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Global environmental change is rapidly altering the dynamics
of terrestrial vegetation,with consequences for the functioning
of the Earth system and provision of ecosystem services1,2.
Yet how global vegetation is responding to the changing
environment is not well established. Here we use three
long-term satellite leaf area index (LAI) records and ten global
ecosystemmodels to investigate four key drivers of LAI trends
during 1982–2009. We show a persistent and widespread
increase of growing season integrated LAI (greening) over
25% to 50% of the global vegetated area, whereas less
than 4% of the globe shows decreasing LAI (browning).
Factorial simulations with multiple global ecosystem models
suggest that CO2 fertilization e�ects explain 70% of the
observed greening trend, followed by nitrogen deposition
(9%), climate change (8%) and land cover change (LCC) (4%).
CO2 fertilization e�ects explain most of the greening trends
in the tropics, whereas climate change resulted in greening of
the high latitudes and the Tibetan Plateau. LCC contributed
most to the regional greening observed in southeast China and
the eastern United States. The regional e�ects of unexplained
factors suggest that the next generation of ecosystem models
will need to explore the impacts of forest demography,
di�erences in regional management intensities for cropland
andpastures, andotheremergingproductivityconstraintssuch
as phosphorus availability.

Changes in vegetation greenness have been reported at regional
and continental scales on the basis of forest inventory and satellite

measurements3–8. Long-term changes in vegetation greenness are
driven by multiple interacting biogeochemical drivers and land-use
effects9. Biogeochemical drivers include the fertilization effects of
elevated atmospheric CO2 concentration (eCO2), regional climate
change (temperature, precipitation and radiation), and varying rates
of nitrogen deposition. Land-use-related drivers involve changes in
land cover and in landmanagement intensity, including fertilization,
irrigation, forestry and grazing10. None of these driving factors
can be considered in isolation, given their strong interactions
with one another. Previously, a few studies had investigated the
drivers of global greenness trends6,7,11, with a limited number of
models and satellite observations, which prevented an appropriate
quantification of uncertainties12.

Here, we investigate trends of leaf area index (LAI) and their
drivers for the period 1982 to 2009 using three remotely sensed
data sets (GIMMS3g, GLASS and GLOMAP) and outputs from
ten ecosystem models run at global extent (see Supplementary
Information). We use the growing season integrated leaf area index
(hereafter, LAI; Methods) as the variable of our study. We first
analyse global and regional LAI trends for the study period and
differences between the three data sets. Using modelling results, we
then quantify the contributions of CO2 fertilization, climatic factors,
nitrogen deposition and LCC to the observed trends.

Trends from the three long-term satellite LAI data sets
consistently show positive values over a large proportion of the
global vegetated area since 1982 (Fig. 1). The global greening trend
estimated from the three data sets is 0.068 ± 0.045m2 m−2 yr−1.
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Figure 1 | Trend in observed growing season integrated LAI. a–c, Spatial pattern of trends in growing season integrated LAI derived from three remote
sensing data sets. a, GIMMS LAI3g. b, GLOBMAP LAI. c, GLASS LAI. All data sets cover the period 1982 to 2009. Regions labelled by black dots indicate
trends that are statistically significant (Mann–Kendall test; p<0.05). d, Probability density function of LAI trends for GIMMS LAI3g, GLASS LAI,
GLOBMAP LAI and the average of the three remote sensing data sets (AVG OBS).

The GIMMS LAI3g data set, which includes recent data up to
2014, shows a continuation of the trend from the 1982 to 2009
period (Fig. 1 and Supplementary Fig. 3). The regions with the
largest greening trends, consistent across the three data sets,
are in southeast North America, the northern Amazon, Europe,
Central Africa and Southeast Asia. The GLASS LAI data shows
the most extensive statistically significant greening (Mann–Kendall
test, p<0.05 ) over 50% of vegetated lands, followed by GLOBMAP
LAI (43%) and GIMMS LAI3g (25%). All three LAI data sets also
consistently show a decreasing LAI trend (browning) over less than
4% of global vegetated land—these are observed in northwest North
America and central South America. Analyses of the changes in
observed maximum LAI also show similar widespread greening
trends (Supplementary Section 8).

