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Western United States wildfire increases have been generally
attributed to warming temperatures, either through effects on
winter snowpack or summer evaporation. However, near-surface
air temperature and evaporative demand are strongly influenced
by moisture availability and these interactions and their role in
regulating fire activity have never been fully explored. Here we
show that previously unnoted declines in summer precipitation
from 1979 to 2016 across 31–45% of the forested areas in the western
United States are strongly associated with burned area variations.
The number of wetting rain days (WRD; days with precipitation
≥2.54 mm) during the fire season partially regulated the tempera-
ture and subsequent vapor pressure deficit (VPD) previously impli-
cated as a primary driver of annual wildfire area burned. We use
path analysis to decompose the relative influence of declining
snowpack, rising temperatures, and declining precipitation on ob-
served fire activity increases. After accounting for interactions, the
net effect of WRD anomalies on wildfire area burned was more
than 2.5 times greater than the net effect of VPD, and both the
WRD and VPD effects were substantially greater than the influence
of winter snowpack. These results suggest that precipitation during
the fire season exerts the strongest control on burned area either
directly through its wetting effects or indirectly through feedbacks
to VPD. If these trends persist, decreases in summer precipitation
and the associated summertime aridity increases would lead to
more burned area across the western United States with far-
reaching ecological and socioeconomic impacts.

wildfire | climate change | hydrology

The iconic wildfires of 1988 in Yellowstone National Park were
notable in their own right, but they also signaled the begin-

ning of a three-decade-long upturn in wildfire activity in the
western United States (1–3). Despite many studies showing links
between summer precipitation and wildfires (4–7), investigators
studying the drivers of increased fire activity have suggested that
warming temperatures are the primary culprit, driving earlier
snowpack loss leading to longer fire seasons (1) and hotter
summer temperatures that dry out woody fuels (8–10). Parallel
trends in warming temperatures, declining snowpack, and in-
creasing fire activity certainly support the role of temperature as
a driver of wildfire activity, but it is important to check other
potential hypotheses. In particular, it is worthwhile to note that
the winter of 1988 was about 5 °C colder than normal in Yel-
lowstone, with a near-normal snowpack at the end of the winter,
but precipitation all but stopped in May of 1988 for the remainder
of the summer. Once again, in 2017, a cold winter and deep
snowpack in the northwest United States transitioned into a
major fire season on the heels of a dry summer with record-
breaking dry spells without wetting rain. These are anecdotal
observations, but enough to warrant further exploration of the
mechanisms underlying recent trends in wildfire activity.
The importance of winter snowpack for regulating western US

fire activity is the most commonly cited hypothesis on how hy-

drology regulates fire processes (1), even leading to early season
forecasts based on spring snow and streamflow conditions. A
similarly compelling story has implicated increased surface air
temperature, and consequently vapor pressure deficit (VPD), as a
driver of fuel moisture and recent wildfire activity (8–10), which
supports partial attribution of the increased fire activity to an-
thropogenic climate change (11). At the same time, there is clear
knowledge that summer rain affects fires (4–7), but a lack of
testing for its participation in historical wildfire trends. While
knowledge about temperature trends and their impacts on wildfire
activity is important as a direct link to understanding potential
climate change effects, treating the temperature effects in isolation
ignores the potential hydrologic feedbacks that are driven by
summer moisture variations and could lead to errors in projection
and potential maladaptation. In particular, projections of changes
in summer precipitation, snowpack, and summer air temperatures
have different spatial patterns across regions and elevations, and
meaningful use of climate projections can only occur if we can
accurately link the different climate elements to fire.
Here we contrast what are now three hypothesized climatic

drivers of recent increases in western US wildfire activity: de-
creased snowpack, increased temperature, and decreased pre-
cipitation. Using satellite-derived maps of forest wildfire area
burned from eight western US ecoregions (12) (Fig. 1) and daily
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gridded temperature, humidity, and snow water equivalent data-
sets (SI Appendix, Figs. S1–S6), we examine the sensitivity of
wildfire area burned to standardized hydrologic and precipitation
indices. We then quantify trends in historical fire season (May–
September) precipitation from 1979 to 2016 using gridded data
and observations, and use path analysis to estimate the relative
influence of snow, temperature, and summer precipitation on
wildfire area burned.

