for polar wandering (see Gold [1955] and 
section 7). Gold used 13 years as the decay time 
for the Chandler wobble and discovered that 

polar wandering would take place in about 1 
million years, an embarrassingly short time. 
This difiqculty is also caused by a homogeneous 
earth being too simple a model. 
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In a layered earth there is no simple relation 
between the damping of the Chandler wobble 
and the time taken for the bulge to collapse. 
Let us consider an earth which consists of a 

shell which will damp the Chandler wobble in 
10 years surrounding a rigid central core, and 
allow the surfaces of the shell and the core to 

have their hydrostatic bulges caused by rotation. 
In this model the damping of the wobble will be 
rapid and will take place in the viscous shell. 
If the angular velocity is changed, however• the 
nonhydrostatic bulge produced will be permanent 
because it will be caused by the shape of the rigid 
core, even though the shell will quickly flow to 
make the outer surface an equipotential. If the 
continents are floating in the outer shell, the 
Ebtv6s force on them will not cause polar wander- 
ing because the rotational axis is fixed by the 
central core. This force may cause them to drift 
toward the equator if the viscosity of the shell 
is sufficiently small. Such a model will also allow 
isostatic adjustment to any surface load. 

Present knowledge about the earth's interior 
from seisinology shows that there is a central 
core, radius 3470 kin, surrounded by a radially 
symmetric mantle. Free oscillations and body 
waves show the core to be inviscid over the 

time scales considered here, whereas postglacial 
uplift requires the upper mantle to have a 
viscosity •, 3 X 10 •'• stokes. The discussion 
above shows that isostatic adjustment will be 
governed by the viscosity of the surface layers. 
The nonhydrostatic bulge will be supported by 
•he most viscous layer within the earth, provided 
that the decay time within this layer is short in 
comparison with the rotational decay time. The 
viscosity required must be greater than the 
4 X 10'-• stokes calculated for a homogeneous 
earth. The only possible position for a layer of 
such high viscosity is the lower mantle. Solid- 
state considerations (section 3) suppor• this 
conclusion. The outer boundary of the lower 
mantle is a phase change, and thus this boundary 
is governed by pressure. Under these conditions 
the analysis in section 4 shows that the shape of 
the boundary is governed by the least viscous of 
the two phases. Thus the outer surface of the 
lower mantle is an equipotential, and it does not 
contribute to the nonhydrostatic bulge (a similar 
argument applies to the inner core). The cause 
of the bulge must therefore be a distortion of 
the core-mantle boundary from hydrostatic 

equilibrium. When the value of --&, obtained 
in section 5 is substituted into the expressiota 
given in section 4 for the three-layer model with 
a phase change, the viscosity required is 4 X 
stokes if the upper mantle is 300 km thick and 
6 X 10 TM stokes if it is 1000 km thick. A two-layer 
model with a fluid core gives a viscosity of 
6 X 1025 stokes but is not consistent with post. 
glacial uplift. Takeuchi and Hasegawa [1965] 
ignore the gravity field due to the elliptictry of 
the core-mantle boundaxy. Their model 
rigid lower mantle; therefore the extern•l gravity 
field would be dominated by the shape of the 
rigid lower mantle and not by the external shape. 

The shape of the core-mantle boundary will 
fix the rotation axis to the lower mantle and 
hinder polar wandering. However, the Chandler 
wobble will be damped by the layer which can 
dissipate the most energy when acted on by a 
force X•.•(O, qb) exp toot. Since there is a dose 
relationship between the mechanisms producing 
damping and those producing creep, the lower 
mantie is unlikely to cause the rapid damping of 
the Chandler wobble. Anderson and Archambeau 
[1964] believe that most of the damping of body 
waves and of free oscillations takes place in the 
upper mantle. It is likely that the Chandler 
wobble and the body tides are also damped in 
the same region. 

Thus it is important to decide whether the 
process is governed by the most or the leas• 
viscous part of a nonhomogeneous earth before 
any simplifications are made. 

