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Primordial Carbonylated
Iron-Sulfur Compounds and the

Synthesis of Pyruvate
George D. Cody,* Nabil Z. Boctor, Timothy R. Filley,

Robert M. Hazen, James H. Scott, Anurag Sharma,
Hatten S. Yoder Jr.

Experiments exploring the potential catalytic role of iron sulfide at 250°C and
elevated pressures (50, 100, and 200 megapascals) revealed a facile, pressure-
enhanced synthesis of organometallic phases formed through the reaction of
alkyl thiols and carbon monoxide with iron sulfide. A suite of organometallic
compounds were characterized with ultraviolet-visible and Raman spectros-
copy. The natural synthesis of such compounds is anticipated in present-day and
ancient environments wherever reduced hydrothermal fluids pass through iron
sulfide–containing crust. Here, pyruvic acid was synthesized in the presence of
such organometallic phases. These compounds could have provided the pre-
biotic Earth with critical biochemical functionality.

In all extant organisms, transition metal
sulfide clusters play a crucial catalytic role
in biological energy conversion systems
(1). The potential connection between this
essential role and the predominance of min-
eral sulfides in hydrothermal and volcanic
vents has led some to speculate that life
may have emerged from such environments
(2). Such a connection is further supported
by the natural history of bacterial lineages
(3).

Recently, experiments designed to repli-
cate aspects of the primitive hydrothermal
vent solution chemistry have revealed the
intrinsic potential for the synthesis of alkyl
thiols (4) from reactions involving iron sul-
fides in the presence of CO. The formation of

acetate (5) has been demonstrated in aqueous
solutions containing methyl thiol and CO in
the presence of iron and nickel sulfides. Hu-
ber and Wächtershäuser (5) proposed that
iron and nickel sulfides grossly mimic the
functionality of acetyl coenzyme A (CoA)
synthase, the iron- and nickel-containing en-
zyme complex present in chemoautotrophic
anaerobic organisms (6).

In the experiments described above, sur-
faces of transition metal sulfides presum-
ably served to bind both alkyl groups and
carbon monoxide, thus promoting carbon
reduction as well as carbonyl insertion
reactions (7 ). Both these experiments were
performed at relatively low temperatures
and pressures. At elevated temperatures
and pressures, such as those attained in
shallow oceanic crust, transition metal
sulfides are likely to react with both CO
and alkyl thiols (and/or disulfides) to pro-
duce sulfur-containing transition metal car-

bonyls (8). The natural synthesis of such
compounds through the interaction of re-
duced crustal fluids with transition metal
sulfides precipitated in Hadean crust could
have provided a natural source for carbony-
lated organometallic species. Here, we de-
scribe the results of geochemical experi-
ments that explore the formation of such
complexes under conditions of high pres-
sure and temperature.

Our experiments were run in welded gold
tube reactors charged with 15.0 mg (170 mmol)
of pure iron sulfide (9), 5.0 mg (31 mmol) of
alkyl (nonyl) thiol, and 5.0 mg (110 mmol) of
formic acid (99.9%). Formic acid was used as a
source of reactive C1 (organic molecules with
one C atom); that is, CO and H2O are formed
through the thermal decomposition of formic
acid (10) and equilibrated with CO2 and H2

through the water-gas shift reaction. Although
formic acid was chosen primarily as a source of
CO, it has been detected in present-day vent
fluids (11). The initial concentrations of thiol
and C1 compounds were chosen to ensure a
large excess of substrate per available mineral
surface area [;10,000 substrate molecules per
surface site (12)]. Multiple experiments were
run at elevated pressures (50, 100, and 200
MPa) and held at 250° 6 0.2°C for 6 hours with
the use of a gas pressure apparatus (13). Addi-
tional blank experiments in Au (without miner-
als) were run and analyzed under identical con-
ditions to address the potential catalytic activity
of Au; the results revealed only nonyl thiol as
the recovered product.

After reaction, each reactor was stored
frozen at –87°C until processing and was
immersed in liquid N2 immediately before
opening. Quantitative analysis of nonyl-con-
taining organic compounds was performed on
triplicate runs obtained at each pressure, with
the use of gas chromatography–mass spec-
trometry (GC-MS) detection, a calibration
standard, and standard esterification proce-
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dures (14). Aqueous extracts were analyzed
with both high-performance liquid chroma-
tography (HPLC) and GC-MS (15). Ultravi-
olet (UV)-visible spectra were acquired on
duplicate-run product solutions diluted in 1
ml of acetonitrile. Raman spectra were ac-
quired on undiluted solutions transferred into
quartz tubes (16).