Results
Decreased Snowpack (Hypothesis 1). Standardized snow anomaly
metrics, including April 1 and maximum annual snow water

equivalent (SWE), the number of snow-free days from March–
September and the April 1 snow extent were not significantly
correlated with annual western US wildfire area burned (Fig. 2;
r < 0.32; P > 0.10). Further analysis of snow effects shows sta-
tistically significant correlations between one or more metrics of
snow cover and wildfire area burned in six of the eight ecoregions
(SI Appendix, Fig. S7). However, these snowpack/fire relationships
were generally weak, particularly in the northwest United States
where snow has previously been identified as a primary driver of
increased fire activity. We found overall that the maximum SWE
anomaly was the best predictor of western US burned area varia-
tions from among the suite of potential snow metrics; therefore, we

Fig. 1. Forest cover and forest wildfire area burned from 1984 to 2015 in the western United States with eight NEON domains outlined in black. (Right) Total annual
forested hectares burnedwithin eachNEONdomain. Blue lines show the linear trend in area burned, with a solid line indicating a statistically significant trend at P< 0.10. CP,
Central Plains; DSW, Desert Southwest; GB, Great Basin; NP, Northern Plains; NR, Northern Rockies; PNW, Pacific Northwest; PSW, Pacific Southwest; SR, Southern Rockies.
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use maximum annual SWE as a proxy metric for decreased snow-
pack for the rest of the analysis.

Increasing Temperatures (Hypothesis 2). Maximum temperature
(Tmax) anomaly variations were well correlated with both westwide
and ecoregional burned area variations (Fig. 2, r = 0.25–0.74).
VPD and Tmax were highly correlated (r = 0.90); therefore, we use
VPD as an integrative proxy of Tmax variations for the remainder
of analyses. Consistent with previous work (9), VPD anomalies
are highly correlated to burned area variations (r = 0.21–0.82, Fig.
2), and in most ecoregions, VPD is a stronger correlate of wildfire
area burned than both temperature and precipitation when con-
sidered in isolation (Fig. 2).

Decreasing Precipitation (Hypothesis 3). Using multiple gridded
datasets (12–15) and observations, we detected previously unnoted,
significant decreasing trends in May–September total pre-
cipitation and the number of wetting rain days (WRD; total days
with precipitation greater than or equal to 2.54 mm) from 1979 to
2016 across large areas of the western United States (Fig. 3 and SI
Appendix, Fig. S8). Trends in total May–September precipitation
are negative across 82–94% of forested area in the western United
States, and statistically significant in 31–35% of that area. The
median decrease is −5 mm (3.7%) per decade, with maximum
decreases of −77.3 mm (47%). Trends in the number of WRD
show similar patterns to those for precipitation amount, with
median decreases of 1 d (6%) per decade, and declines of 6 d
(60%) per decade in some places. We observed negative trends in

WRD across 83–98% of forested areas in the western United
States, with significant declines in 36–45% of that area. Addi-
tionally, we observed increases in the mean length of continuous
rain-free periods from May to September (Fig. 3). Total pre-
cipitation anomalies were strongly correlated with WRD anoma-
lies (r = 0.95), and in all ecoregions, WRD is a better predictor of
wildfire area burned than total precipitation. Therefore, WRD are
used for the rest of the paper as an integrated proxy of interannual
summer rainfall variations. When aggregated across the western
United States for the 1984–2015 period for which wildfire data are
available, decreases in fire season WRD are highly significant
(Fig. 4, r = −0.46; P < 0.01) and correspond to the large increasing
trends in forest wildfire area burned (Fig. 4; r = 0.83; P < 0.01).
Precipitation, near-surface air temperature, and VPD are

fundamentally related because soil moisture modulates the ex-
change of energy through the partitioning of latent and sensible
heating. This connection is well known (16–18) and in the con-
text of drought described as complementary (19), where onset of
high evaporative demand occurs once soils begin to dry, resulting
in increased sensible heating, warmer surface temperatures, and
increases in atmospheric saturation vapor pressure that increase
VPD, and consequently potential evapotranspiration. The down-
ward trends in precipitation and WRD noted here occur during a
season when downward radiative fluxes and evaporative demand
are at their peak. In the absence of summer precipitation, soil
water balance deficits accrue quickly, leading to rapid onset of
drying and warming.
We find moderate to strong correlations between WRD and

