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ABSTRACT

A finite difference linear inverse model is applied to hydrographic data from six summer and fall cruises in
a small area (250 X 200 km) of the eastern Mediterranean sea. The temperature and salinity equations are used
to form a linear set of equations for the reference geostrophic velocities and the mixing coefficients, which are

then solved by singular value decomposition.

Advection by the horizontal velocities is the dominant process affecting the temperature and salinity fields
in the region, and the model successfully resolves the horizontal velocities. Mixing and vertical advection are
smaller by an order of magnitude, and the model cannot fully resolve the mixing coefficients and vertical

velocities.

The six velocity fields calculated from the data indicate a very strong variability that makes it difficult to
identify a repeating summer or fall circulation patterns on the scale of the region covered by the data.
An appendix contains the details of a new procedure for including linear inequalities in the solution of a rank

deficient system of linear equations.

1. Introduction

The eastern Mediterranean Sea is an area of general
interest to physical oceanography for several reasons.
It is the source of the Levantine Intermediate water,
(Wiist, 1960; Morcos, 1972; Ozsoy et al., 1981), which
is believed to be an important component of the high
salinity Gibraltar outflow. Being reasonably accessible,
the eastern Mediterranean can also be used to study
water mass formation processes which are difficult to
observe in polar formation regions.

Present knowledge of the region is mostly based on
the analysis of historic hydrographic data (Wiist, 1960;
El Gindy, 1982), but several recent observational pro-
grams provide new and interesting data from the re-
gion. The Israeli Oceanographic and Limnological Re-
search Institute (IOLR) has been taking regular CTD
measurements in a small region of the eastern Lev-
antine Basin (Fig. 1) every 3—4 months for the last sev-
eral years, forming a data base for the study of the
region. An objective analysis of the data from one of
the IOLR cruises which also included some XBT mea-
surements was presented by Robinson et al. (1987).
The recent observational program Physical Oceanog-
raphy of the Eastern Mediterranean (POEM, 1985) is
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also expected to produce very useful basin-scale hy-
drographic data from this region.

In this paper several summer and fall cruises from
the IOLR dataset are analyzed by inverse methods.
Our main objective is to understand the physics of the
region, in order to build a consistent inverse model for
the eastern Mediterranean Sea. Because the area cov-
ered by the data is small, we are not able to calculate
the general circulation. But with the excellent spatial
and temporal coverage within the 200 km X 250 km
measurements area, we are able to examine physical
balances (importance of horizontal and vertical advec-
tion, mixing, etc.), and examine the temporal vari-
ability of the circulation. The experience gained here,
in particular concerning the temporal variability, would
be useful in critically examining time aliasing problems
in the general circulation calculated-from climatological
hydrography or quasi synoptic basin scale POEM data.

This paper has two additional purposes: In the Ap-
pendix we present a new procedure for including linear
inequalities in the SVD (singular value decomposition)
solution of a rank deficient (underdetermined) linear
system of equation. Finally, the IOLR data is unusual
because it gives both time and space coverage of the
region, and it can therefore be used to examine ques-
tions related to the calculation of the time-mean
oceanic general circulation from hydrographic data.
The work presented here serves as a basis for such a
study (Tziperman, 1988).
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FIG. 1. Location of CTD stations taken in each of the cruises,
and bottom topography of the region.

The following sections describe the dataset (2) and
the development of the inverse model (3), present and
discuss the inversion results for six summer cruises (4),
and summarize the main conclusions (5).

2. The dataset and preliminary data treatment

The data used for the inverse calculation is part of
an extensive dataset acquired by IOLR in the eastern
Levantine Basin of the Mediterranean Sea from 1979
to 1984. The data were collected on 17 cruises, each
about ten days long, separated by 3—4 months periods.
During each cruise the 27 CTD stations shown in Fig.
1 were occupied. The stations were arranged in a S by
6 regular grid, with half-degree spacing in latitude and
longitude. Initial quality control, bin averaging over 1

decibar intervals, and calculations of salinity, density,
potential temperature etc. were all done at IOLR.