7. POLAR WANDERING AND CONVECTION 

Palcomagnetic results require the magnetio 
pole, and hence the rotational pole, to have 
moved relative to each continent during geo- 
logical time. If continents have drifted relative 
to e•ch other and lo the pole, polar wandering 
is hard to define. However, the high viscosities 
calculated here for Zhe lower m•ntle will stabi- 

lize the pole, and continental drift may •hen 
take place on an earth whose lower mantle is 
fixed to the rotation axis. 

If a small mass m is placed on the earth's 
surface at a latitude 0o, •he Chandler wobble 
will be excited and will take place •bout an ax•s 
inclined at an angle of ma • sin 2 0o/2(C - A) 
radians to •he original •xis of rotation. The de- 
c•y time of the Chandler wobble, though very 
uncertain, is probably of the order of 30 years. 
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[t is not known where the energy concerned is 
tissipated, but the least likely place is the lower 
mantle. The dissipation will take place within 
the layer that has the shortest decay time for 
•n oscillating disturbance of the form 
•xp i•ot. ttowever, the rate of polar wandering 
will be determined by the layer which has the 
longest decay time %o a constant disturbance of 
the form X.2(0), and the same layer will sup- 
port the nonhydrostatic bulge. If the time con- 
stant for polar wandering is • and that for the 
lower mantle is •, where 

= ga) 
and z• is ,;as given by (34), then Gold [1955] 
finds 

r-• 2•'•(C -- A)/?na • sin 20,, (58) 
Tile force acting on the mass in the direction 
of the equator is called the Ertvrs force. •unk 
and MacDonald define the excitation function 
due to this force as 

If[ = ma •sin 20o/2(C -- A) •'• 'r•/•' (59) 
If • -• 4 X 10 •, then r• • 2 X !0 • years and 
the pole will not wander in geological time 
(•-• 5 X 10"years) unless [•[-0 4 X 10 -•. 
Avalueofrof•6X 10 •anda-•5X 10 scm 

requires If] "• 5 X 10 -•. They compute that for 
the present distribution of oceans and continents 
the value of I•] is approximately 10 -•, which is 
insufficient to produce polar wandering. It is 
likely that a larger value of ]•l will result from 
density variations within the mantle, but since 
these are likely to be thermal in origin they 
probably have a decay time short in comparison 
with that of polar wandering. It is clear that 
the EStvSs force on the continents is not suffi- 

cient •o move the pole, but this force may move 
the continents separately toward the equator. 
Geology does not support movements in latitude 
only, however, and thus such a force is probably 
not important. 

Unlike polar wandering, convection need not 
be prevented by a highly viscous lower mantle. 
It is very important to know whether the non- 
hydrostatic bulge is caused by a high viscosity 
throughout the mantle or by a thin layer some- 
where within it, perhaps at the core-mantle 
boundary. If the lower mantle has a viscosity of 
about 10•' throughout, it will affect isostatic 
uplift in two ways. The viscosity as calculated 

by Haskelt's [1935] method will be a function of 
the radius of the areas [McConnell, 1965], and 
the surface movements will differ fi'om those 

calculated from the simple theory of an infinite 
half-space. The calculations must be made with 
spherical shells. 

Before convection can take place in the lower 
mantle, the temperature gradient must exceed 
the adiabatic by an amount/• given by 

= - 
where R o is the critical Iiayleigh number, • 2 X 
10 *, • the thermal conductivity • 0.01 cal/ 
øC sec, and a the thermal expansion •-• 2 X 
10-•/øC. If v • 6 X 10 "'•, the value of • required 
before convection can take place is • 10øC/kin, 
or a temperature difference across the lower man- 
fie of about 20,000øC. The actual temperature 
difference is probably between 1000øC and 
2000øC and is far too small to cause convection. 

The adiabatic gradient is 0.5øC/kin, or a tem- 
perature difference across the lower mantle of 
1000øC; thus the actual temperature gradient 
may not even exceed the adiabatic. Even a vis- 
cosity of 4 x l0 • stokes is quite sufficient to 
prevent convection. 

