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Abstract. Future disruptions to fire activity will threaten ecosystems and human well-being throughout

the world, yet there are few fire projections at global scales and almost none from a broad range of global

climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build

spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire

activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the

magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble

results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where

GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to

atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire

activity across vast portions of the globe. In the near term, the most consistent increases in fire activity

occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated

primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near-

term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few

decades. By the end of the century, the magnitude and the agreement in direction of change are projected to

increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at

mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics.

Although our global models demonstrate that long-term environmental norms are very successful at

capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory

power would be added through interannual variation in climate variables. This study provides a first

examination of global disruptions to fire activity using an empirically based statistical framework and a

multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities

to humans and the ecosystems upon which they depend.
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INTRODUCTION

Fire’s pervasive influence on human societies
and ecosystem functions has motivated great
interest in understanding its environmental
drivers and effects, especially in the context of
anthropogenic climate change (Bowman et al.
2009, Flannigan et al. 2009, Whitlock et al. 2010).
Recent increases in fire activity in some parts of
the world have been attributed to climate change
(e.g., Piñol et al. 1998, Gillett et al. 2004,
Kasischke and Turetsky 2006, Westerling et al.
2006), often overshadowing the potential range
of future outcomes that may occur across the
planet, including relative stability or decreases in
fire activity. Even the latest IPCC AR4 chapter on
ecosystem impacts focused almost exclusively on
projected increases in fire (Fischlin et al. 2007),
despite mixed results from Scholze et al. (2006),
who predicted both increases and decreases in
fire using a model of vegetation dynamics driven
by projections from multiple global climate
models (GCMs).

Given the strong linkage between fire and
climate (e.g., Swetnam and Betancourt 1990,
Marlon et al. 2008, Aldersley et al. 2011), there is
little doubt that climate-induced disruptions to
fire activity will occur in many areas. However,
the projected magnitude of change, and even
whether fire probabilities will increase or de-
crease, is hotly debated for many parts of the
world. Ongoing fire activity requires biomass
resources to burn, atmospheric conditions con-
ducive to combustion (i.e., dry, hot, and/or windy
periods), and ignitions (Bond and van Wilgen
1996, Moritz et al. 2005, Bradstock 2010). Climate
can affect all three of these factors in complex
ways and over multiple timescales. The relative
importance of different controls on fire activity, as
well as inherent sources of uncertainty in them,
can be separated into short-term environmental
fluctuations versus long-term norms (Fig. 1A).
This approach has been used in analyses of
climate averages versus interannual climate var-
iability to explain habitat suitability patterns
(Zimmermann et al. 2009), and a similar logic
has been proposed for examining changes in
mean climate values versus episodic events for
ecology in general (Jentsch et al. 2007). Here, we
focus on coarser, long-term climate norms as they
affect fire occurrence across the planet.

Different modeling schools have emerged for
capturing climate-vegetation-fire relationships at
broad scales. Dynamic global vegetation models
(DGVMs) simulate the climate-based processes
controlling plant growth and death in different
vegetation types, and many of these models have
incorporated a fire module (e.g., Lenihan et al.
1998, Fosberg et al. 1999, Thonicke et al. 2001,
Arora and Boer 2005). Recent advances in some
DGVMs have improved their ability to represent
historical patterns of burning (Thonicke et al.
2010, Prentice et al. 2011), and this remains an
active area of research. An alternative approach
has been to build statistical models of fire
activity, based directly on correlating empirical
observations of fire and the key environmental
variables that control its occurrence (e.g., McKen-
zie et al. 2004, Archibald et al. 2009, Preisler et al.
2009, Littell et al. 2009, Balshi et al. 2009,
Krawchuk et al. 2009, Parisien and Moritz 2009,
Westerling et al. 2011). These empirical fire
models are similar to species distribution models
often used to project future shifts in habitat
ranges (e.g., Guisan and Thuiller 2005, Elith et al.
2006, Hijmans and Graham 2006, Morin and
Thuiller 2009, Engler et al. 2011) and thus share
some of their strengths and weaknesses. Despite
the basic differences between process-based and
more correlative modeling approaches, it is
encouraging that their predictions can often be
similar (Morin and Thuiller 2009, Kearney et al.
2010).

Regardless of the modeling framework, future
projections of fire at the global scale are relatively
rare (Scholze et al. 2006, Krawchuk et al. 2009,
Gonzalez et al. 2010, Liu et al. 2010, Pechony and
Shindell 2010). Furthermore, because most of
these global studies used different GCMs, there
remains a lack of understanding about how
variations among GCMs affect future fire projec-
tions versus differences in the modeling ap-
proaches themselves (Littell et al. 2011). This
issue is not trivial because discrepancies among
GCMs, especially with respect to precipitation,
may be important in the context of fire. There is
growing evidence that more precipitation in
some warm grasslands and shrublands can lead
to higher productivity and increased fire activity
during the dry season, whereas in more mesic
areas the same precipitation increase could
diminish fire activity (Meyn et al. 2007, van der
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Werf et al. 2008, Littell et al. 2009, Krawchuk and
Moritz 2011). Warmer and drier weather may
therefore increase fire activity in biomass-rich
areas, but have the opposite effect in moisture-
stressed biomes, as increased evaporative de-

mand decreases growth of biomass necessary to
carry fire (Fig. 1B). Along with human behaviors,
the continuum of varying constraints on fire are
central to understanding responses to global
change, and they lead to important questions

Fig. 1. Conceptual models of coarse-scale controls on fire activity. The fire regime triangle (A) reflects the three

dominant factors influencing fire in different regions (vegetation characteristics, fire weather climatology, and

ignition patterns), all of which vary in importance spatially and temporally. The darker center region represents a

core level of fire activity, or gradients in chronic probabilities of fire, that are controlled by long-term

environmental norms; the lighter outer circle represents additional spatial variation in probabilities controlled by

interannual environmental fluctuations. Across a long-term global gradient in biomass productivity (B), fuel-

limited areas will tend to experience more fire due to interannual pulses in precipitation; in contrast, areas with

more abundant fuel will tend to experience more fire due to pulses of ignitions, combined with episodic drought

and/or hot and dry winds. (After Krawchuk and Moritz 2011.)
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about GCM-based uncertainties. How well can
global fire activity be modeled using long-term
climate norms available from GCMs? Where do
GCMs agree on the future of fire activity? What
climate variables drive these changes, and will
they be consistent through time?