The inverse model presented below uses advection—
diffusion equations for the temperature and salinity to"
calculate the absolute geostrophic velocity field. During
the winter months, the water of the region is homog-
enized by strong mixing to a depth of two to three
hundred meters. The simplified diffusion terms in the
equations are probably not valid in the presence of
very strong winter mixing and catastrophic sinking
events. Therefore, only data from summer and fall sea-
sons are used in the inverse calculation.

The summer water mass structure in the eastern
Levantine basin is characterized by high surface salin-
ity, a North Atlantic water salinity minimum at 50—
100 m, and a salinity maximum at about 300 m mark-
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ing the depth of the Levantine Intermediate water (Fig.
2). Cruises in which the characteristic temperature and
salinity profiles were not fully developed due to a par-
ticularly severe preceding winter were discarded. After
removing several additional cruises with possible data
problems, six cruises were left, and were used in the
inverse model: MC13 (July 1979), MC14 (August-
September 1980), MC15 (November, 1980), MC18
(August, 1981), MC19 (November, 1981) and MC24
(October, 1983).

To prepare the data for the inverse calculation, the
vertical coordinate was transformed from pressure to
depth using the algorithm given by Saunders and Fo-
fonoff (1976), profiles were smoothed by a 20 meter
running average to remove small scale structure, and
were subsampled in the vertical to obtain potential
temperature, salinity and density at 30 standard depths
specified by the model grid (see next section).

3. The inverse model

a. Model equations

The model equations are geostrophy, mass conser-
vation, and steady state advection diffusion equations
for the temperature and salinity fields

Ju=~(1/po)p,
Jo = (1/po)Dx
D:= —8p

Uyt v, +w,=0
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FIG. 2. (a, b) Average summer salinity profile for the eastern
Levantine basin. (The average is over six summer cruises).
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uTy + 0Ty + wT, = [k(2)T3); + ku(2)VLT

uSx + 0S8y + wS; = [x(2)S.); + kg(2)VHS. (1)

Mixing of salt and heat is parameterized with hori-
zontal and vertical eddy mixing coefficients which are
possibly functions of depth. Because the area covered
by the data is small (250 km by 200 km), it did not
seem necessary to allow for horizontal variation of the
mixing coefficients. In a stably stratified ocean, mixing
along isopycnals by mesoscale eddies is much stronger
than cross-isopycnal mixing due to small scale turbu-
lence, salt fingers, etc. It is possible to use tensor dif-
fusivities to parameterize the long and cross isopycnal
mixing (Redi, 1982; Olbers et al., 1985). But as long
as the isopycnal slope is not too large, vertical and hor-
izontal mixing coefficients may be used to replace the
cross- and long-isopycnal mixing coefficients without
introducing large errors. As will be seen below, the
mixing coefficients are, in any case, not very well re-
solved by the model. The uncertainty in their values
due to resolution problems is probably much larger
than errors due to the simplified parameterization used.

The time independent temperature and salinity
equations used here probably hold to a good approx-
imation deep enough below the surface water. The sa-
linity of the surface water in the eastern Levantine basin
increases during the summer due to the high local
evaporation, and the surface circulation is affected by
the time scales of the wind and buoyancy forcing (3-
4 months, see May, 1982). But the high salinity values
do not penetrate into the deep water until the convec-
tion and strong mixing of the winter season, and due
to the slow baroclinic adjustment process, the deep cir-
culation is expected to have longer time scales than
those of the wind forcing. In the inversions shown be-
low we have therefore used data only from below 160
m, where a steady state model is expected to be valid.

In accordance with the relatively small scales of the
circulation in the region, a f~plane approximation to
the geostrophic equations was used (the Coriolis pa-
rameter f = f; = constant). The horizontal geostrophic
velocities are then nondivergent (u, + v, = 0) by (1a,
b), and the vertical velocity is depth independent to
lowest order (w, = 0) by (1d). A nonzero constant ver-
tical velocity is permitted although a more rigorous
scaling (Pedlosky, 1979) may require the constant w
to vanish. We prefer to let the inverse model determine
the constant w most consistent with the tracer fields.
The choice of a depth independent vertical velocity is
further discussed below.

The f-plane approximation is also consistent with
the results of numerical experiments for the eastern
Mediterranean (Bergamasco and Malanotte-Rizzoli,
1986), showing the 8 effect not to be important in the
dynamics of the region.