Convection in tile upper mantle is :not affected 
by these calculations, nor is there any difficulty 
in conveering through the phase-change region 
if it is spread over about 500 -lorn [Verhoogen, 

It is interesting that this model partly ex- 
plains the occurrence of earthquakes. Below a 
depth of 700 kin, thermal stresses are removed 
by creep and do not accumulate because there 
is no convection. Above this depth, heat is trans- 
ported by movement of the rock, generating 
shearing stresses and hence earthquakes. 

8. Co•c•,ns•ox 

These calculations depend on the measured 
value of U• ø [King-ftele, 1965] and on the value 
calculated by Je/)'reys [1963] for a hydrostatic 
earth. If either of these is in error by 1%, the 
energy stored in the U• harmonic may be no 
greater than that in any other, and this method 
of estimating •he viscosity of the lower mantle 
fails. However, there is no reason •o doubt 
either the measurements or the calculations. 

The three-layer model with an inviscid core 
and a phase change between the •pper and 
lower mantle is the most realistic of those con• 
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sidered here, and it requires a viscosity of 6 x 
10 '-• stokes in the lower mantle. All three models 

are sufficiently viscous to prevent convection in 
the lower mantle and to prevent polar wander- 
ing in geological time. 

The viscosity estimated from postglacial up- 
lift will be reduced if the 1ewer mantle is highly 
viscous, and thus convection within the upper 
mantle, 900 km thick, is likely to take place. 

The only argument in favor of convection in 
the lower mantle is that the scale of features on 

the earth's surface thought to be due to convec- 
tion cells is about 3000 kin. Convection in the 

lower mantle is then required if the cells are 
to be circular in cross section. However, circular 
cells are found only at Rayleigh numbers slightly 
above critical, about 2 X 103, and there is no 
evidence that this occurs in the upper mantle. 
Thus there is no di•culty in explaining conti- 
nental drift and other surface features by con- 
vection in the upper mantle. 

ArPENOIX 1 

Lamb [1SS1] solved the equations for viscous 
flow in a nonrotating sphere but used a method 
different from that used in section 4. He retained 

the term S • and solved 

•-• s• = v•v + •v[• - •] (•) 
V.• = 0 

These equations have a particular integral of 
•he form 

provided that 

and 

v'•, = o (•) 

o•4, = •- • (A3) 

When • is calculated from these equations it 
does not satisfy the surface traction boundary 
condition, and thus the general solution to (A1) 
is required 

Lamb looked for solutions of the form 

•T = •T exp (--•) 
In this case (A4) becomes 

(v • + •)• = o • = • 
(•) 

V'•7• = 0 

Morse and Fesbach [1953] show that the solu- 
tions to (AS) are 

1 

where a• are complex coefficients and jz(k•) 
are spherical Bessel functions. The •1 solution 
may be combined with the particular integral to 
satisfy the boundary conditions, but the • 
solution may not. Thus the • solution must 
satisfy the boundary conditions by itself, and it 
can be generated only by the initial velocity 
field and not by gravitational flow. The • 
solution corresponds to torsional elastic oscilla- 
tions and toroidal magnetic fields; it can be 
written in terms of the vector spherical bar. 
monies C•,• alone. The combined •b and X 
solution contains both P,,,• and B• and cot. 
responds to spheroidal elastic oscillations and 
poloidal magnetic fields. These solutions should 
be compared with (29). 

Thus the solution to (A1) is 

] v= v•+•v 
ß exp (--a•') 

This solution is apparently of order 1, and that 
in section 4 is of order 5% However, when the 
values of a• • are determined from the boundau 
conditions and an approximate expression is 
used for j•(/•(R) when k(R is small, the terms 0f 
order 1 cancel in (A6) and leave only those 0f 
order • the two solutions are then the same. 

where 

vW• = • o•v• (•4) 
V-•Y• = 0 

The effect of von Zeipel's theorem on the ex- 
ternal gravity field can be calculated from Bu/- 
lard's [1948] values for the elliptictry e of the 
surfaces of constant density. His values, though 
for an isothermal earth, can easily be corrected 
for temperature. Clairaut's theorem then gives 
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the change in external field. In the following 
calculation only the order of magnitude of the 
effect is given. 