Tmax and VPD (Fig. 5 and SI Appendix, Fig. S10), with the number
of WRD during the fire season accounting for 46.2% and 72.2%
of the interannual variation in Tmax and VPD, respectively. Ulti-
mately, near-surface moisture deficits from less frequent rainfall
increase sensible heating, resulting in warmer surface air tem-
peratures and increased evaporative demand. Thus, seasonal
weather variations are tightly coupled through these feedbacks. To
effectively evaluate the individual contributions of decreased
snowpack, increased temperature, and decreased precipitation on
western US burned area, we must decouple their individual in-
fluences by accounting for these causal interactions.
We use path analysis (20) to evaluate the relative influence of

snowpack, temperature, and precipitation on wildfire area
burned and to determine which of the three hypotheses best
accounts for interannual variations in western US burned area.
Path analysis is a form of multivariate regression that facilitates
evaluation of causality among a set of correlated variables. We
consider a simple model that includes all three proxies for the
hypothesized drivers of wildfire area burned: SWE, VPD, and
WRD (Fig. 6). In the model, maximum SWE and WRD are
considered to directly influence fire, for example by wetting
fuels, or limiting fire spread into snow-covered areas. In addi-
tion, both variables influence fire indirectly by mediating summer
drought and consequently atmospheric demand and VPD. After
accounting for the influence of precipitation on VPD, the total
effect of precipitation on wildfire area burned is large (net ef-
fect = 0.81) and substantially greater than either VPD or SWE
(net effect = 0.30 and 0.01, respectively; Fig. 6). Sensitivity alone
is insufficient to support our claim with respect to trends, how-
ever, so we further apply the coefficients in Fig. 6 to standardized
trends in WRD (−0.49 σ per decade), VPD (+0.52 σ per de-
cade), and SWE (−0.11 σ per decade). The standardized WRD
trend is similar in magnitude to that of VPD, and the WRD
trend accounts for just over 2.5 times greater proportion of
the trend in area burned than does VPD and 17.2 times greater
than that of SWE. Even if the effect of precipitation on energy
partitioning were to be ignored by removing the effect of WRD
on VPD, the effect of the trend of WRD would still be 1.8 times
stronger than that of VPD and 12.1 times stronger than that
of SWE.

Fig. 2. Linear correlations (Pearson’s r) between forest wildfire area burned
(log transformed) from 1984 to 2015 and standardized May–September
WRD, maximum temperature, maximum SWE, and maximum daytime VPD
across eight NEON domains and for all forest areas in the western United
States. An asterisk indicates statistical significance at P = 0.10. All negative
values are expressed as absolute values for visual interpretation. NEON
ecoregion names are identified in Fig. 1.
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Discussion
Without acknowledgment of the observed trends in summer
precipitation, trends in recent fire activity in the West have been
primarily attributed to warming temperatures, with warm winter
temperatures reducing snow accumulation and lengthening the
fire season (2), or through warmer summer temperatures that
increase atmospheric demand that dries woody fuels (9, 11). Our
findings support an additional mechanism, declining trends in
summer precipitation, as a major contributor to observed trends
in western US wildfire area burned during the past three de-
cades. Looking back further in time to see if recent trends might

be part of a secular trend, we used the Climate Prediction Center
unified gauge-based precipitation dataset from 1948 to 2016 and
found evidence of general drying in the six most western states,
although with only scattered statistical significance (SI Appendix,
Fig. S9). Given limitations of instrumentation further back in
time and influence from low-frequency climate variability, other
lines of evidence may be necessary to support attribution. The
timing and amount of summer precipitation can influence fuel
aridity through multiple pathways. In addition to directly adding
moisture to woody fuels and soil, rain days are accompanied by
cooler temperatures, increased humidity, and clouds that reduce

Fig. 3. Linear trends in May–September precipitation (Left), the number of WRD (Center), and the mean consecutive number of dry days (Right) from
Daymet (1980–2016) and GRIDMET (1979–2016) datasets. Circles (Bottom) indicate the location of weather stations used in the trend analysis. All colored
areas in gridded dataset trends and station circles outlined in black indicate statistical significance at P = 0.10 using a Mann–Kendall trend test.
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incoming radiation and consequently, near-surface heating (18).
There is no doubt that regional temperature increases, in-
dependent of feedbacks from precipitation, have increased at-
mospheric aridity and contributed to increased wildfire activity.
However, tight coupling between summer precipitation and VPD

suggests that in some areas of the western United States, reduc-
tions in summer precipitation and WRD may have been the pri-
mary driver of increased wildfire activity by increasing sensible
heating, resulting in warmer temperatures, higher VPD, and in-
creased fuel aridity (Fig. 5). Additional study will be required to
disentangle the regional variations in the relative influences of
precipitation, temperature, and atmospheric humidity on wildland
fire ecohydrology.
Climatic changes in this period of increasing fire across the