The synthesis of 1-decanoic acid (Fig. 1)
reveals that carbonylation occurred under
these conditions. Formation of 1-methyl-
nonyl sulfide and 1-(methylthio)-1-(nonyl-
thio)-nonane (Fig. 1) reveals that a portion
of CO was reduced to methyl groups. Other
major products included dinonyl sulfide,
disulfide, and trisulfide. With increasing

pressure, the total recovery of nonyl-con-
taining compounds decreased substantially.

A probable sink for the nonyl-contain-
ing products under these reaction condi-
tions is the formation of nonyl-containing
organometallic phases (8). The product liq-
uids recovered from the reactors were clear
but colored, grading from pale yellow (at
50 MPa) up to a deep orange-red (at 200
MPa). In reaction mixtures containing only
formic acid and FeS (250°C, 200 MPa, 6
hours), the solution appeared colorless. The
UV-visible spectrum (Fig. 2A), however,
revealed a modest amount (3.7 mmol) of
iron pentacarbonyl, corresponding to
;2.0% of the iron initially present as sul-

fide and 17% of the available C1 bound as
CO.

The UV-visible spectra of runs containing
nonyl thiol exhibit significantly different ab-
sorption spectra, with a peak at ;330 nm and
a distinct shoulder at ;443 nm (Fig. 2B).
Raman spectroscopy revealed a continuum of
CO stretching vibrations from 1905 to 2090
cm21, with peaks at 1930, 1984, 2040, and
2073 cm21. Given the relatively extreme ex-
perimental conditions, it is probable that a
number of carbonylated and nonylated iron-
sulfur compounds contribute to these spectra.
One carbonylated species particularly likely
to be present in the product suite is the orga-
nometallic compound Fe2(RS)2(CO)6 [where
R 5 nonyl (8)]. The reported UV-visible
spectrum of the two-iron cluster Fe2(CH3S)2-
(CO)6 is similar to that shown in Fig. 2A
(17). Reaction of Fe(CO)5 with dimethyldi-
sulfide at elevated CO pressures has been
shown to result in high yields of Fe2-
(CH3S)2(CO)6 (8, 17). The results of the
present experiments suggest a generalized re-
action whereby iron sulfide is consumed to
produce a carbonylated iron-sulfur cluster
and excess sulfur, for example,

2FeS 1 6CO 1 2RSH3

Fe2(RS)2(CO)6 1 2S0 1 H2 (1)

Production of excess S0 was confirmed by
the formation of dinonyl trisulfide (Fig. 1).
Analysis of the residual mineral phase re-
veals no significant change in stoichiome-
try, indicating congruent dissolution of FeS
(18). The Raman data, however, indicate
that other organometallic species are clear-
ly present, and Eq. 1 is just one of many
likely reactions. The synthesis of carbony-
lated iron-containing species was enhanced
with pressure (Fig. 2B); the intensity of the
330- and 454-nm bands in the UV-visible
spectra increased by a factor of ;13 as the
pressure was increased from 50 to 200
MPa.

In their low-temperature, low-pressure
study, Huber and Wächtershäuser (5) report-
ed that FeS exhibited no catalytic effect for
the promotion of carbonyl insertion. The
presence of significant quantities of carbony-
lated iron-sulfur clusters in the reaction prod-
ucts described above suggests that it may be
these compounds, not the mineral surfaces,
that promoted the carbonylation reactions ob-
served in our experiments.

The facile synthesis of significant quan-
tities of carbonylated iron-sulfur clusters in
the present experiments suggests that in
natural settings, where reduced hydrother-
mal fluids pass through sulfide-containing
crust, significant concentrations of these
potentially catalytic species will form. Pro-
vided that the CO pressure remains high
enough, transport of iron and sulfur to low-
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er temperature environments within a ridge
system is probable. Formic acid and CO are
observed in some present-day vent fluids
(11, 19); given a more reduced mantle in
Hadean times, there may have been consid-
erably more CO available for the synthesis
of carbonylated transition metal clusters.
Such a possibility indicates that if Earth’s
first life arose in the flank regions of oce-
anic spreading centers, it would have had a
ready source of both reduced carbon and
iron to facilitate primary metabolism.