We compare satellite-based LAI anomalies with LAI anoma-
lies simulated by ten global ecosystem models driven by eCO2
(+46 ppm over the study period), climate, nitrogen deposition
and LCC (Supplementary Section 7). Multi-Model Ensemble Mean
(MMEM) LAI anomalies, with all these drivers considered, gen-
erally agree with averaged satellite observations at the global scale
(r=0.85, p< 0.01; Fig. 2a). The trend in MMEM LAI anomalies
(0.062m2 m−2 yr−1) is within the range of estimates from the three
satellite data sets. The model simulations suggest that increasing
gross primary productivity, although partly neutralized by increas-
ing autotrophic respiration, and decreasing carbon loss due to fires
are responsible for the increasing LAI during 1982 to 2009 (Supple-
mentary Section 9). The spatial pattern of LAI trends also matches
well between satellite data andMMEMsimulations (Fig. 3a,b). Con-
sistent greening trends betweenmodels and observations are seen in
Fig. 3 across the southeast United States, the Amazon Basin, Europe,
central Africa, Southeast Asia and Australia. However, satellite LAI
and MMEM results show different magnitudes (or signs) of trends
in the southwestern United States, southern South American coun-
tries, andMongolia, indicating that models may be over-sensitive to
trends in precipitation (Supplementary Section 10).

We used an optimal fingerprint detection method13 to assess
the ability of the models to simulate response patterns of LAI
to eCO2, climate change, nitrogen deposition and LCC. We
regressed the observed two-year mean global average LAI time
series against the MMEM-simulated LAI reflecting the effects
of single drivers, based on factorial runs where only one driver
is varied at the time. A residual consistency test13 suggests no
inconsistency between the regression residuals and the model-
simulated internal variability in the absence of forcing (Methods),
indicating that the fingerprint detection method is suitable for
detection and attribution at the global scale (Fig. 2b). The 95%
confidence intervals of the scaling factors of CO2 fertilization
(best estimates of scaling factor β=1.03, 95% confidence interval
[0.84, 1.23]) and climate change (β=1.06, [0.55, 1.64]) are
not only above zero but also span unity, which means that
the modelled signals from these two drivers are successfully
detected and suitable for attribution (Fig. 2b). The fingerprints of
nitrogen deposition and LCC effects on the trend of LAI remain
confounded with internal variability and cannot be clearly detected
(not shown).

Globally, the model factorial simulations suggest that CO2 fer-
tilization explains the largest contribution to the satellite-observed
LAI trend (70.1 ± 29.4%, 0.048 ± 0.020m2 m−2 yr−1), followed
by nitrogen deposition (8.8 ± 11.8%, 0.006 ± 0.008m2 m−2 yr−1),
climate change (8.1 ± 20.6%, 0.006 ± 0.014m2 m−2 yr−1) and
LCC (3.7 ± 14.7%, 0.003 ± 0.010m2 m−2 yr−1) (Fig. 2c). The
contributions of CO2 fertilization and climate change are reliable
according to the optimal fingerprint analysis, whereas the effects of
LCC and nitrogen deposition should be interpreted with caution.
Our estimation of CO2 fertilization effects on vegetation growth
is more prominent than Los6, probably owing to the different
attribution approaches. When using only those ecosystem models
(five out of ten) that incorporate nitrogen limitations and nitro-
gen deposition effects (Supplementary Table 1), the fraction of the
LAI trend that is unambiguously attributed to CO2 fertilization is
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Figure 2 | Attribution of trend in growing season integrated LAI. a, Interannual changes in anomalies of growing season integrated LAI estimated by
multi-model ensemble mean (MMEM) with all drivers considered (blue line) and the average of the three remote sensing data (red line) for the period
1982–2009, and the interannual changes in anomalies of LAI of GIMMS LAI3g (green line) for the period 1982–2014. The shaded area shows the intensity
of EI Niño–Southern Oscillation (ENSO) as defined by the multivariate ENSO index. The black dashed lines label the sensor changing time of the Advanced
Very High Resolution Radiometer (AVHRR) satellite series. Two volcanic eruptions (El Chichón eruption and Pinatubo eruption) are indicated with red
dashed lines. b, Best estimates of the scaling factors of CO2 fertilization e�ects (CO2), climate change e�ects (CLI) and simulated LAI under the four
scenarios (see Methods for more details) and their 5–95% uncertainty range from optimal fingerprint analyses of global LAI for 1982–2009. c, Trend in
global-averaged LAI derived from satellite observation (OBS) and modelled trends driven by rising CO2 (CO2), climate change (CLI), nitrogen deposition
(NDE) and land cover change (LCC) using the Mann–Kendall test. Error bars show the standard deviation of trends derived from satellite data and model
simulations. Two asterisks indicate that the trend is statistically significant (p<0.05).