West include warming temperatures in all seasons, shallower and
earlier-melting snowpacks, and reduced summer precipitation in
many areas. It is not surprising, then, that the frequency and size
of wildfires has increased. However, contrasting multiple climatic
controls show a relatively small influence from a shallow snow-
pack and shorter snow-covered season, but substantial influence
from summer precipitation, temperature, and evaporative de-
mand. While there is little doubt that decreasing winter snow-
pack can play a role in advancing fire season length, it does not
appear to have been a dominant factor driving recent wildfire
trends. Furthermore, both winter precipitation and temperature

Fig. 4. Linear trends in WRD (Top), log-transformed wildfire area burned
(Middle), and their correlation (Bottom) from 1984 to 2015 in forested areas
of the western United States.

Fig. 5. May–September WRD anomalies correlated with maximum VPD and
maximum temperature anomalies for western US forested areas from 1984–
2015.
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can contribute to poor snow years and increased wildfire activity
(21), with precipitation changes being more important than
temperature in high-elevation interior western US mountains
(22), where a large fraction of the fires have burned in the last
three decades (23).
Although the sensitivity of wildfire acres burned to pre-

cipitation has been recognized (4–7), the role of precipitation in
driving recent wildfire activity has been previously understated or
ignored. Because precipitation responses to anthropogenic forcing
are less detectable than temperature responses (24), attribution
studies necessarily underestimate the relative contribution of cli-
mate change to fire through precipitation in comparison with ef-
fects through temperature (11). Indeed, although historical trends
in precipitation may be substantially stronger than the climate
models expected on average (11), the direction, magnitude, and
spatial footprint of the observed trends are consistent with pro-
jections for the future (25, 26), making the observed decline in
precipitation potentially suitable as an analog for future expecta-
tions of fire. The path analysis here illustrates that the causal
connections between precipitation trends and VPD trends are an
important additional consideration when forecasting future eco-
logical responses to climatic change.
One potential mechanism for reduced summertime pre-

cipitation is the rapid decline in arctic sea ice extent (27) and
subsequent weakening of zonal winds (28), which lead to slower
progressions of summertime upper-level waves and promotes
more prolonged midlatitude US droughts like those noted in this
study. Wintertime arctic sea-ice extent has been linked to west-
ern US midsummer precipitation and temperature extrema
variations and it has been suggested as one of the driving factors
in burned area increases (29). The degree to which precipitation

decreases noted in this study are connected to weather changes
associated with shrinking arctic sea ice is unknown. Further ex-
ploration is needed to better understand the coupling between
arctic sea-ice variations and midlatitude US weather.
Although we focus here primarily on wildfire activity, de-

creasing summer precipitation, longer intervals without rain, and
associated increases in aridity have broad ecological and socio-
economic implications for other sectors of the western United
States, including agriculture, forestry, and regional water de-
mand. Drought across the United States can reduce grain yields,
send ripple effects through global commodities markets, and
potentially impact global food security (30). Further, warm, dry
summers with high evaporative demand can reduce forest pro-
ductivity in places like the Pacific Northwest (31), where timber
production is a major industry. Thus, long rain-free periods and
prolonged summer droughts like those experienced in the Pacific
Northwest during the past decade can have serious economic
consequences in addition to the costs of managing the wildfires
typically associated with dry conditions.
Our ability to manage wildfires more proactively and effec-

tively hinges to some degree on understanding and ultimately
forecasting the seasonal climatic and hydrologic mechanisms that
regulate them. Relatively weak regulation by more strongly
predictive indicators, like winter snowpack, could further chal-
lenge wildland fire managers tasked with forecasting seasonal
fire activity, and suggests that targets for seasonal outlooks may
need to more strongly emphasize predictors of summer rainfall.
Furthermore, the trends in summer precipitation observed here
are consistent with climate change projections for the western
United States in the coming decades which predict substantial
decreases in summer precipitation (25, 26) and lengthening

Fig. 6. Path analysis diagram illustrating relationships among precipitation, VPD, and wildfire area burned. SWE and precipitation are exogenous variables
which are allowed to influence wildfire area burned directly, and indirectly as mediated by VPD.
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windows without wetting rain events (32). If decreasing trends in
summer precipitation continue, the result will likely be a con-
tinuing pattern of dry, warm summers that result in increasingly
more severe fire seasons.