Since the earth is not isothermal, the density 
is a function of both radius r and the tempera- 
lure 

The original isothermal surfaces of constant 
density are 

= get .•(0)] (A7) r y[1 --• 

where y is the mean radius of the surface. On 
raising the lcmperature by 3T, wc can find •he 
change in elliptictry of such a surface from 

•' r 

If the conductivity and rate of heat generation 
are constant throughout the earth, and if 
is zero everywhere, it is easy to show that the 
isotherms have •'he same cl]ipticity as the 
earth's surface. These assumptions arc not true 
within the earth but do permit an order of 
magnitude calculation. On a surface defined by 
(A7) the temperature variation is 

• 2 

sY ]vv[,, - 
where a is the mean external radius o[ the e•rth 

and ]VT]• Js the surface temperature gradient. 
Equation A8 and tim Adams-Wi]Iimnson rela- 
tionship give the change ]n r: 

• • I v •1• y•b(•) -- 
The surfaces of constan• density are now r 
•r, •nd Chirau•'s theorem [Je•reys, 1959] gives 

6- H• = l •Ma • a(Y) a 

Integration by par•s gives 

J2 - H2 = 15Ma 3 

ß - av 
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The values of ]VT]• is ,• 20øC/km. Numerical 
integration using B'ullard's [1948] values of ((y) 
then gives 

J•--H• = --1.6 • 10 -• 

Thus the nonhydrostatic potential due to this 
effect has the wrong sign and is an order of 
magnitude too small to explain the observed po- 
tential. 

In this calculation the slow convection caused 

by the rotation, which Verhoogen [1948] be- 
lieves to be important in orogenic processes, 
has been neglected. Full calculations are in prog- 
ress, but it will be surprising if the simple cal- 
culation above is wrong. 

APPENDIX 3 

Wang [1966] has suggested that the nonhy- 
drostatic bulge is a relic of the last glaciation. 
During the last ice age most of the ice was con- 
centrated in polar regions and remained there 
long enough to become isostatically compen- 
sated. When the ice caps melted, the deforma- 
tion remained and now causes the nonhydro- 
static external gravity field. It is shown below 
that this effect would indeed produce a bulge 
of the right sign and order of magnitude. How- 
ever, isostatic rebound has reduced the defor- 
malton by a factor of about 10 since the ice 
melted, so that this suggestion also gives a value 
which is an order of magnitude smaller than 
that observed. 

The mass of ice which caused isostatic depres- 
sion can be calculated from the change in sea 
level, d. Any floating ice will not depress sea 
level or deform the mantle. If this mass formed 

two polar ice caps, each with an angular radius 
of •o, their thickness • would be 

t = a cos Oo/( - oos 03 

If the ice caps and the cMnge in se• level are 
completely compensated by flow in lhe mantle 
of density 3 g/era •, the point areas will be de- 
pressed by t/3, and the rest of the earth (as- 
sumed all to be ocean) will be uplifted by d/3. 
The deformed surface can be written as 

Integration over the earth's surface gives 

C• = --•((• + a)/4 oo• So si• • So (A12) 
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The resulting w•Iue of J.• is given by (6)' 

---- ((t + d)/2a) cos 0o sin 
- d cos 0o sin • 0o/2a(1 -- cos 0o) (A13) 

Since d -• 10" cm, •, -• 35 ø, and a - 6.4 x 10 • 
ClTI, 

J..,. • 1.2 
Tile observed value is 1.05 X 10 -•, which is the 
same order of magnitude. 

The external field has changed, however, since 
the ice melted. In the places where isostatic up- 
lift has been measured [Farrand, 1962], only 
about a tenth of the glacial downwarp remains. 
It is likely that the same is true of Siberia and 
Antarctica, which also carried larger ice sheets 
in the last ginclarion. Thus isostatic adjustments 
have reduced J.• from ,-- 10 -• to --, 10 -•, or an 
order of magnitude too small to explain the ob- 
servations. 
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