The presence of such complexes may
have provided important functionality in the
earliest stages of life. For example, the con-
version of Fe2S2(CO)6 to produce the two-
center ferredoxin-like complex anion
Fe2(RS)4S2

22 has been reported (20); the
promotion of such chemistry in a prebiotic
world could yield ferredoxin-like cofactors
essential for electron transport. Partial reten-
tion of some carbonylated character might
have served other critical functions. For ex-
ample, Peters et al. (21) recently showed that
the active center of the hydrogenase enzyme
isolated from Clostridium pasteurianum con-
tains a two-iron cluster that is either carbony-
lated or cyanated (or both).

The function of this center appears to be the
generation of H2 by reduction of H1 using
electrons transported along a chain of Fe4S4

clusters from the enzymatic site of pyruvate
oxidation (22, 23). Because the activity of H2

is high in the present experiments, it is
possible that under these conditions
Fe2(RS)2(CO)6—and/or other organometal-
lic phases containing iron and sulfur—
might operate in the opposite sense and
promote the synthesis of a-keto acids in
addition to the observed singly carbony-
lated products such as decanoic acid (Fig.
1). Analysis of the derivatized products

with GC-MS did not reveal unambiguous
evidence for the formation of 2-oxo-unde-
canoic acid. Pyruvic acid was detected
(23), however, with a yield of 0.07% of the
initial C1 obtained at 200 MPa. Using se-
lective ion monitoring to enhance sensitiv-
ity, we measured an increased yield of
pyruvic acid with pressure (Fig. 3). The
actual yield of pyruvic acid must be larger
than 0.07% because the available C1 must
be less than the initial amount of C1, as
judged by the extensive formation of car-
bonylated iron-sulfur clusters.

The synthesis of pyruvic acid from the in-
trinsic constituents of an iron-, sulfur-, and CO-
rich environment is a critical step for the origin
of life, as many extant biosynthetic pathways
branch from pyruvate. Huber and Wächter-
shäuser demonstrated that transition metal sul-
fides can initiate the fixation of carbon through
a mechanism that mimics the synthesis of
acetyl CoA (5). Entry into primitive anaerobic
metabolism, however, requires the next step,
the synthesis of pyruvic acid.

From the perspective of an ideal environ-
ment suitable for the emergence of life, a prom-
ising hypothesis would have the synthesis of
carbonylated iron-sulfur catalysts occurring at
higher temperatures and pressures (e.g., 200° to
300°C and 100 to 200 MPa), followed by ad-
vection of such compounds to lower tempera-
ture regimes (e.g., 90° to 150°C). Lower tem-
peratures found nearer to the crust-ocean inter-
face may be more conducive to the survivabil-
ity of important biomolecules such as a-keto
acids. These results lend support to the theory
that the shallow Hadean oceanic crust could
have provided Earth’s most primitive life with a
warm enclave continuously flooded by fluids
rich in reduced carbon, electron acceptors such
as S0, and potentially catalytic carbonylated
iron-sulfur clusters.
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Galileo Magnetometer
Measurements: A Stronger Case
for a Subsurface Ocean at Europa

Margaret G. Kivelson,* Krishan K. Khurana, Christopher T. Russell,
Martin Volwerk, Raymond J. Walker, Christophe Zimmer

On 3 January 2000, the Galileo spacecraft passed close to Europa when it was
located far south of Jupiter’s magnetic equator in a region where the radial
component of the magnetospheric magnetic field points inward toward Jupiter.
This pass with a previously unexamined orientation of the external forcing field
distinguished between an induced and a permanent magnetic dipole moment
model of Europa’s internal field. The Galileo magnetometer measured changes
in the magnetic field predicted if a current-carrying outer shell, such as a
planet-scale liquid ocean, is present beneath the icy surface. The evidence that
Europa’s field varies temporally strengthens the argument that a liquid ocean
exists beneath the present-day surface.