Methods
Development of Historical Daily Gridded Temperature, Humidity, and Snow
Data. To address the impacts of snow cover on wildfire area burned, we
developed high-resolution (250-m) gridded daily snow water equivalent
datasets from 1979 to 2015. To resolve delayedmelt on north-facing slopes, we
developed daily topographically resolved radiation, temperature, and hu-
midity datasets for the continental United States as inputs to the snow model
using previously published methods (33). Additional details describing modi-
fications to the temperature, humidity, and radiation modeling and their
validation with independent observations are provided in the methods below.

Development of Daily Gridded Shortwave Radiation Data. We developed daily
8 arc-s (∼250 m) downward shortwave radiation grids for the continental
United States following methods adapted from ref. 33. Our objective in de-
veloping more finely resolved grids was to capture differences in radiation
with slope and aspect so that we could better resolve the large delay in snow-
melt timing on north-facing slopes. Our approach was first to generate a set
of clear-sky beam and diffuse shortwave radiation grids for each calendar day
(366 d) using GRASS GIS and the module r.sun (34), that are corrected for
topographic shading, but assume no cloud cover. Each clear-sky grid was
generated using a fixed Linke parameter and corrected for topographic
shading and local slope and aspect using a 1 arc-s (30 m) Digital Elevation
Model from the National Elevation Dataset (35), resampled to 8-arc-s reso-
lution. We then used daily total downward shortwave radiation data from
the North American Land Data Assimilation System (NLDAS) (36) to adjust
each clear-sky grid for cloud cover. Hourly NLDAS shortwave solar radiation
(SRAD) data were acquired and averaged over 24 h for each calendar day.
Before deriving cloud-cover information from the NLDAS data, we used a set
of historical radiation observations to correct the NLDAS grids for known
biases (37, 38). In a preliminary analysis, these data were compared with
station observations from the National Solar Radiation Database (NSRDB) (39),
revealing systematic spatial bias with patterns similar to previously published
studies (37). To correct for this bias we used principal components analysis
(PCA) on a matrix of monthly mean bias for 188 NSRDB stations over the
period from 1979 to 2010. Bias was expressed as the ratio between the
measured and NLDAS radiation. The first three principal components were
interpolated using generalized additive models with x, y, and distance to
ocean as explanatory variables, which were then combined with monthly
loadings to derive spatial bias correction multipliers for each month. These
were then applied over all days in a given month. NSRDB data were un-
available after 2010, so a separate PCA bias correction was developed using
solar radiation data from 115 Climate Reference Network (CRN) stations for
the 2011–2015 period (40). The proportion of diffuse radiation was calculated
from the clearness index Kc using the function from ref. 41, which was then
applied to the bias-corrected NLDAS SRAD to get estimated beam and diffuse
radiation at the ∼10-km scale. Beam and diffuse coefficients were then cal-
culated as the ratio between these values and their clear-sky counterparts
derived from r.sun at the same resolution assuming no topography but ad-
justed for elevation. The beam and diffuse coefficients were then resampled
to ∼250-m resolution, multiplied by their respective clear-sky grids and sum-
med to produce a final ∼250-m radiation grid. The final set of daily radiation
grids are adjusted for cloud cover and differences associated with slope and
aspect, and show excellent agreement with surface weather station obser-
vations. SI Appendix, Fig. S1 shows mean seasonal bias in the 1979–2010
NLDAS SRAD relative to station observations from NSRDB. Mean absolute
error (MAE) for the mean monthly uncorrected NLDAS was 15.77W/m2, which
was reduced following bias correction to 9.62 W/m2. SI Appendix, Fig. S2
shows mean seasonal bias for 2011–2015 NLDAS SRAD relative to CRN data.
MAE for the mean monthly uncorrected NLDAS was 18.17 W/m2, and after
correction it was 10.57 W/m2.

