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Convection from a source in an ocean basin
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Abstract—A model is presented for the deep interior stratification and upwelling in an ocean basin
connected to a marginal sea. Three elements make up the model: a marginal sea, a turbulent
boundary current and an interior region. The system is subject to rotation. Once the forcing by an
air-sea heat flux at the surface of the marginal sea is specified, the amount of dense water formed,
the structure and trajectory of the boundary current carrying this water along a sloping bottom to
the deep ocean, and the interior stratification can be calculated. As the boundary current flows
along the bottom, it first entrains the surrounding water and its density decreases. When the density
of the boundary current approaches that of the interior, near the bottom of the ocean, the current
detrains and looses its water to the interior. Mass continuity for the interior requires the interior
upwelling velocity to increase away from the bottom and then decrease at the levels where the
boundary current entrains interior water. The interior density profile looks exponential although
the interior upwelling varies with depth. The horizontal circulation implied by this vertical velocity
profile and the large-scale linear vorticity equation is like that of STomMEL and ARoNs (1960, Deep-
Sea Research, 6, 140-154) near the bottom, while at mid-depth the flow has the same pattern but
moves in the opposite direction. An example with sloping interior walls is given, and the effect of
rotation on the stratification is discussed.

1. INTRODUCTION

THE circulation in the ocean is driven by air-sea fluxes of momentum, heat and salt at the
surface of the ocean. The response to these fluxes is not limited to the surface because the
dense water formed by these fluxes moves toward the ocean’s interior. It is our purpose to
show how air—sea interaction in limited regions of dense water formation affects the deep
interior of the ocean. The role of bottom boundary currents carrying water masses from
their formation sites to the deep interior, and the connection between these currents and
the ocean’s interior are also addressed.

The difficulties in relating air-sea fluxes to the deep interior, through bottom boundary
currents have led previous efforts to concentrate on only one or two of the three, and to
ignore the rest. SmitH (1975) described a model of bottom boundary currents represeriting
the outflow of heavy water at shallow sills separating the ocean interior from the marginal
basins. He was able to reproduce the downstream evolution of average cross-sectional
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properties in the boundary currents resulting from the flow through the Denmark Strait
and the Mediterranean outflow. KiLLwortH (1977) extended Smith’s work to include the
effects of pressure on the thermal expansion coefficient, in order to model the water mass
formation at the Weddell Sea continental slope. In both works, the heavy water sinks
because of the difference between its density and that of the surrounding water, but the
density of the surrounding water had to be specified and was not found as part of the
solution.

GARGETT (1984) presented a simple model for the deep circulation, in which the interior
velocity is calculated from the density profile, using the vertical density equation with
vertical mixing coefficient that depends on the vertical stratification. Again, the density
profile is specified rather than calculated by the model. TzipERMAN (1986) related the deep
interior stratification and circulation to air—sea fluxes through the formation of deep water
masses, but ignored the mixing affecting these water masses on their way from formation
regions to the deep interior.

ManINs (1979) has extended the work of BAINES and TURNER (1969), who presented the
fundamental idea of the coupling between the boundary current structure and the interior
structure in a confined non-rotating system, by presuming the existence of a steady state in
which the fluxes of buoyancy and mass carried downward by the boundary current are
balanced by interior diffusion and upwelling.

Here all three components are included: a simple heat balance equation for a marginal
sea where dense water is formed, a turbulent boundary current carrying this water to the
bottom, and diffusion in the interior to balance uniform upwelling. The present model can
be seen as an extension of the convection problem with a point source of buoyancy
discussed by Manins (1979). The major differences here are the addition of rotation,
which is crucial for the large-scale oceanic problem, and also the treatment of detrainment
of the boundary current into the interior. This latter aspect is discussed further in
Section 3.

In the following sections first the model is described (2), then the results of an example
run motivated by the Denmark Strait outflow and the North Atlantic Ocean are presented
(3). This is compared to simpler cases without rotation, and then an example is shown with
topography, followed by some discussion (4).