slightly smaller (66.2 ± 13.2%, 0.045 ± 0.009m2 m−2 yr−1) than
when using models that ignore nitrogen processes (75.0 ± 42.6%,
0.051± 0.029m2 m−2 yr−1). This suggests that, although incorpo-
rating nitrogen in ecosystem models does not significantly (t-test,
p<0.05) change the contribution of the CO2 fertilization effects to
the global trend of LAI, it reduces the spread of model simulations
(F-test, p<0.05).

Vegetation leaf area changes result from interacting factors, but
factorial simulations help to attribute a dominant factor for the
observed changes. Our analyses show that the CO2 fertilization
effects have a rather spatially uniform effect on the positive
LAI trends. The modelled relative increases in global mean
LAI due to CO2 fertilization alone is about 4.7–9.5% (or 10.2–
20.7% per 100 ppm) during 1982 to 2009, which is comparable
to measurements from the Free-Air CO2 Enrichment (FACE)
experiments (0.3–11.1%, or 0.6–24.1% per 100 ppm)14. However, no
FACE experiment covered tropical forests, where models suggest
that eCO2 is the dominant factor of the recent LAI trend (Fig. 3c,d).
The spatial pattern is consistent with previous analyses15 that
posited large absolute LAI increases due to eCO2 in the tropics, in
the absence of temperature, water and nitrogen limitations16, and
large relative LAI increases due to eCO2 in arid regions, where
eCO2 is expected to increase the water use efficiency of plants
(Supplementary Fig. 12)17. A simple theoretical model17,18 was used
to diagnose the response of leaf level carbon assimilation to the

observed 46 ppm increase of CO2 over the study period, including
the effect of vapour pressure deficit trends and stomatal closure.
This model gave a similar relative response of carbon assimilation
to eCO2 as the ecosystem models did for LAI (Supplementary
Section 12).