Here we integrate empirically based statistical
models of fire occurrence with an ensemble of
GCM projections to derive a globally consistent
analysis of future fire activity. Of the parameters
important for characterizing fire regimes—fire
sizes, frequencies, intensities, and seasonality—
our models are designed to project fire probabil-
ities over a given time period, results that are
directly representative of fire frequencies. Our
fire probability models are built from over a
decade of remotely sensed fire observations and
key environmental variables representing vege-
tation to burn and fire-conducive atmospheric
conditions. The fire models are then driven by
projected future climates from 16 different GCMs
covering the 2010–2039 and 2070–2099 time
periods, statistically downscaled to 0.58, corre-
sponding to the mid-high A2 emissions scenario.
From these projected fire probability models, we
assess the ensemble mean change in fire proba-
bility for the 16 GCMs, the degree of model
agreement in projected increases and decreases
in fire activity, and the long-term environmental
controls contributing to these global changes.

DATA AND METHODS

The study region covers the terrestrial surface
of the globe, with the exception of Antarctica and
small islands. The area is gridded using 0.58 by
0.58 pixels; for a pixel to be included in the
analysis, a land cover of at least 2/3 of its area is
required. The climate- and vegetation-related
variables, which are detailed below, are regis-
tered using the WGS 1984 geographic coordinate
system, and statistical models are run using this
system. Fire data are sampled using a Behrmann
equal area projection and then transformed to
WGS 1984. Though the WGS 1984 overestimates
true area as one moves away from the Equator,
equal area sampling of fire data minimizes bias
in our statistical models. Supplemental compar-
isons of the change in probability of fire with
altered climate using geographic and Behrmann
equal area data showed that our geographic

sampling framework does not affect outcomes of
the study.

Fire
This work combines two sources of remotely

sensed global fire activity observations to develop
models of fire probability: a screened version of the
European Space Agency’s Advanced and Along
Track Scanning Radiometer (ATSR) World Fire
Atlas (algorithm 2) for 1996–2006 (Mota et al.
2006), and the Moderate Resolution Imaging
Spectroradiometer (MODIS) Collection 5 CMG
corrected active fire data from 2001–2007 (Giglio et
al. 2006). These two products document vegetation
fires across the globe, and screening techniques are
used to isolate and remove signals originating
from other types of fire or non-fire processes. Both
ATSR and MODIS satellite data include human-
and lightning-caused fires. Note that not all fires
are detected by these sensors; for example,
smoldering fires in peatland soils may evade
detection. Conversely, despite the screening, some
non-vegetation fires are reported in the datasets.

To generate a global vegetation fire dataset
representative of longer term fire probabilities,
ATSR and MODIS data are sampled at 50-km
spacing using a Behrmann equal area projection.
ATSR data are aggregated to 50-km, and MODIS
data are sampled from projections of their native
0.58 grids. We then use a consensus approach to
develop a final fire occurrence map, such that
fire-prone pixels are those where both MODIS
and ATSR detected fire activity at least once over
the 12-year period (Fig. 2A). Relatively few pixels
are excluded due to lack of consensus between
ATSR and MODIS at this coarse spatial and
temporal resolution. Because multiple counts of
fire observations often result from a single fire,
we opted to classify the data into a binary surface
of recorded fire and no fire (Fig. 2B). Although
the 1996 to 2007 time period could be considered
relatively short for fire observations, it is suffi-
cient to build our fire probability models at the
macroscopic scale of the study. Note that due to
the presence-only modeling strategy (see below),
outcomes from the study are relative probabili-
ties of fire.

Climate
The climatic variables in our statistical models

represent key environmental controls on global
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fire activity. While it is the interplay of weather,
topography, and fuel that controls the ignition
and behavior of a particular fire event, our focus
is on the coarse-scale controls responsible for the
longer-term likelihood of an area burning (Fig.
1A). These variables are calculated from averages
of temperature and precipitation over a reference
period of 1971–2000. A broad set of climate
normals were initially examined due to their
demonstrated importance in controlling global

fire activity in previous work (Krawchuk et al.
2009). Values were calculated from global climate
model output from the World Climate Research
Programme’s (WCRP) Coupled Model Intercom-
parison Project phase 3 (CMIP3) multi-model
dataset (Meehl et al. 2007). Data were down-
scaled as described by Maurer et al. (2009) using
the bias-correction/spatial downscaling method
of Wood et al. (2004) to a 0.58 grid, based on the
1950–1999 gridded observations of Adam and

Fig. 2. Counts of observed fire occurrence readings from combined MODIS and ATSR remote sensing products

from 1996 to 2007 (A) and its binary classification used in the fire probability models (B).
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Lettenmaier (2003). This dataset included output
from 16 GCMs, all of which are considered in this
study.

For future projections of fire activity, we use
values from the CMIP3 multi-model dataset for
the time periods 2010–2039 and 2070–2099. For
each of the 16 GCMs, we first considered two
SRES emissions scenarios, the B1 and the A2. The
B1 scenario represents a lower emissions future
(Nakicenovic et al. 2000), wherein multi-model
GCM projections show a median of roughly
1.88C global surface warming from 2000 levels by
2100. The A2 scenario is a mid-to-high emissions
future wherein projections show a median
increase closer to 3.58C. Only the A2 scenario
results are presented here. Although the project-
ed changes in fire probability are on the whole
comparable among A2 and B1 scenarios, regional
discrepancies will require additional analysis to
discern their differences. Similarly, the additional
explanatory power that interannual variability in
climate variables may have in different parts of
the world (Fig. 1B) will also need to be assessed
in future work.