2. THE MODEL

The model (Fig. 1) has three main components: a marginal sea, where deep water is
formed by intense surface cooling; a bottom boundary current, carrying the dense water
from the marginal sea outflow to the bottom of the ocean while entraining interior water
on the way to the bottom; and the deep (below thermocline) interior of the ocean, where a
uniform upwelling returns the deep water back to the upper ocean. It is assumed that in the
upper part of the interior (not modeled), water flows back to the marginal sea, thus closing
the circulation. The depth of the marginal sea’s sill is, by assumption, equal to the depth of
the top of the interior that is explicitly included in the model. With the North Atlantic
Ocean as an example, the above three components are meant to schematically represent
the Norwegian Sea, the Denmark Strait outflow and the interior of the North Atlantic
Ocean.

The outflow is driven down the sloping bottom by the density difference between it and
the surrounding interior water. Its evolution and final depth of penetration are, therefore,
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Fig. 1. A schematic view of the model, showing the marginal sea connected to the interior
through assill, and the boundary current carrying water from the marginal sea to the bottom of the
interior.

affected by the interior density profile. On the other hand, the current entrains interior
water while flowing down the slope, and later, near the bottom, loses its water to the
interior; through these exchanges the current affects the interior stratification and
circulation.

Details of the three model components

The bottom boundary current is modeled by a “streamtube” model as by SmrtH (1975)
and KiLworTH (1977), with some extensions necessary for our purposes. The density and
velocity of the boundary current, assumed uniform in cross-section, are denoted by p and
V. The cross-section area of the currentis A, the distance along the axis of the tube is £, and
pe is the density of the interior water. The equations for mass (volume) and internal energy
(buoyancy) conservation for the tube, written in flux form are (SmitH, 1975)

d
AAY) = Eoay ~ Py, W
aE

d(pAV

L) = DEA™Y = P = k(p = 1) @)
where
Apy lp— pel

_ _ . 3
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The term E,A"?V represents the entrainment of interior water by the boundary current,
assumed proportional to the velocity times width, with proportionality constant E,
(KiLLworTH, 1977). The term P, is added in the present model to represent the
detrainment of tube water into the interior, and its form (3), is derived in the Appendix.
When the boundary current density is significantly larger than the interior density, the
detrainment is negligible, while when the two get closer, Py, becomes larger and the
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boundary current loses its water to the interior. The last term in (2) represents horizontal
mixing without any net mass exchange. From (1) and (2),

where M = E,AY?V — P,, is the total mass gained by the current from the interior, and
Ap = p — p,. The « term prevents the plume’s density from increasing when it loses water
(M <0).

As it flows down the slope, the current is deflected to the right in the northern
hemisphere by the Coriolis force. Following Smith’s notation (Fig. 2), the angle between a
level surface and the slope is a, the distance down the slope is y, and the perpendicular axis
marking distance along the isobaths is x. The angle between the axis of the current and the
x-axis is 3, so that
dx dy .

— = , —= = sin (8).

G- o @), 3 =S ®)

The equations for the momentum components perpendicular and parallel to the tube axis
are

pV(f +V %) = sg Ap cos (B), 4)
% (pAV?) = sg ApA sin (B) — pK,AY?V2, )

where K is a bottom friction coefficient and s = tan (a).

H

M“'anal Sea

‘\x

Fig. 2. The geometry of the streamtube model for the boundary current carrying the water from
the marginal sea to the ocean interior.
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The interior upwelling arises because of the downward boundary current transport.
Conservation of mass requires that the vertical transport of the boundary current at each
level is equal to the total upwelling at that level

ARV = j j w dx dy = A(w(2),

or
w(z) = A(2)V(2)/Ar(2), (6)

where A is the interior area of the ocean (and Aj is much greater than A). In most
examples to follow, A; is constant.

It is assumed here that the isopycnal surfaces in the ocean interior are flat, and so the
interior density is a function of the vertical coordinate z only,

Pe = Pe(2)-

A horizontal integration of the full density advection—diffusion equation over the
interior up to the edge of the boundary current together with (2) gives

WPez = KyPezz — :;S; Ap’ (7)
where the upwelling velocity w is therefore also horizontally uniform. The assumption of
horizontally uniform density field can be also supported by dynamical considerations
(TzipERMAN, 1986) and the use of the vertical density equation (7, without the k term) can
be justified by simple scaling arguments (WARREN, 1977). The form of the horizontal
mixing term in (7) was chosen to cancel the same from (2) to obtain the total density flux
equation

KyPez = —W Ap (®)

representing the steady-state balance of density in the basin. This equation comes from
combining (1), (2), (6) and (7) and integrating. The horizontal circulation of the interior
will be discussed later.