Climate change explains about 8.1 ± 20.1% of the observed
positive LAI trend but, unlike eCO2 effects, climatic effects are
negative in some regions. Although detected by the optimal
fingerprint model, the effects of climate change are not consistent
between models, and may even be opposite in individual model
simulations. Overall, climate change has dominant contributions
to the greening trend over 28.4% of the global vegetated area
(Fig. 3c,d). Positive effects of climate change in the northern
high latitudes and the Tibetan Plateau are attributed to rising
temperature, which enhances photosynthesis and lengthens
the growing season5, whereas the greening of the Sahel and
South Africa are primarily driven by increasing precipitation
(Supplementary Fig. 13). South America is the only continent
where negative climate effects were statistically significant
(Supplementary Figs 10 and 11b). This is particularly important
owing to the role of the Amazon forests in the global carbon
cycle19,20. Ecosystemmodels may tend to overestimate the responses
of vegetation growth to precipitation12 (Supplementary Section 10),
which is one of the reasons why the fate of the Amazon forests
continues to be debated10.
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Figure 3 | Spatial pattern of dominant drivers of trend in growing season integrated LAI. a,b, Spatial distribution pattern of the trend in growing season
integrated LAI for the period 1982–2009. LAI trends were derived from the average of GIMMS, GLOBMAP and GLASS LAI in a and from a multi-model
ensemble mean with all drivers considered in b; regions labelled by dots have trends that are statistically significant (p<0.05). The trend is calculated and
evaluated using the Mann–Kendall test at the 5% significance level. c, Dominant driving factors of LAI, defined as the driving factor that contributes the
most to the increase (or decrease) in LAI in each vegetated grid cell. The driving factors include rising CO2 (CO2), climate change (CLI), nitrogen
deposition (NDE), land cover change (LCC) and other factors (OF), the latter being defined by the non-modelled fraction of observed LAI trend (see text).
A prefix ‘+’ of the driving factors indicates a positive e�ect on LAI trends, whereas ‘−’ indicates a negative e�ect. d, Fractional area of vegetated land in 15◦

latitude bands (90◦ N–60◦ S) attributed to di�erent factors. The fraction of vegetated area (%) that is dominantly driven by each factor is labelled on top
of the bar;+ and− have the same meaning as in c.

Considerable evidence points to nitrogen limitation of vegetation
growth over many parts of the Earth21, with local alleviation
by nitrogen deposition in boreal and temperate regions22,23. Our
analyses suggest that nitrogen deposition explains 8.8 ± 11.8% of
the LAI trend at the global scale. However, this result is uncertain,
because only two models in the ensemble specifically performed
factorial simulations with and without nitrogen deposition. A
slightly negative trend in nitrogen deposition effect was observed in
North America and Europe, where nitrogen deposition rates have
stabilized, or even declined, during the past three decades24,25.

LCC is a dominant driver of LAI greening over only 9.6% of
the global vegetated area, mainly in southeast China and southeast
United States. Models produce negative LCC effects on LAI trends
in tropical and southern temperate regions where deforestation
occurred (Supplementary Fig. 11d)26. However, the individual effect
of LCC is apparently outweighed by other factors in these regions,
and thus does not seem to be dominant. Trends of the LCC effect
simulated by ecosystem models differ significantly in magnitude,
and sometimes also in sign. This could be due to differences
in model assumptions relating to whether the productivity of
secondary vegetation is smaller or larger than that of the vegetation
it replaces.

At the global scale, the observed LAI trend can be largely
accounted for by eCO2, climate change, nitrogen deposition
and LCC. However, at regional scales, other factors (OF) not
considered in models, such as forest management, grazing, changes
in cultivation practices and varieties, irrigation and disturbances
such as storms and insect attacks, can be a cause of mismatch
between observed and simulated LAI trends. The patterns of the
effect of other factors were estimated as a residual, by subtracting
the simulated trend caused by factors explicitly modelled from

the observed local LAI trend. OF contributes the most to the
observed LAI trend over 25.0% (increase) and 5.3% (decrease) of
the vegetated area (Fig. 3d). OF can also encompass non-modelled
processes, such as plant diversity within a type of vegetation,
hydrological and nutrient liberation during permafrost thawing,
phosphorus and potassium limitations, access to ground water by
deep roots, and rigid discretization of the simulated vegetation
into few plant functional types. Further, uncertainties in existing
model parameterization and structure (Supplementary Section 7)
and biases from the remote sensing data sets (Supplementary
Section 6) can cause a mismatch between simulated and observed
LAI trends. Interestingly, positive effects tentatively attributed to
OF are mainly found in areas of intensive ecosystem management,
such as northeast China, Europe and India27. Negative OF effects
are mainly found in northern high latitudes, where most models
lack a representation of regionally important ecosystems (peatlands,
wetlands) as well as of specific disturbances28,29.