Vegetation patterns
An estimate of net primary productivity (NPP)

acts as a coarse-scale surrogate for vegetation
biomass (Fig. 1A) in a subset of our fire models;
these are described in the next section. Although
it may not fully capture the spatial variation in
biomass available to burn, the approximately
linear relationship between NPP and biomass
(Kindermann et al. 2008) supports the use of NPP
as a metric of vegetation. The NPP metric is
based on data provided by Imhoff and Bounoua
(2006) using the Carnegie-Ames-Stanford Ap-
proach (CASA) terrestrial carbon model (Potter
et al. 1993). Measures of NPP represent the
amount of solar energy converted to plant
organic matter through photosynthesis, quanti-
fied as elemental units of carbon per unit time
and area. These data were created using clima-
tology, land cover data, solar radiation, soil
texture and vegetation data (AVHRR from
1982–1998) (Imhoff and Bounoua 2006). The
NPP data, which are provided at a resolution of
0.258, are averaged for each of the 0.58 pixels. The
purpose of including NPP as an input to
projections of fire activity is to capture general
differences in the generation of biomass and litter

and to constrain fire activity to areas with
sufficient resources to burn (e.g., Archibald et
al. 2009, Krawchuk et al. 2009, Bradstock 2010).
Areas of persistent snow cover where no NPP
data are available have a value of zero.

Statistical modeling of fire probability
We build baseline statistical models of fire

probability from the recent historical GCM
reference period (1971–2000; hereafter ‘baseline’)
by relating recent global vegetation fires, as a
dependent variable, to environmental variables
depicting spatial patterns in resources to burn
and atmospheric conditions conducive to fire
activity. The fire dataset used in this study spans
a shorter time period (1996–2007) than the GCM
reference period and did not completely overlap.
One might question whether the fire period of
record reflects a process at equilibrium with its
environment, an important assumption of this
modeling approach. However, supplementary
analyses using only fire data for 1996 to 2000
(the years of overlap with climate norms), as well
as other subsets of the 12-year period, resulted in
models with very similar response function
shapes and fire probability surfaces to those
estimated from the full fire data set. This
consistent outcome strongly suggests that, at
the temporal and spatial resolution of our study,
the 12 years of fire observations provide a stable
representation of fire in modern climates. To
maximize the use of global data, we perform
statistical analyses using the full 1996 to 2007
dataset.

The modeling framework, based on presence-
only sampling, further alleviates potential issues
related to temporal alignment between the fire
and climate data. This is because a lack of fire
observation in a given pixel is not considered a
strict ‘‘absence’’ by the model and could still be
predicted as fire-prone if the pixel shares
environmental characteristics with other fire-
prone areas. In our dataset, a lack of fire
observations in a potentially fire-prone pixel
may be due to a lack of detection (e.g., due to
cloud cover), the fire return interval being longer
than the observation period (e.g., as seen in much
of the boreal biomes), or the prompt extinguish-
ment of wildfires before they attain a detectable
size (i.e., due to successful initial attack).

Fire models are built using the MaxEnt version
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3.3.3e software (Phillips et al. 2006). This tech-
nique is well-suited to model fire probability in a
presence-only framework, i.e., when fire records
only exist for a limited number of years (Parisien
et al. 2012, Renard et al. 2012). MaxEnt belongs to
a class of models used extensively for predicting
habitat suitability from observed species occur-
rence data. MaxEnt evaluates potential distribu-
tion from presence-only data by fitting the
probability distribution of maximum entropy to
the information provided at each observation.
This approach attempts to capture how environ-
mental gradients control relatively long-term
potential occurrence patterns by quantifying the
environmental space or envelope of observed
fires. The modeling approach is thus not de-
signed to evaluate specific sets of conditions that
lead to a particular fire in a given year, but
instead to evaluate the strength of chronic
environmental constraints on fire’s long-term
geographic distribution. For example, climatic
environments which exhibit strong inter-annual
variation (e.g., due to climate oscillations) and
may support fire activity relatively rarely will
show up less often as fire-prone pixels in model
estimation, and these areas (and their spatial
analogues) would therefore be modeled as
having relatively low probabilities of fire. In
contrast, environments that experience frequent
fires will be modeled as having relatively high
fire probabilities.

MaxEnt has the flexibility to fit non-linear
relationships between response variables (fire)
and independent variables (climate and NPP), so
that resulting models have the ability to encap-
sulate complex relationships. We included all
feature types in the model: linear, quadratic,
product, hinge and threshold, using the default
Maxent settings for regularization values. In each
run, we used 10 000 randomly selected points as
background samples. These settings, in conjunc-
tion with the sampling scheme described below,
produced models that represented the observed
global fire patterns well but minimized over-
fitting of the data.

Two variants of the baseline fire probability
model are developed from the recent historical
data: one for projections to the upcoming 2010–
2039 period and another for the end-of-century
2070–2099 period. The 2010–2039 models include
existing NPP patterns as an environmental

control, in addition to climate variables. These
‘‘Climate þ Baseline NPP’’ models explicitly
specify the current distribution of biomass and
are therefore more appropriate for near-term
projections in which vegetation patterns are not
likely to shift substantially across the 0.58 study
cells. In contrast, we do not include NPP patterns
in the 2070–2099 model projections. For these
‘‘Climate only’’ models, relationships to mapped
biomass patterns are implicitly controlled by
future climate variables (Beer et al. 2010). We
propose that fire activity by the end of the 21st
century is better represented by ‘‘Climate only’’
models, unconstrained by current vegetation
patterns.

Environmental covariates representing ignition
sources are not included in the modeling,
because ignitions are assumed not to limit fire
activity at the study’s coarse spatial and temporal
resolution, following Krawchuk et al. (2009). This
implies that, where fuels are sufficient and
atmospheric conditions are conducive to com-
bustion, the potential for ignition during the
period of record exists, either by lightning or
human causes. The emphasis here is thus on
disruptions to fire activity due to projected
climate change.