Europa, one of the icy moons of Jupiter, may
have a layer of liquid water beneath its sur-
face. Features of Europa’s tortured surface
revealed by Galileo’s imaging system may
have formed as its surface ice stretched,
broke, and rearranged itself while floating on
a watery subsurface sea (1–4). But even if
water shaped the surface we see today, it may
have frozen hundreds of thousands of years
ago. Those searching for possible abodes of
life elsewhere in the solar system would like
to know whether water exists beneath the
surface at the present epoch.

In the initial report (5), the magnetic per-
turbations measured on Galileo’s first pass by
Europa were characterized as the signature of
an internal dipole moment. The Galileo mag-
netometer team subsequently reported (6, 7)
that many features of their data on close
passes by Europa in 1996 and 1998 can be
modeled as the electromagnetic response to
Jupiter’s time-varying magnetospheric mag-
netic field if a layer of electrically conducting
material exists near Europa’s surface. Al-
though the dominant, southward-oriented
magnetic field imposed by Jupiter’s magne-
tosphere at Europa’s position is about con-
stant, the projection of the magnetospheric
field into Europa’s equatorial plane varies
with the synodic period ( Jupiter’s rotation
period, 11.2 hours as seen from Europa) and

has a mean value close to zero. Such a time-
varying magnetic field, referred to as the
primary field, can drive inductive currents
through an electrical conductor. Inductive
currents, in turn, generate a secondary field,
whose source can be represented as a time-

varying magnetic dipole moment lying in
Europa’s equatorial plane with an orientation
approximately antiparallel to the instanta-
neous orientation of the primary field (8, 9).
If one models Europa as an idealized, highly
conducting sphere (conductivity .. 1 S m21)
of radius 1 RE (radius of Europa 5 1560 km)
and if the primary field (Bx(t), By(t), Bz) is
uniform over the scale of Europa, then the
components (10) of the induced magnetic
moment (M) are 21/2(Bx(t), By(t),0) in mag-
netic field units, implying that at the surface
of Europa, the radial components of the in-
duced field and the time-varying primary
field cancel. Table 1 gives values of this
idealized induced dipole moment at the time
of closest approach (labeled “Ind”) and other
key parameters of all Europa passes for
which the magnetometer acquired data (E4,
E11, E12, E14, E15, E17, E19, and E26). We
shall focus hereafter only on passes that came
within 2000 km of Europa’s surface (E4,
E12, E14, E19, and E26) for which the sig-
natures of internal sources can have ampli-
tudes large enough to be clearly detected
(11).

The idealized induction model is consis-
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Table 1. Idealized induced dipole moment at closest approach and key parameters of Europa passes.
Fitted int, fitted interval; Mag lat and SIII long, System III latitude and longitude; CA, closest approach
above Europa’s surface; Europa lat and E-long, Europacentric latitude and longitude measured eastward;
Bf, best-fit (or measured) dipole model; Ind, induced dipole model.

E4 E11 E12 E14

Date 19 December 1996 6 November 1997 16 December 1997 29 March 1998
Fitted int (UT) 06:32–07:10 20:30–21:00 11:45–12:15 13:05–13:40
Mag lat (°) 6.5 8.7 –0.8 9.2
SIII long (°) 157 223 118 184
CA altitude (km) 688 2039 196 1649
Europa lat (°) –1.6 26 –8.6 12
Europa E-long (°) 322 219 134 131

BF Ind BF Ind BF Ind BF Ind
Mx (nT) 8 –27 –7 21 –61 –39 –16 –5
M y (nT) 97 88 –25 96 14 16 160 108
Mz (nT) –52 0 –122 0 392 0 167 0

E15 E17 E19 E26

Date 31 May 1998 26 September 1998 1 February 1999 3 January 2000
Fitted int (UT) 21:12–21:30 03:40–04:20 02:00–02:38 17:45–18:15
Mag lat (°) –0.5 3.8 4.8 –9.6
SIII long (°) 293 138 256 2
CA altitude (km) 2519 3588 1444 373
Europa lat (°) 14.9 –42.5 31.0 –46.4
Europa E-long (°) 225 220 29 83

BF Ind BF Ind BF Ind BF Ind
Mx (nT) –65 33 152 –38 108 33 –42 11
M y (nT) –107 –18 269 47 –12 39 –126 –104
Mz (nT) –278 0 –496 0 192 0 83 0
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