From the geostrophic and hydrostatic equations (1a,
b, ¢), the thermal wind equations are obtained
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fu =%

Po

.Integrating these equations in z, from a reference level,

the vertical structure of the horizontal circulation is

found in terms of the known density field. The full
velocity field can be written as

py, for=— £ Px- 2)
Po

u(x, y, 2) = up(x, y) + f £ pydz,
2z Poﬁ)
_ i 4 '
v(x, ¥, 2) = v(x, y) + f —= pxdz
z Pofo

W(x, Vs Z) = WO(xa Y), (3)

where uy(x, y) = u(x, ¥, zo), vp and wy are the unknown
velocities at the reference level.

Substituting the velocity field (3) in the advection -

diffusion equations for the temperature and salinity
(le, ),

uO(x’ y)Tx(x5 Y, Z) + vO(-x’ y)Ty(xa Ys Z)
+ Wo(x, ,V)Tz(X, Y Z) - (KV(Z)TZ)Z
- KH(Z)VHZT = P(x’ Vs Z), (4)

where T represents the advection of temperature by
the known relative velocities in (3). Evaluating 7, T,
and T, as well as the geostrophic velocities relative to
the reference level, in terms of the known temperature
and density fields, and forming a similar equation for
the salinity, we obtain linear equations for the unknown
reference velocities and mixing coefficients. These
equations can be formed at any depth where data is
available, to obtain many equations for the problem’s
unknowns—reference velocities and mixing coeffi-
cients,

Derivatives in (4) were evaluated by center differ-
ences, using a grid following stations location in the
‘horizontal, and with 30 vertical levels. Equation (4)
was evaluated at all horizontal locations with data on
all four sides (required for the center differences), and
at ten levels. The mixing coefficients were expanded
in Chebyshev polynomials

Ny
k(2) = 20 CyaTa(1 — 22/D),

n=0

&)

where D is a normalization constant making sure that
the argument of 7, is in the range (—1, 1), and was
chosen to be the maximum depth of data for all sta-
tions. A similar expression holds for xy(z), and the
mixing coefficients are required to be positive at levels
where equations are evaluated. Hogg (1987) used a
similar expansion in Chebyshev polynomials to rep-
resent the horizontal structure of the mixing coefficients
in the inverse. Equations (4) were written in matrix
form Ab = T, and the positivity condition was written
as a set on linear inequalities for the Chebyshev coef-
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ficients Gb = 0. The vector b contains the unknown
reference velocities and Chebyshev coefficients, A and
G are known matrices, and T is a column vector con-
taining the rhs of (4). The number of equations, N,
was typically about 200 [10 levels X 2 tracers (7, S)
X 10 stations with four neighboring stations with data],
while the number of unknowns was about 40 [10 sta-
tions X 3 reference velocities at each station, + about
10 Chebyshev coefficients from (5)]. The linear problem

Ab=T, Gb=h 6)

is solved by singular value decomposition (SVD)
(Wunsch, 1978), using a modification of the LSI/LDP
algorithm of Lawson and Hanson (1974) to include
the inequalities. Details of incorporating the inequal-
ities in the SVD solution are given in the Appendix.

The finite difference inverse model used here is very
similar to the 8-spiral inverse used by Olbers et al.
(1985) (see also Schott and Stommel, 1978; and the
finite difference inverse presented by Fiadeiro and Ve-
ronis, 1984).

b. Difficulties with calculating the vertical velocity

The profile of the vertical velocity can be calculated
from the density field by integrating the vorticity equa-
tion (Olbers et al., 1985). This approach was tried, but
the variable vertical velocity profile did not reduce the
residuals, and the reference vertical velocities were not
resolved by the model. As will be seen below, the model
cannot resolve even the depth independent vertical ve-
locity, so that there is no need to try and complicate
the model by allowing vertical variations in w.