Variable selection
From an initial set of 11 bioclimatic variables,

we selected a subset of independent variables in
order to build models with enough generality to
be transferred among time periods. Removing
highly correlated variables also greatly enhances
the ability to interpret each variable’s effect on
fire probabilities. Winnowing was performed in a
heuristic manner by first cross-correlating candi-
date climate variables and identifying those that
were highly correlated (Spearman r . 0.8).
Within each of these groups, we retained
variables according to their importance in a
MaxEnt model that included all variables. Final-
ly, of the subset of variables, those that altered the
response of other key variables to fire through
interactions were also excluded.

The final set of five climate variables, which
were used in both the ‘‘Climateþ Baseline NPP’’
and ‘‘Climate only’’ models, consisted of the
mean annual precipitation, the precipitation of
the driest month, temperature seasonality, the
mean temperature of the wettest month, and the
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mean temperature of the warmest month (Table
1). These climate metrics capture annual trends,
seasonality and extreme environmental condi-
tions that provide meaningful approximations of
water and energy balances that determine the
amount and dryness of biomass and thus fire
occurrence. Note that the month in which some
variables are anchored (e.g., wettest month,
warmest month) may shift in the future, thereby
entraining a change in the variable of interest,
which would not be possible if variables were
associated with actual calendar months. Howev-
er, ‘‘cross-over’’ variables incorporating both
temperature and precipitation can be difficult to
interpret and should be used with caution. The
coarse spatial scale of our analysis and the use of
only one such variable (temperature of the
wettest month) should minimize any challenges
that future monthly shifts in this variable may
pose. We examined the pixel-wise agreement
among the 16 GCMs in increase and decrease of
each of these climate variables to assess general
trajectories from recent historical to the 2010–
2039 and 2070–2099 periods (Fig. 3).

Subsampling of fire data and model building
To minimize the effect of inherent spatial

autocorrelation in the fire data and environmen-
tal covariates and to minimize model overfitting,
a small random fraction of the total pixel-wise
fire observations are used to build individual
MaxEnt models. The Ripley’s K-function is used
to estimate the sampling fraction of fire-prone
locations that exhibited a spatially independent
pattern, based on five sampling fractions: 0.5%,
1%, 2.5%, 5%, and 10%. We first divide our point
pattern analysis up into continents because of the
spatial pattern associated with these landmasses,
finding that fire data are spatially clustered at the
10% fraction and random below the 1–5%

fraction, with the value varying by continent.
We therefore use the most conservative value of
the range, the 1% fraction of total fire observa-
tions, for MaxEnt model building, although
higher sampling fractions yield very similar
probability surfaces.

Robust fire probability models are developed
for each of the 16 GCMs based on 100 boot-
strapped replicate MaxEnt models, each of which
drew independent sample fractions from the fire
data. A random subset (i.e., 1% fraction; 377
training points) of fire observations is used for
training points in each model replicate, followed
by model testing with the remaining 99% of the
data (see Model evaluation). The output fire
probabilities for the baseline period (1971–2000)
are then averaged from the 100 replicates for
each GCM. Using the same procedure, future fire
probabilities are generated from averages of the
100 replicates for each GCM, by forcing the fire
probability models with future climate data from
the period in question. This entire process is
performed separately for ‘‘Climate þ Baseline
NPP’’ and ‘‘Climate only’’models. Future climate
conditions that exceeded the range of historically
observed values are ‘‘clamped’’ (i.e., held con-
stant) at the maximum value of the range in
order to provide a more conservative extrapola-
tion.

Model evaluation
Each replicate of each GCM ensemble of

MaxEnt models is evaluated using the area
under the curve (AUC) statistic. The performance
of the baseline fire probability models is assessed
using AUC values of sensitivity (true positives)
versus 1-specificity (in presence-only modeling,
the fractional predicted area) using data locations
withheld from model building (i.e., testing
points). This is then computed and averaged for

Table 1. Description of the independent variables used in the ‘‘Climateþ Baseline NPP’’ and ‘‘Climate only’’ fire

probability models and their relative contribution to the models (expressed as a percentage). Values for each

variable are averages of the ensemble of models produced for each of the 16 GCMs.

Variable name Description (units) Climate þ Baseline NPP Climate only

NPP Net primary productivity (g C/year) 37.6 ...
Pann Annual precipitation (mm) 6.9 24.0
Pdry Precipitation of driest month (mm) 16.9 19.2
Tseas Temperature seasonality (SD 3 100) 16.8 16.0
Twet Mean temperature of wettest month (8C) 5.9 13.2
Twarm Mean temperature of warmest month (8C) 15.9 27.6
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each of the 100 model replicates by GCM. In a
presence-absence modeling framework, the AUC
typically ranges from 0.5, in which prediction
accuracy is no better than if samples are picked at
random, to 1, which indicates perfect classifica-
tion accuracy. In contrast, in a presence-only

framework, as in this study, it is impossible to
achieve unity in AUC because absences are
unknown. However, when the prevalence is
known, the maximum achievable AUC is equal
to 1� a/2, where a is the fraction of the study area
covered by true presences (Phillips et al. 2006).

Fig. 3. The pixel-wise agreement among 16 GCMs of the projected values of five climate variables used for

modeling fire probability for the 2010–2039 and 2070–2099 time periods.
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Here, we consider a to be the percent of cells
where fire was observed. Although this may be
an underestimate, its value is a fair approxima-
tion of prevalence, given knowledge of global
patterns and the fact that there may be some false
positives from non-vegetation fires. Finally, the
relative contribution of each independent vari-
able to the fire probability models is assessed by
estimating the change in model gain associated
with each variable (Phillips and Dudı́k 2008).

Change in projected fire probability
The magnitude of change in future fire

probability relative to baseline fire probabilities
is assessed for each of the 16 GCMs by
subtracting the model outputs for future proba-
bility of fire from those of baseline models. We
then create maps of model means by averaging
the pixel-wise estimates of change for the
ensemble of 16 GCMs.