The marginal sea is represented here by a simple heat balance equation. The air-sea
heat flux ¥ in the marginal sea is specified, and is related to the transport AV of water
passing through the marginal sea and the density of the inflow and outflow water by

1

AV(pin = pou) = &= X, ©)
P

where a’ and C, are the thermal expansion coefficient and specific heat, respectively.

Equations (1-6) can be written as an initial value problem with the distance along the
current, &, replacing time. To do so, define r = p,,, and nondimensionalize the equations
using the scaling

UL? U L*> UL
~— ~ UL Ro =— P,==——

a, = °Tm T T A w

x,y~L V~U=Vg'L w

where g' = 1cms™2, and L = 1 km.
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The governing equations for the boundary current and the interior are then

Ag = —sin (@) sin (B)A Ap/V? + 2(EqVA — PylV) + Ko VA
Ve =sin (a) sin (8) Ap/V — V(Ey + Ko)/VA + PylA
pe = —(EgVA = Py/V + /V) AplA

Pez = —sin (a) sin (B)r (10)
re = —P,sin (a) sin (B)wr + P,k Ap

Be = sin (a) cos (B) Ap/V* — Ro™ YV
xg = cos (B)
ye = sin (B),

where we also used z = y sin (a) and d/dz = —(sin (a) sin(8)) ! d/d& to derive (10). Where
density is not differentiated it has been set to one.

Once the initial values of all variables at sill depth, & = 0 are specified, (10) can be
stepped forward to solve for their values for all £. To finish posing the problem, we need to
discuss the boundary conditions and matching conditions between the different model
components. These matching conditions will be used to calculate the initial conditions for
all variables in (10).

Boundary and matching conditions

To solve (10), the interior gradient of density, p,., needs to be specified at £ = 0. Note
that with the boundary current as the only source of deep water, density (internal energy)
conservation requires that the density transport of the boundary current be equal to that of
the interior at £ = 0

jj Wp, — Kyp,,dxdy = pAV at £ =0,
interior

or

r=p,, = __—Wpe _ (fAV)/AI at KE =0. (11)
|4

Since the boundary current is, by assumption, the only source of bottom water to the

interior, its density when reaching the bottom must be equal to the interior density at the
bottom

P = Pe at Zpor. (12)

This is the matching condition between the boundary current and the interior. If it is not
satisfied, and the boundary current reaches the density of the interior before reaching the
bottom, the current will stop sinking and spread horizontally, leaving the interior with no
source of bottom water. If, on the other hand, the interior bottom water
is lighter than the boundary current water (which is its source) the model is again
inconsistent.

Finally, the marginal sea equation (9) is matched to the interior and to the boundary
current models. The net transport into the marginal sea AV is equal to the initial transport
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of the boundary current, A(§ = 0) V(& = 0), while the densities of the water entering and
leaving the marginal sea are equal to the interior density and boundary current density at
& = 0, respectively. Rewriting (9) we have

AV(pe—p)=g—% at £ =0. (13)
14

This completes the formulation of the model, and we proceed to solve for the interior
and boundary current evolution. First, the values of all variables at § = 0 are calculated
using the above relations and boundary conditions. The initial cross-section area of the
boundary current A(£ = 0) and the initial interior density p,(§ = 0) must be specified (the
initial area can be regarded as the cross-section area of the sill connecting the interior and
the marginal sea). Temporarily, the density of the outflow p(§ = 0) is specified, and it will
be calculated later as part of the solution. Next, given A, p, p.at § = 0, the density balance
for the marginal sea (13) is used to find the boundary current initial velocity V(& = 0). Then
we use the mass conservation condition (6) to calculate the interior upwelling velocity w at
& = 0 and interior density conservation (11) to find the initial value of r = p, . Finally, the
coordinates (x, y) are chosen so that the outflow begins at (0, 0) and the current starts
flowing down the slope: (§ = 0) = n/2.