Development of Gridded Daily Temperature and Humidity Data. Daily historical
(1979–2015) gridded minimum and maximum temperature and mean daily
dewpoint data were created at a resolution of 250 m for the conterminous
United States following methods described in ref. 33. Minor changes in the
derivation of the linear regression coefficients used to correct for local ter-
rain effects and accuracy assessment methods are described below. Grids for
minimum and maximum temperature and mean daily dewpoint were de-
veloped separately, but each relies on the same basic approach. Initial air-

temperature estimates are made for each day by interpolating pressure-level
free-air temperature or dewpoint temperature lapse rate to a 250-m reso-
lution digital elevation model using the Climate Forecast System Reanalysis
data (42). Next, a set of previously estimated linear regression coefficients is
applied to the lapse estimated temperature grids to adjust for local effects
of solar insolation and surface soil moisture. Finally, residual errors in the
grids are identified using a subset of available permanent weather station
observations that include Snowpack Telemetry stations (SnoTel), Remote
Automated Weather Stations, and the Global Historical Climatology Net-
work (GHCN-D, ref. 43). This error is estimated using thin-plate spline re-
gression, with the fitted model then used to adjust the gridded temperature
predictions, ensuring the final gridded product generally matches measured
near-surface temperature or humidity. In expanding our data to encompass
the continental United States, proximity to large coastal areas had to be
accounted for. Therefore, we included an estimate of distance to coast (log
transformed) as an independent variable in our thin-plate spline regression
models in addition to x and y.

Linear model coefficients for local minimum and maximum temperature
effects were estimated using 1 million randomly sampled temperature ob-
servations including 500,000 quality assured and homogenized observations
from ref. 44 and a network of low-cost temperature measurement devices
(45) expanded to include an additional 244 sensors distributed across the
state of Washington from September 2013 to October 2014. Observations
used in the estimation of linear terms for the model of daily mean dewpoint
temperature included most weather station networks in the United States,
including Remote Automated Weather Stations, Integrated Surface Data,
and historical observations from the Meteorological Data Assimilation Sys-
tem. Additionally, we included humidity observations collected at 222 of the
low-cost temperature monitoring sites in Washington, Idaho, and Montana.

For maximum daily temperature, we considered a set of candidate models
that included solar radiation, modeled soil moisture, canopy cover from the
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Con-
tinuous Fields product (46), and their interactions. Development of the daily
soil moisture model is described in further detail below. For daily minimum
temperature, variables included in model selection included a static phys-
iographic map of potential for cold air drainage potential expanded to the
continental United States (33), standardized geopotential height, daily
mean relative humidity, and their interactions. Candidate variables for the
mean daily dewpoint model included daily soil moisture, total daily solar
radiation, and minimum daily temperature. Model selection was performed
using an independent set of 25% of withheld data. The selected model for
maximum temperature contained linear terms for soil moisture, solar radi-
ation, and canopy cover with no interaction terms. Because MODIS canopy
cover data are unavailable before 2000, canopy cover was set as the
2015 value, eliminating any dynamic variation in temperature associated
with canopy cover through time.

We assessed the overall accuracy of the final temperature and humidity
models using a 10-fold cross-validation. For each iteration, we withheld 10% of
the observations for validation and used the remaining observations for re-
sponse surface estimation. Each model was applied daily (including estimation
of the daily error offset) using the training stations, only over the full time
period, to collect a full error history at each of the withheld test stations. Model
accuracy is reported as the MAE between model predictions and withheld data
at each station. SI Appendix, Fig. S3 shows maximum temperature model error
mean by US climate division and season. The overall MAE for the maximum
temperature model across the conterminous United States was 1.13 °C and
1.17 °C for the western US study domain. SI Appendix, Fig. S4 shows minimum
temperature model error mean by US climate division and season. The overall
MAE for the minimum daily temperature model was 1.42 °C across the con-
terminous United States and 1.57 °C for western US study domain. SI Appendix,
Fig. S5 shows mean daily dewpoint model error by US climate division and
season. The overall MAE for the mean daily dewpoint model was 1.12 °C for
the conterminous United States and 1.22 °C for western US study domain.