To complement the maps of ensemble mean
change in fire probability, the agreement among
models is evaluated by mapping the pixels where
at least 2/3 (i.e., 66.7% or �11 out of 16) and 9/10
(i.e., 90% or �15 out of 16) of the GCMs
predicted either a decrease or an increase in fire
probability. The remaining pixels are those with
high disagreement among GCMs in the direction
of change. Model agreement is a very important
component of these multi-model projections,
given that the mean change in future fire
probability does not provide an evaluation of
the consistency in the predicted direction. Con-
versely, strong agreement may also be observed
in pixels that have a very low mean change in the
predicted fire probability. For this reason, maps
of both agreement and mean change are com-
plementary and must be interpreted together
(Littell et al. 2011). The proportion of each
agreement class is also broken down by terres-
trial biome (Olson et al. 2001) to aid in
interpreting geographic patterns of change.

To evaluate drivers of change, the shape of the
relationship for each explanatory variable is
examined using the MaxEnt model response
functions. Variable influence is also characterized
by producing ‘‘most limiting factor’’ (MLF)
maps. The MLF at a given pixel corresponds to
the variable whose value most influences model
prediction at that point (Elith et al. 2010). This is
achieved by changing the value of the variable of

interest to its mean value across the occurrence
data; the most limiting factor is the variable that
causes the largest change in fire probability (Elith
et al. 2010). The most limiting factor results
should be interpreted with caution, because
identifying a single variable as dominant may
mask a much stronger effect of two or more
interacting variables.

RESULTS

Baseline models of fire probability
The modeled global fire probability for the

baseline period of 1971–2000 shows complex
spatial patterns of fire activity (Fig. 4) and is
largely consistent with observed fire patterns
(Fig. 2A). Some areas where fire is not observed
in the fire dataset have high predicted fire
probabilities, suggesting that they do in fact
represent fire-prone environments. Both ‘‘Cli-
mate þ Baseline NPP’’ and ‘‘Climate only’’
models predict low fire probabilities wherever
biomass is very sparse, such as most deserts,
arctic tundra, and ice caps. Although there are
some minor and localized differences between
the ‘‘Climate þ Baseline NPP’’ and ‘‘Climate
only’’ fire probabilities, the broad similarity
between them suggests that the suite of climate
variables used in ‘‘Climate only’’ models inher-
ently capture the environmental space that
controls NPP patterns.

All variables included in the models contribute
relevant information on the distribution of fire
(Table 1). In the ‘‘Climate þ Baseline NPP’’
models, the NPP variable is by far the most
important with a relative importance of 37.6%.
As such, it largely constrains future fire proba-
bility to where sufficient biomass is currently
found. Precipitation of the driest month (16.9%),
temperature seasonality (16.8%), and the mean
temperature of the warmest month (15.9%) are
other important variables in these models. In the
‘‘Climate only’’models, the mean temperature of
the warmest month (27.6%) and annual precip-
itation (24.0%) are the dominant variables;
however, all remaining climatic variables also
play a significant role. The response curves
describing the relationship between fire and each
independent variable primarily show a unimodal
response, especially in the data ranges where
confidence intervals are narrowest (Fig. 5).
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Model evaluation metrics suggest that both
‘‘Climate þ Baseline NPP’’ and ‘‘Climate only’’
models provide quite good discrimination of fire-

prone areas. The uncorrected AUC, averaged for
the 100 model replicates and then for the 16
climate models, is 0.67 for the ‘‘Climate þ
Baseline NPP’’ models and 0.66 for the ‘‘Climate
only’’ models. The approximated prevalence of
fire in this study is 0.56, which equates to a

maximum achievable AUC of 0.72. When adjust-

ed for prevalence, the test AUC values are 0.93
and 0.92 for ‘‘Climate þ Baseline NPP’’ and
‘‘Climate only’’ models, respectively.

Projected future fire probabilities
Departures from baseline (1971–2000) fire

probabilities are computed from the 100-replicate
ensembles of the 16 GCMs as mean change in fire
probability for both the 2010–2039 and 2070–
2099 time periods (Fig. 6). The ensemble mean

Fig. 4. Predicted baseline (1971–2000) fire probability averages for the 16 GCMs using climate variables and

NPP (‘‘ClimateþBaseline NPP’’) as independent variables (A) and using only climate variables (‘‘Climate only’’)

(B).
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changes in fire probability are highly variable,
both spatially and temporally. Large areas of the
globe are expected to experience relatively small
near-term changes in fire probability (yellow
areas in Fig. 6A), whereas predicted changes
become much more pronounced in the 2070–
2099 time period (Fig. 6C). Despite dramatic
disruptions in fire activity illustrated by the
model, supplementary analysis (not shown)
indicated that the temperature of the warmest
month is the only variable that consistently
exceeds its current range of baseline observa-
tions. Furthermore, these out-of-range increases
are confined to some of the warmest parts of the
world in most GCMs (notably the Saharan and
Arabian deserts and northern India).

Patterns of agreement for projected increases
or decreases in fire probability (Fig. 6B and 6D)
correspond to those of ensemble mean changes to
a large degree, but not perfectly. Large tracts of
the globe, especially the mid-latitudes of the
northern hemisphere, show model agreement for
increased fire probabilities in the 2010–2039 time
period (37.8%); however, more than half of the
world also shows low agreement in near-term
changes (54.1%). Such areas of great uncertainty

tend to be prominent at higher latitudes. In
contrast, far less area lacks consensus on increas-
es or decreases in fire probability for the 2070–
2099 time period. In fact, the 90% agreement
threshold is met across very large regions.
Although increases dominate (61.9%), almost
one quarter of the terrestrial globe (20.2%) shows
model agreement for projected decreases in fire
by the end of the 21st century, largely in the
tropics and sub-tropics. A similar fraction of
terrestrial lands still shows low agreement
among the models (17.9%), largely paralleling
patterns of agreement in key climate variables
(Fig. 3).