Having the initial values of all variables, their values for all & can be calculated by
stepping (10) forward in &. This is done using a Runge-Kutta method (SHAMPINE et al.,
1975).

As the matching condition (12) between the densities of the boundary current and the
interior at z,,., is not yet applied, it probably will not be satisfied by the solution. The initial
outflow density p(§ = 0), arbitrarily specified before, can now be varied urtil the correct
value is found and the above matching condition is satisfied, completing the solution for all
variables of the model.

We want to emphasize that the only quantities specified, apart from the geometry of the
model, are the air-sea heat flux in the marginal sea % and the inflow density. If in addition
the heat flux is proportional to the air-sea temperature difference, then these two
quantities are not independent, and we really only have one specified quantity. All other
variables—in particular the interior and boundary current density profiles and velocity
profiles—are determined by the model.

3. EXAMPLES

Figure 3 shows a calculation motivated by the Norwegian Sea outflow. The parameters
used are as follows. For the marginal sea equation (13), the heat flux is taken from
WORTHINGTON (1970), % = 2.52 X 10'*W; a near-surface value is used for the expansion
coefficient @’ = 6.6 x 107> °C ' and C, = 3.99 J g7 °C™! (GILL, 1982), so that the
right-hand side of (13) is 1.32 when scaled. In the interior the vertical mixing coefficient is
k, = 1.7cm?s™!, and the interior areais A; = 2.5 X 107 km?. For the boundary current the
initial cross-section A(£ = 0) = 8 km?, the entrainment and friction coefficients (1, 2) are
E, = 0.0005 and K, = 0.11, the detrainment parameters (3) are dp = 0.01 X 10~%gem ™2,
7 = 10*, and « is set to 1.1P,, when the current loses water (M < 0). The « term is only
important in the 100-200 m above the bottom, where w becomes small. These values of
E, and K, are similar to those of SmitH (1975, Table 4) for which E, was either 6.5 X 1074
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or 107> and K|, was either 0.01 or 0.15, and those of KitLworrH (1979, Fig. 8) for which
Ey=1.5 x 107* and K, = 0.15. The Coriolis parameter f = 1.4 x 10™*s™}.

The trajectory of the boundary current along the sloping bottom (Fig. 3a) shows the
deflection of the current to the right by the Coriolis force. The density profiles (Fig. 3b) of
the current (full line) and interior (dashed) approach each other with increasing depth, and
meet at the ocean’s bottom. Note that although the interior density profile looks
exponential, and the interior mixing coefficient is constant, the vertical velocity is not
constant but varies greatly with depth (Fig. 3c). The nondimensional depth scale for the
interior density variation d = Ap/r = Ap/P(a'¥)/(C,) becomes d = Ap for the parameters
chosen, which indicates a depth of about 2 km.

The vertical velocity profile when scaled is equal to that of the transport of the boundary
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Fig. 3. Result of the example model run described in Section 3. Distance from the shore in km,
depth is m. The vertical velocity Wis in units of 1.3 x 107> cms™!, density in o-notation kgm™>. (a)
The trajectory of the bottom boundary current along the bottom. (b) The density of the bottom
boundary current (full line) and of the interior water (dash line), as function of depth. (c) The
interior vertical velocity as function of depth, which is also the profile of the transport of the
boundary current. (d) The interior mass source —M (m? s™') vs interior density. (e) The mass
source M vs £. (f) The entrainment term E = EyAY2V vs £. The vertical velocity is zero at the
bottom, it then increases as a result of the bottom water supplied by the detraining boundary
current. At higher levels, the upwelling velocity decreases again owing to the entrainment of
interior water by the boundary current. The interior circulation deduced from this profile is
northward near the bottom, and southward in the upper levels. In practice, the plume was
considered to have reached the bottom if it got to within 200 m of 4000 m depth.
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current as a function of depth. As it flows out of the marginal sea, the current first entrains
interior water, thereby increasing its transport, and later (below about 3500 m) loses its
water to the interior. These changes correspond to an initial increase of the vertical
velocity above the bottom, and then a decrease from 3500 m to the top. They occur fairly
gradually along the track, but over most of its density range the interior is losing mass (Fig.
3d). The water leaving the current near the bottom is made up of roughly one-half
densified Norwegian Sea water and one-half entrained water.