Understanding the mechanisms behind LAI trends is a first,
yet critical, step towards better understanding the influence of
human actions on terrestrial vegetation, and towards improving
future projections of vegetation dynamics. By making use of
three LAI data sets, an ensemble of ten ecosystem models,
and a fingerprinting technique, we assessed the consistency of
observed greening and browning patterns with the effects of key
environmental drivers. The use of a ten-model ensemble increases
confidence in the attribution, although model simulations diverge
in some aspects, particularly for the impacts of climate change
and LCC, which suggests an area for future model improvements.
Overall, the described LAI trends represent a significant alteration
of the productive capacity of terrestrial vegetation through
anthropogenic influences.
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Methods and any associated references are available in the online
version of the paper.
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Methods
The growing season integrated leaf area index was used as a proxy of vegetation
growth in this study. We identified the growing season for each 0.5◦×0.5◦ grid cell
of global vegetated area using GIMMS LAI3g data sets and freeze/thaw data sets.
The growing season was first determined from the GIMMS LAI3g data set30 using
a Savitzky–Golay filter and then refined by excluding the ground-freeze period
identified by the Freeze/Thaw Earth System Data Record31. In particular, the
growing season of evergreen broadleaf forests was set to 12 months and starts in
January. All the satellite-observed leaf area products and leaf area index outputs of
ecosystem models were first aggregated to 0.5◦×0.5◦ spatial resolution and then
composited to annual growing season integrated leaf area index data.

Three satellite-observed leaf area index products (GIMMS LAI, GLOBMAP
LAI and GLASS LAI) were used to analyse the changes in global vegetation for the
period 1982–2009. We used a nonparametric trend test technique (Mann–Kendall
test) to evaluate trends in growing season integrated leaf area index derived from
the three satellite LAI products at the 95% significance level. We analysed trends in
LAI at pixel level, global level and continental level. When we tested trends in LAI
at global and continental scales, we calculated the mean of LAI values of all the
pixels in the specific region, weighting by the area of each pixel.

Ten ecosystem models were used to analyse the relative contributions of
external driving factors to trends in global vegetation growth during 1982–2009.
We performed four experimental simulations to evaluate the relative contribution
of four main driving factors, namely, CO2 fertilization, climate change, nitrogen
deposition and land cover change, to the global vegetation trends: (S1) varying CO2

only, (S2) varying CO2 and climate, (S3) varying CO2, climate and nitrogen
deposition and (S4) varying CO2, climate and land cover change. S1, S2−S1,
S3−S2 and S4−S2 were used to evaluate the effects of CO2 fertilization, climate
change, nitrogen deposition and land cover change to vegetation growth,
respectively (see Supplementary Information Section 7).

We used an optimal fingerprint method13 to detect the signals of CO2

fertilization, climate change, nitrogen deposition and land cover change effects

simulated by ecosystem models at global scales. The optimal fingerprint expresses
the observation (Y) as a linear combination of scaled (βi) responses to external
driving factors (xi), and internal variability (ε): Y=

∑n
i=1 βixi+ε. The scaling

factors (βi) are estimated on the basis of the total least square method to adjust the
amplitude of the responses of LAI to each driving factor. We regressed the
satellite-observed LAI against responses of vegetation growth (expressed as LAI) to
elevated atmospheric CO2, climate change, nitrogen deposition and land cover
change estimated by multi-model ensemble mean simulations of ten ecosystem
models. We also performed similar analysis for the simulated LAI under scenarios
S1, S2, S3 and S4. These regressions provide best-estimate linear combinations of
signals simulated by ecosystem models. The coefficients of the signals are the
scaling factors (βi). A residual consistency test was introduced to check the
consistency between the residuals of satellite-observed LAI and best-estimate
combinations of signals and the assumed internal LAI variability13. The overall
statistical model was considered suitable only if the residual consistency test passed
at the 95% significance level. If the 95% confidence interval of the estimated scaling
factor lies above zero, the signal of the corresponding driving factor is detected; the
model simulations are suitable for attribution if the 95% confidence interval
contains 1.
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