The analysis of model agreement patterns by
biome (Fig. 7) indicates important differences
among biomes and key shifts in predicted fire
probability between near- and far-term fire
projections. For the near- and far-term future,
Mediterranean biomes, montane grasslands and
shrublands, desert and xeric shrublands, and
temperate coniferous forests show relative agree-
ment for increased fire probability across most of
their area. Many of the remaining biomes of the
world also show model agreement for increased
fire in 2010–2039 (e.g., tropical and subtropical

Fig. 5. Response curves for independent variables used in fire modeling, obtained by building MaxEnt models

using only the single independent variable of interest. Red lines indicate the mean fire probability values,

whereas the grey shading represents 6SD, as calculated from model means from each of the 16 GCMs. Portions

represented by dotted lines exceed the range of observed data; such values are ‘‘clamped’’ or held constant in

order to prevent unrealistic fire probability projections. (Full variable names and descriptions are found in

Table 1.)
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coniferous forests, temperate grasslands/savan-
nas/shrublands, and tundra), but these biomes
also show substantial area (.50%) in the ‘‘low
agreement’’ class. The most consistent projected
fire decreases over the 2010–2039 period occur in
some of the lower latitude biomes (e.g., tropical
and subtropical grasslands/savannas/shrub and
tropical and subtropical dry broadleaf forests).
The trajectory of decreasing fire activity in these
biomes strengthens over time, with most of their
area showing greater agreement for fire decreas-
es by the end of the 21st century. In contrast, the
trajectory of biomes in the higher latitudes tends
toward more agreement for increases in fire by
2070–2099. This trend is clear for temperate and
northern regions of the world, and it is most
striking for the boreal forests/taiga and tundra
biomes.

The spatial pattern in variable importance is
shown in the most limiting factor maps (Fig. 8).

Although this map represents a simplification, it
does provide a general idea of the complexity of
global fire–environmental relationships. In bi-
omes where biomass productivity is typically
limiting to fire activity, shifts in the most
influential climate variable lead to vegetation
growth; many high-latitude cold regions thus see
long-term increases in fire probabilities associat-
ed with higher temperatures (especially in the
warmest month), while mid-latitude desert and
xeric regions tend to see increases due to more
moisture (annual precipitation). In contrast, the
vast savannas of the globe eventually experience
decreased fire occurrence associated with in-
creasing temperature seasonality, as well as
warmer are drier conditions overall. In the moist
and biomass-rich tropical forests of the world,
fire activity tends to be most limited by precip-
itation-related variables (largely decreasing with
more annual precipitation, but increasing where

Fig. 6. Ensemble mean change (A, C) and degree of model agreement (B, D) in predicted fire probability among

the 16 GCMs for 2010–2039 and 2070–2099 time periods (change assessed from baseline probabilities 1971–2000).

Predictions for 2010–2039 are based on ‘‘ClimateþBaseline NPP’’models, and 2070–2099 are based on ‘‘Climate

only’’ models. Pie charts indicate global proportions in each agreement class: Likely decrease, Likely increase,

and Low agreement correspond to 8.1%, 37.8%, and 54.1% for the 2010–2039 period, and to 20.2%, 61.9%, and

17.9% for the 2070–2099 period.
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there is less precipitation in the driest month).
For temperate coniferous forests, higher temper-
atures in the warmest month appear to be
occurring at a steeper portion of the response
function, eventually resulting in increased fire
occurrences; the same is true for broadleaf forests
of North America and the forested portions of
China, although the strength of specific climatic
drivers is less clear.

DISCUSSION

Our projections, which are based on norms of
key environmental controls on long-term fire
probabilities, reveal tremendous heterogeneity
in future fire patterns across the planet, as well
as the variables driving expected changes. These
results provide general support for regional
studies that predict increases in fire activity over
the next century. Although not as prevalent at a

global scale, many areas are also expected to
experience decreased fire probabilities, particu-
larly in the far term. This type of variability in
disruptions to future fire patterns is not unex-
pected, as it is an outcome of nonlinear
interactions between multiple temperature- and
moisture-based climatic metrics that vary spa-
tially (Fig. 1), which has been demonstrated in
other recent global studies (Scholze et al. 2006,
Gonzalez et al. 2010, Pechony and Shindell
2010). However, vast regions for which the
models do not agree on the direction of future
change are somewhat surprising. These uncer-
tainties are due to inherent differences among
GCMs (Meehl et al. 2007, Littell et al. 2011),
illustrated in our climate agreement maps, and
are a key motivation for global multi-model
ensemble analyses such as those presented here.
Although GCMs predict that temperatures will
rise virtually everywhere on Earth over the next

Fig. 7. The proportion of terrestrial biomes in each fire probability agreement class for 2010–2039 and 2070–

2099 time periods, as shown in Fig. 6. Biomes are ordered by the proportion of lands in agreement for increased

fire during 2010–2039.
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century, future fire occurrence appears to pri-
marily be a function of the available moisture in
many areas. Due to such spatially varying
constraints over fire among regions and biomes
(Krawchuk and Moritz 2011), our results do not
corroborate the notion that temperature will
become the single dominant control on global
wildfire during the next century (Pechony and
Shindell 2010).

Global versus biome-specific changes
In the near term, despite consensus on key

areas of increased and decreased fire activity, the
majority of the globe (;55%) shows low agree-
ment in the direction of projected change. Even
so, the ensemble mean change in fire probabili-
ties for many of these areas of low agreement
may, in fact, be relatively small. Accordingly,

some of this uncertainty could equate to relative
stability in fire activity over the next few decades.
However, the magnitude of change and the
degree of agreement among GCMs grows sub-
stantially through time. By the end of the century
there is consensus that the vast majority of the
globe (;82%) will experience disruptions in fire
activity. Model agreement is strongest for fire
increases in both the near and distant future
(37.8% and 61.9% of terrestrial areas, respective-
ly). Most of the predicted increase occurs in the
higher northern latitudes, although in some
regions of central Europe and central North
America such changes are projected to be
relatively minor. In contrast, the world’s decreas-
ing fire activity is centered on the equatorial
regions, a trend that is amplified through the end
of the century.