The interior circulation can be calculated from the vertical velocity profile using the
linear vorticity equation Av = fw,, where fis the Coriolis parameter, f3 is its derivative with
respect to latitude, and v is the interior meridional velocity (WARREN, 1981). The interior
vertical velocity profile in Fig. 3c induces, therefore, a southward mid-depth interior
circulation above 3500 m, where w, < 0, and a northward circulation in the layer near the
bottom, below 3500 m depth.

The vertically integrated circulation in the bottom layer, below about 3500 m, is
identical to that of SToMMEL and ArRoNs’ (1960) model, but note that in the present model
one also obtains the vertical structure of this circulation by specifying only the surface
forcing #. The streamlines of the southward circulation above 3500 m are similar to those
below, in the bottom layer, except that the direction of flow is reversed. The transport
carried by the mid-depth circulation is proportional to the vertical velocity difference
across this layer, and is about a third of the transport of the bottom layer (Fig. 3c). The
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Fig. 4. Model solution for dp = 0.04 X 10~3 kg m~3, twice the value used to obtain the solution in
Fig. 3, all other parameters were left unchanged (a,b,c, as in Fig. 3).
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magnitude of the horizontal velocities is proportional to w,, and the southward velocity is
significantly weaker than that of the bottom layer. A similar southward mid-depth
circulation was calculated by TzipermaN (1986), although there it was a result of the
somewhat arbitrarily specified shape of surface heating as a function of the surface density
in water mass formation regions. GARGETT (1984) also found a southward mid-depth
circulation by assuming an exponential density profile and then calculating the upwelling
velocity profile using the density equation with a mixing coefficient which depended on the
stratification.

The effect of variations in the entrainment and friction coefficients has been discussed
thoroughly by SmitH (1975) and KiLrwortH (1977), and a compleie review of the
entrainment assumption is given by TURNER (1986). To illustrate the dependence of the
profiles on the values of dp and 7 in the parameterization of detrainment, two additional
solutions were calculated with different values. The solution is more sensitive to dp than to
7, and the effect of doubling dp is to smooth out the maximum in the profile of the interior
vertical velocity (Fig. 4). Doubling dp spreads out the distribution of densities in the
boundary current at a given level, and allows fluid parcels to escape the boundary current
over a broader depth range. Decreasing 7 by a factor of 10 has no noticeable effect on the
profile of the vertical velocity. The sole difference between this case and the original
solution is a slightly reduced alongshore penetration of the boundary current.

Some solutions were obtained using an entrainment of the form EyAY?Ri 7V, where
Ri = Ap/V?is the Richardson number. The exponent of Ri is from TURNER (1973, Fig. 6.8).
This changed the structure of the plume and hence the interior vertical velocity, but the
basic increase of w with depth followed by its decrease still held—as it must for an
entraining—detraining plume. Exponents of higher magnitude were tried, which confine
the entrainment nearer the source and result in a smaller w, at mid-depth.

Effect of rotation

In any buoyant plume, the density difference Ap drives the motion. Without rotation,
the dense fluid falls straight down the slope and is driven inward by a horizontal pressure
gradient. With rotation, the density difference cannot drive the fluid inward directly
because the Coriolis force can balance the buoyancy force and the motion is mostly along
isobaths. Friction is necessary for the current to descend, and at the same time, rotation
increases the path length giving friction more time to act.

A number of solutions were calculated with different rates of rotation, keeping all other
parameters constant. As the rotation rate decreased, the initial density difference was
reduced so that the two densities converged at 4000 m depth. Without rotation the path
length of the plume is about a factor of 30 shorter (Fig. 5), which does not give the current
time to build up its transport much above the initial value. The initial density difference,
and hence overall stratification is roughly half that of the case with Earth’s rotation (Fig.
3). A smaller density difference with fixed heat flux produces a greater initial transport and
therefore greater upwelling. The depth scale d is now about 700 m. Owing to the flatness of
the vertical velocity profile, the horizontal circulation is mostly confined to depths greater
than 2000 m.