Daily Snow Model. Daily 8-arc-s gridded SWE maps were developed for the
1979–2015 period using an empirical temperature index snow model
adapted from ref. 47. Temperature index models often outperform more
complex energy balance models in catchment-scale studies, but may fail to
resolve topographic variations in melt associated with slope and aspect (48).
To address this shortcoming, we substitute the sine coefficient used in the
original model with modeled net daily shortwave radiation data extracted
from the gridded dataset described above. We then calibrated the model
using data from 682 Snowpack Telemetry stations and 3 y of data from each
station. Model calibration was performed using the Optim function in the
software environment R (R project 2010). We then evaluated the model
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using 16 y of SWE observations from 819 western US SNOTEL stations. We
compared modeled and observed SWE at each site using a Nashe-Sutcliffe
efficiency statistic (NSE). In addition, we compared the observed and pre-
dicted date of snow departure for each year at each station. Accuracy sta-
tistics for both evaluations are shown in SI Appendix, Fig. S6. Modeled SWE
and snow-free days show strong agreement with observations. The average
NSE statistic across all stations was 0.87 and the MAE for the estimate of
number of snow-free days was 8.6 d. Four metrics were derived from the
daily data and used as indicators of snow volume and melt timing: April 1
SWE, maximum SWE, the number of snow-free days fromMarch 1–September
30, and snow-covered area on April 1. All indices were converted to stan-
dardized anomalies relative to the 1981–2010 mean and SD.
Wildfire area-burned data. We used data from the monitoring trends in burn
severity project [MTBS, (49)] to estimate total annual forested area burned in
six western US ecoregions from 1984 to 2015. Fires classified as prescribed
burns by MTBS were excluded. We defined forested areas using a forest
cover mask developed using the MODIS 250-m resolution continuous fields
(VCF) data (46). Each 8-d MODIS VCF grid from 2000 to 2015 was classified as
forested where any pixel had canopy cover values greater than 10%. Then, a
final mask was created, where any cell with forest cover during the full
image time series was classified as forest and then resampled to 30-m reso-
lution. Area-burned estimates were extracted on a per-fire basis and summed
by year across the western US and within eight western US ecoregions from
the National Ecological Observatory Network.
Wildfire area-burned predictors. Monthly mean maximum VPD was estimated
from monthly mean dewpoint temperature and monthly mean maximum
temperature using the gridded datasets described above. The monthly mean
maximum saturation vapor pressure (es) was first calculated from mean
monthly maximum temperature grids. Monthly mean maximum actual vapor
pressure (ea) was then estimated using dewpoint temperature. The VPD was
then calculated as es minus ea. Temperature, VPD, and snow datasets were
extracted from within western US forested areas with the bounding extent
defined by eight western US National Ecological Observatory Network (NEON)
domains, after resampling the forest cover mask to 30-m resolution. The ex-
tractions and anomaly calculations were performed twice, first using all

western US forests, and then separately from within each NEON domain.
Precipitation and WRD anomalies (number of days with ≥2.54 mm of pre-
cipitation) were extracted using data from ref. 14. We included four snow
metrics in our analysis: April 1 SWE, Maximum SWE from January 1–June 30,
the number of snow-free days from March 1–September 30, and snow cover
extent on April 1 of each year. All metrics were converted to standardized
anomalies (z scores) relative to the 1981–2010 average and SD. Here, the z
score was first calculated for each forested grid cell. The grid-cell anomalies
were then averaged across each domain. Annual forest wildfire area-burned
data with snow, VPD, and precipitation data and R code for accessing the
file can be downloaded at https://topofire.dbs.umt.edu/public_data/helmsdeep1/
fire_climate/.

Precipitation Trend Tests. We calculated trends in May–September total pre-
cipitation and number of WRD using data frommultiple gridded datasets and
surface weather observations (Fig. 3). Precipitation trends were calculated
using 1980–2016 1-km resolution Daymet (13), and 1979–2016 4-km resolu-
tion GRIDMET data (14). Surface observations for precipitation trends in-
cluded 55 Snowpack Telemetry Stations and 53 GHCN-D stations. Trends were
calculated using the Mann–Kendall trend test and evaluated at a significance
level of P < 0.10. Both gridded datasets rely on surface observations, with
Daymet data estimating precipitation by directly interpolating the observa-
tions, and GRIDMET by bias-correcting NLDAS-2 data at a monthly time step
using grids derived from interpolated observations. We tested for trends in
May–September total precipitation and WRD using two reanalysis datasets (SI
Appendix, Fig. S8); the North American Regional Reanalysis (NARR, ref. 12)
and the ERA-interim reanalysis (15). The NARR assimilates some surface
weather observations, while the ERA-interim does not. Additionally, we ex-
amined trends in the Climate Prediction Center unified gauge-based pre-
cipitation dataset from 1948 to 2016 (SI Appendix, Fig. S9).
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