Fig. 8. Most limiting factor maps and proportions by biome for ‘‘ClimateþBaseline NPP’’ (A, B) and ‘‘Climate

only’’ (C, D) fire probability models. Maps are compiled from fire probability models of the 16 GCMs, by

recording the variable most frequently identified as most limiting factor at each pixel (‘‘tied’’ means no single

variable dominated). Biomes are ordered by decreasing proportion limited by NPP for ‘‘ClimateþBaseline NPP’’

models (B) and by Annual precipitation (Pann) for ‘‘Climate only’’ models (D).
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Our global projections reflect the relative
importance of resources to burn, as well as the
length and severity of conditions affecting their
flammability (Meyn et al. 2007, Krawchuk et al.
2009, Whitlock et al. 2010, Aldersley et al. 2011,
Krawchuk and Moritz 2011). Not surprisingly,
NPP is the most limiting factor in more arid
areas, or those with a limited growing season,
such as deserts and xeric shrublands, tundra, and
temperate/grasslands/savannas/shrublands. In
contrast, areas with higher fuel loads and limited
climate seasonality, such as most tropical and
subtropical biomes, appear to be more sensitive
to temperature-related variables associated with
conditions conducive to burning. However,
biomass productivity is also a complex function
of climate. Although productivity is mainly
constrained by precipitation at a global scale,
temperature is the dominant control on biomass
in many parts of the world (Beer et al. 2010), a
limitation that emerges when NPP is not includ-
ed in our models.

Despite the observed within-biome heteroge-
neity in fire disruptions, our results are consistent
with recent trends of increasing fire in some
Mediterranean ecosystems (e.g., Piñol et al. 1998,
Pausas and Fernández-Muñoz 2011) and temper-
ate forests of the western US (Westerling et al.
2006). Our models suggest that this temperature-
driven trend of increasing fire probability may
continue into the future for some temperate
forests (e.g., Westerling et al. 2011). The driest
regions of the mid-latitudes and the Australian
continent, which comprise most of the world’s
deserts, are projected to experience consistent
and extensive increases in fire probabilities.
Although most of these areas are biomass-poor
ecosystems that may not become highly fire-
prone, fire activity has been increasing in some
deserts because of invasive herbaceous species
(D’Antonio and Vitousek 1992, Brooks et al.
2004). It appears that any future increases in
annual precipitation could exacerbate this trend,
although some of these desert areas may also
have novel climates in which temperature in-
creases will outweigh precipitation increases,
leading ultimately to lower productivity and less
fire.

The near-term mixed changes projected for
boreal ecosystems are consistent with reports on
recent direction of change in fire activity (Gir-

ardin et al. 2009, Meyn et al. 2010). In fact, during
the last century, different fire�environment rela-
tionships among areas within the boreal biome
have led to divergent trajectories of change in fire
regimes (Soja et al. 2007, Girardin et al. 2009),
which may be reflected in certain parts of the
biome being more limited by resources to burn
than by fire-conducive weather. Our results
suggest a striking increase in fire activity for
boreal ecosystems in the more distant future,
which is coherent with other temperature-driven
projections (Stocks et al. 1998, Flannigan et al.
2005, Balshi et al. 2009). Despite the general lack
of soils to support extensive flammable biomass
in tundra of higher latitudes, parts of this biome
are covered by peatlands that, under extreme
conditions, will burn. Some studies suggest that
recent warming is responsible for large fires in
areas that have experienced very little (if any)
fires over the last millennia (Higuera et al. 2008,
Mack et al. 2011). With warmer temperatures,
substantial tundra areas may become more
conducive to plant growth within this next
century, and thus fire could rapidly become a
novel disturbance there.

Decreases in fire activity are most extensively
projected for the tropical and subtropical savan-
nas of the world, which eventually show
agreement for higher temperatures in both
warmest and wettest months, increasing temper-
ature seasonality, and less precipitation in the
driest month, likely causing greater water stress
and lower biomass productivity. Interestingly,
some of these relatively biomass-rich ecosystems
are currently among the most fire-prone in the
world. It is questionable, however, whether the
single variable temperature seasonality is really
‘‘limiting’’ in the vast savannas of Africa,
indicating that MaxEnt MLF results may some-
how reflect a surrogate for more precipitation-
related constraints there (e.g., Archibald et al.
2009). Although covering much less area, dry
broadleaf forests also show consistent tempera-
ture-driven decreases in fire over the next few
decades. This general trend is projected to
strengthen by the end of the century, with
agreement emerging for decreased fire in most
other tropical and subtropical biomes. Our
projected long-term decreases in fire for tropical
rainforests, due to increasing precipitation, are
notable given that concern in these regions tends
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to be on future fire increases, particularly
through intentional deforestation fires (e.g.,
Cochrane et al. 1999, van der Werf et al. 2008,
Le Page et al. 2010).

Further work is needed to determine the
degree to which long-term fire�climate relation-
ships in many tropical and subtropical regions
can be overpowered by local cultural practices,
which can take advantage of short-term fluctu-
ations in climate (Fig. 1B). To our knowledge, the
potential for widespread climate-driven decreas-
es in future tropical and subtropical fire proba-
bilities is not reported in the published literature,
although some studies (e.g., Scholze et al. 2006)
have shown less extensive but still generally
decreasing fire activity for many of these same
regions. We nonetheless urge caution in applica-
tion of our results, particularly with respect to
Reducing Emissions from Deforestation and
Degradation (REDDþ) projects, despite model
agreement for decreasing fire in many tropical
biomes. It is also worth noting that fire in tropical
peatlands is a major potential source of carbon
emissions (van der Werf et al. 2009), and these
events are not captured well in our vegetation
fire datasets.

Assumptions and sources of uncertainty
The types of variables chosen for modeling

future fire activity are affected by global data
availability and constrained by the GCMs them-
selves. For example, our models use climate
norms (i.e., means over multiple decades) for key
variables, which can only indirectly capture
short-term fluctuations in biomass resources
and conditions affecting their flammability (Fig.
1A). However, the use of long-term climate
norms may currently be the most stable and
robust approach for predicting long-term, chron-
ic fire probabilities across much of the globe.
There is great uncertainty in the ability of GCMs
to represent key modes of interannual variability
(Stoner et al. 2009, Yeh et al. 2009), and even
predicting future climate variability at decadal
scales can pose substantial challenges (Solomon
et al. 2011). Model agreement on disruptions to
future fire is therefore no guarantee—the major-
ity of GCMs could of course be wrong for any
given location—but it is encouraging that these
GCM-driven predictions show some consensus
across large tracts of the globe.