To see how the frictional dissipation may control the solution, suppose that the potential
energy density of the plume is gH Ap, where H is the depth of the basin. The dissipation is
the path integral of the drag, or [§ K,AY?V?dE/A. [Alternatively, approximate the
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integral of (5) with initial values and note that [ tan (a) sin (8) d§ = H.] As a rough
estimate approximate the dissipation by substituting the scaled values K, = 0.1, A? =1,
and V2 = 0.1. Setting the two estimates equal gives

HAp = 0.01Xi.

As Xirapidly increases with the rotation rate, this relation implies that Apincreases with
rotation. The terms HAp, 0.01Xi, and the numerically evaluated dissipation integral are
plotted together in Fig. 6 for H = 4. The dissipation estimates are all larger than H Ap,
although the numerical estimates are much closer than the simple relation given above at
greater rotation rates. Based on these estimates, we suggest that the rotation increases
stratification, to supply enough potential energy to overcome friction.

With vertical walls (@ = 7/2) and no rotation, the path length is just the basin depth.
Over such a short distance the entrainment and detrainment as formulated are too weak to
have any effect on the current. The standard formulation of entrainment in this situation
though, replaces E¢AY?V by E,V, with E, = 0.255 and sets K, = 0, since there is no longer
a boundary to rub against. In this case solutions similar to MANINS (1979) were found. The
density difference at 4000 m could be made as small as desired by reducing Ap, creating a
correspondingly thin pycnocline, but as the plume never runs out of water there is no basis
for settling on an initial value.
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Fig. 6. (a) Initial density difference for different rotation (f = 3.16 x 1073R5 ' s™!). (b) Density

difference and path length Xi for different rotation rates. (c) Estimates of initial potential energy

and dissipation (scaled by g'L). The line has a slope of one, 0.01 Xi (open squares), numerically
integrated values (dots).

Topography

In a basin with sloping sides the interior area decreases with depth. To examine the
effect of this on the vertical velocity profile the basin was assumed to be square in cross-
section with each wall having the same slope a = 102 (Fig. 7). This is handled by putting
A; = A(2) in the mass equation. However, if the total density flux equation (8) is derived
in the same manner, an extra term appears representing the heat flux at the sloping
boundary. To preserve the density balance in the basin, this term is neglected and the total
density flux equation is used to calculate p,, at each step.

The decrease of area with depth increases the upwelling proportionately (Fig. 8). The
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Fig. 8. Model solution with sloping side walls (a,b,c, as in Fig. 3).

vertical velocity varies more sharply with depth than before (Fig. 3) while the change in the
density—depth curve is only a very slight upward shift.

In the ocean there is usually a continental rise of intermediate slope before reaching the
more or less flat abyssal plain. This feature was represented in the model by reducing a to 5
x 10™% at a depth of 2000 m. Then the area decreases below 2000 m to almost zero near the
bottom. A solution was found without rotation; with earth’s rotation the current is obliged
to stay near the 2000 m isobath and could not make it to the required depth. The rapid
decrease in area below 2000 m produces a tall peak in the vertical velocity profile, which
shifts the density—depth curve upward near the bottom in an exaggerated version of the
previous solution (Fig. 8). For special hypsometric forms, the area averaged vertical
velocity could increase with depth all the way to the bottom.

4. DISCUSSION

There are several potentially interesting extensions of the present model that could be
addressed by future work. In the ocean, the deep water in a given basin is often supplied by
several sources (e.g. Norwegian Sea overflow, Mediterranean outflow, the Labrador Sea,
and the Antarctic region are all sources of deep water for the Atlantic Ocean). It is possible
to add several sources in the present model and examine their interaction with the interior
and with each other. Another possible extension would be the separate treatment of
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temperature and salinity in the model, relating them to the density field through an
equation of state. SPEER and RoNA (1989) used a model similar to the present one to
investigate the effect of a deep geothermally driven plume on the T-S interior relation at
the level where the plume loses its water to the interior and spreads horizontally along an
isopycnal surface. Finally, the shallow wind-driven interior circulation is not explicitly
included in the present model. TziPERMAN (1986) found that horizontal variations in the
thermocline depth resulting from the wind-driven circulation can influence the circulation
in the layers below the thermocline. It may be interesting, therefore, to try and relax the
assumption of flat isopycnal surfaces, especially in the upper part of the interior, and
examine the corrections to the interior circulation.

ManNINs (1979) discussed the two-dimensional convection problem with a point
buoyancy source, and it is worthwhile at this point to discuss the differences between his
approach and the present model. Aside from the lack of rotation in his model, a major
difference is the treatment of the detrainment of the boundary current into the interior.
The addition of the detrainment term (3) in the present model enables boundary current
water to return to the interior when the densities match. In MaNINS® (1979) work, the
boundary current hits the lower boundary where its density is not necessarily equal to that
of the interior. A density discontinuity is therefore formed at that place between heavy
boundary current water and light interior water, and a thin boundary layer is needed to
remove this discontinuity and return boundary current water to the interior. Manins did
not explicitly solve for this layer, but derived its thickness and related scales. In the present
model the detrainment of the boundary current water occurs in a continuous manner, with
no density jump between bottom water and boundary current water.

We have used a simple model to demonstrate how the deep stratification and circulation
of the oceans is determined by remote forcing at the surface, in regions of dense water
formation. Using the large-scale linear vorticity equation, the interior flow was toward the
south and west in the upper levels of the deep water, owing to the mass sink there, and
toward the north and east in the lower levels where there is a mass source. These flows
ought to feed and be supplied by their own set of boundary currents, which have been
ignored in this study. The extent of the interior water column occupied by northward- or
southward-flowing water may depend on the type of parameterization of mixing in the
model. A simpler mixing scheme perhaps depending only on the Richardson number
would be more satisfying.
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APPENDIX

Parameterization of detrainment in the bottom boundary current

It was assumed in the text that the density of the boundary current is uniform in cross-section. But one expects
that there would be some density variations across a section of the current. Consider a slice of the tube, with
thickness d&', and with density as represented in the above model p(&). Suppose that the actual density of water in
the slice is distributed around the central value of p, so that there is water of density other than p present at every
location along the current. Assuming an exponential distribution, the amount of water with density in the range
(p', p’ + dp') present in the above slice is

! ’ ’ A ’ ! - '
M(p') dp' d&" = (—@)ds dp exp(—”—‘l-‘),
28p dp
where A is the tube cross-section area, and dp is the “width” of the density distribution in the slice (note that
adding up the mass of water at all densities in the slice gives the total mass of the slice
JZ. dp'[M(p') dE] = A d&’ o).
The mass of water particles in the slice with density less than or equal to the density of the interior water p,is

[* vy ae = §22ag exp - L)

As the slice of water moves down the sloped bottom, fluid particles whose density is now lighter than the
interior density find their way to the edge of the tube, and are lost to the interior. Assume that a fluid particle of
density lighter than the interior density takes an average time 7 to find its way to the interior. The mass transport
through a section of the current, per unit time is ppAV. Out of this,

AV s pel)
28p °"p( 3p

has a density lesser than or equal to the interior density at this level, p,. Over a distance of d§, traveled by the
current in a time dr = d§/V (&), the current loses to the interior via detrainment a part d#/z of the water with density
lighter than p,. This can be written as

dAV) . _ dr AV (_|p—pe|\,
dg d T 20p xp dp

(AV)|gaae — (AV)|g =
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Substituting d¢, and adding the entrainment term, we find the form of Py, used in (1) and (3)

dAV) _ p gy ;Spo ex (_Ip— pel)‘

d& op

This is not meant to be a realistic parameterization of the complex mechanism of detrainment, but only to
represent it in the model. The parameters 7 and dp were simply chosen to give “reasonable looking” results. This
extension to the entrainment model used by Smit (1975) and KiLworrs (1977) allows the boundary current to
lose its water when reaching a level where its density is nearly equal to the interior density, and is therefore crucial
to the model presented here.