Although our models achieve high classification
accuracies, it has yet to be determined whether
incorporating interannual variation would lead to
large global improvements or marginal refine-
ments in specific locations (e.g., Zimmermann et
al. 2009). Greater climatic extremes, especially
precipitation fluctuations, can promote increased
fire activity in chronically wet locations (e.g.,
drought in tropical rainforests) and chronically
dry locations (e.g., precipitation pulses in deserts)
(Fig. 1B). Some tropical rainforests, however,
appear to be less sensitive to such climate
fluctuations than others (van der Werf et al.
2008). The degree to which long-term global fire
projections would be improved by reliable pro-
jections of interannual variability is clearly an
important area for future work.

Our model framework included NPP patterns
in projections for 2010–2039 but not for 2070–
2099 as a simple way to simulate potential
changes in vegetation with global warming.
Including NPP in the near term recognizes that
most vegetation types are unable to track climate
instantaneously, and thus holds vegetation con-
stant while changing the climate conditions
affecting flammability (i.e., fire weather). Not
including NPP for the end-of-century models
recognizes that vegetation patterns will likely
have shifted by that time, and productivity may
thus be more closely aligned or equilibrated with
climate (especially annual precipitation). These
assumptions must be considered in the interpre-
tation of results. For example, the effects of using
current NPP patterns may limit climate-related
biomass depletion in some of the savannas and
dry sub-tropical areas in the near term, which are
then predicted to experience widespread fire
decreases in the 2070–2099 time period. Con-
versely, including current NPP patterns may
temper the direct effect of temperature and
precipitation on biomass-rich areas in the near
term, such as the temperate and boreal forests,
whose fire probability is predicted to increase
substantially by the end of the century.

The influence of localized human activities
such as fire suppression and land development
varies across the globe (Whitlock et al. 2010,
Aldersley et al. 2011, Bowman et al. 2011), and
these factors are not explicitly addressed in our
study. We do not model ‘‘natural’’ global fire
activity, but rather modern fire—with its many
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human influences—as it currently occurs on
Earth and how this may be altered by changing
climates. Our models imply current levels of
anthropogenic ignitions will continue into the
future. Humans are not minor players with
respect to global fire activity: their influence on
global fire regimes is more than likely to increase
in the future through population growth and
more accelerated land cover change. However,
detailed scenarios of future change in anthropo-
genic pressure are needed to assess the human
contribution to future fire activity at the global
scale.

Comparison with other global modeling studies
As one might expect, the spatial concordance

of our projected future fire probabilities varies
from those of other published global fire activity
predictions. Our results are most similar to
Krawchuk et al. (2009), especially when compar-
ing patterns for the single GCM in their study,
which used a different statistical approach but
functionally similar variables. In contrast, Liu et
al. (2010) used four GCMs and characterized
drought-driven effects on the severity of the fire
season, predicting almost opposite fire patterns
to those reported here. In the only study that
used a sizeable ensemble of GCMs to estimate
future fire probabilities, the DGVM-based mod-
els of Scholze et al. (2006) yielded some
predictions (e.g., decreasing fire in some tropical
areas) that broadly concur with ours and other
patterns (e.g., decreasing fire in boreal regions)
that differ considerably. Another DGVM-based
study by Gonzalez et al. (2010) used three GCMs
and showed yet another outcome: increasing fire
across much of the tropics and decreasing fire in
many higher latitudes. Interestingly, the predict-
ed future fire activity from Pechony and Shindell
(2010), who used one GCM and a process-based
fire module suitable for use in a DGVM, broadly
agree with those of our study.

Based on the few global projections published
to date, it is difficult to attribute differences
among future fire predictions primarily to
modeling strategies, variable types, prediction
resolution, or choice of GCMs. A key difference
in DGVMs is their bottom-up generation of
global fire patterns by iteratively simulating
fire�climate�vegetation feedbacks that may oc-
cur as climates change. Unlike more complex

DGVM approaches, our top-down statistical
approach includes vegetation and biomass pro-
ductivity patterns in a simpler but still function-
ally based framework. Our results could thus
differ from a feedback-enabled DGVM, but we
assume that the relatively rapid climatic changes
being observed now should overwhelm any
vegetation feedbacks that might dampen disrup-
tions in fire under slower climatic shifts (e.g.,
Higuera et al., 2009). It remains unknown,
however, how much or where future fire activity
will be dampened or amplified by vegetation
feedbacks alone, or how much invasive species
might contribute to such changes. Divergent
projections may also be due to differences in
the environmental variables chosen to drive fire
activity now and in the future.

CONCLUSION

Projections reported here highlight the poten-
tial for rapid disruptions in future fire activity,
and consensus on such alterations strengthens
through time. In addition to impacting terrestrial
carbon stocks and human livelihoods, abrupt
changes in fire will stress native flora and fauna as
they adjust to climate change (Loarie et al. 2009)
and threaten biodiversity in many conservation
areas (Myers 2006, Nelson and Chomitz 2009).
The ecological severity of projected changes will
depend on the degree to which organisms are
fire-sensitive or fire-adapted. This will be espe-
cially important in marginal or ‘‘trailing edge’’
habitats (Davis and Shaw 2001, Hampe and Petit
2005), which may be vulnerable to relatively
sudden, fire-punctuated range contractions in-
stead of more gradual, climate-driven transitions.
Conversely, future fire may also act as a distur-
bance that frees up space and resources more
quickly than would otherwise occur, facilitating
establishment of ‘‘leading edge’’ populations
(Landhäusser et al. 2010). Although sharp de-
creases in fire activity are less likely to capture our
attention, reductions in this key ecological distur-
bance may have important trickle-down effects in
many fire-prone regions (Bond and van Wilgen
1996, Krawchuk et al. 2009), and longer fire
intervals could conceivably make some areas
more vulnerable to catastrophic wildfires over
time. Linking fire probabilities to fire intensities
and area burned are thus important next steps. A
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better quantification of interactions between
climate change and fire is crucial for a complete
global assessment of vulnerabilities for humans
and the ecosystems upon which they depend.
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