The inability of the model to resolve the vertical
velocities can be explained by considering the magni-
tude of the different advection terms in the tracer
equations. Let the horizontal and vertical scales of mo-
tion be L and H. Denote the scale of temperature vari-
ations along the horizontal and vertical scales of motion
by AyT and AT respectively, and the expected mag-
nitude of the horizontal and vertical velocities by U
and W respectively. The ratio of the horizontal and
vertical advection terms in the temperature equation
is then

wl, WLAT
uT, UH AT’

Although one normally scales the vertical velocity w
by UH/L, this is only an upper bound on its magnitude.
For quasi geostrophic motions, with 8L/f = O(Ro)
(Ro = U/fL is the Rossby number, and 8 = df/dy),
the magnitude of w is (Pedlosky, 1979) w ~ W
= (UH/L) Ro < UH/L. (Our f-plane model is simply
the zero order approximation of a quasi geostrophic
model, so we may use the above scaling for w.) Sub-
stituting the scales U = 5cm s™', L = 50 km, f = 7
X 107% 57!, and ApT/AxT = 10 (probably larger than
needed), we find

M
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W oI L
uT, AT~ 7°

From (8) it is evident that the advection of temperature
by the vertical velocity is much smaller than the ad-
vection by the horizontal velocities. The vertical ad-
vection is close to the order of magnitude of the noise
in Eq. (4), and the inverse model cannot, therefore,
resolve the vertical velocities.

A final comment concerning the vertical velocity:
in the presence of strong bottom topography (Fig. 1),
one may expect the vertical velocity induced at the
bottom to be non negligible. In practice, however, the
inverse cannot resolve the vertical velocity, so we are
consistent in assuming that it is small. It is possible, in
principle, to deduce w at the top from wind curl data,
or from the bottom boundary condition. But this re-
quires w vary with depth (because the values of w found
from the top and bottom boundary conditions may be
different), while we ignore the vertical structure of w.

~R ®)

¢. SVD solution
1) WEIGHTING

Before calculating the SVD of A and solving (6) for
b, one normally weights the equations and unknowns
(Wiggins, 1972; Wunsch,-1978). The weighted problem
can be written as

(STPAW2(W™2p) = §TIT £ 872 (9)

In general W and S are the covariance matrices of the
unknowns b and the noise in each equation ¢. Having
no a priori information about the noise correlation,
and no reason to specify a priori correlation between
the unknowns, diagonal weighting matrices are used.

Errors in the Egs. (6) for the reference velocities and
mixing coefficients are in part due to measurement er-
rors, but mostly due to unresolved small scale processes
like internal waves. With no information about the
magnitudes of these errors [e in (9)], the rows of A were
normalized by their length, so that all equations are
treated equally in the inversion

M .
S = (2 aj)'”.
1

(10)

The column weights, W'/, are given by (Wunsch,
1978):

N
Wi = [b]X(Z aj)y (1
i=1
where a;; are the elements of the matrix A; N, M are
the number of equations and unknowns respectively,
and [b;] is the expected magnitude of the jth unknown
in b. :

2) CHOOSING THE RANK OF A

Although there are always more equations than un-
knowns in the present model (N > M), the equations
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matrix A is never full rank. To determine the rank of
A a criterion of maximum allowed variance (Wiggins,
1972) was used, because it permits direct control over
the amount of noise in the solution. The rank (k) of
A, was typically about 25 to 30.

The rank was always such that the horizontal ref-
erence velocities were resolved (diagonal elements of
the parameter resolution matrix about 0.99), vertical
reference velocities were not resolved, and mixing coef-
ficients were partly resolved (diagonal elements of pa-
rameter resolution matrix about 0.3), (see Wunsch,
1978, or Wiggins, 1972, for a detailed discussion of the
resolution matrices).

3) RESIDUALS: IS THE MODEL CONSISTENT WITH
THE DATA?

Let i, k- and &y be the total velocity field and mixing
coefficients calculated by the inverse. With more equa-
tions than unknowns, there are always residuals

1-VT — Rp(2)T,), — ku@VAT = r(x, y, 2) # 0.
(12)

The residuals r(x, y, z) may be viewed as a time change
term in the temperature equation, due to the inability
of the model to satisfy the steady state advection dif-
fusion equation: r ~ d7/dt. Multiplying r(x, y, z) by
3 months, gives an equivalent temperature change ex-
pected to occur at (x, y, z) within a 3-month period,
due to the residuals. Comparing this equivalent tem-
perature change to the natural variability around steady
state, which occurs at (x, y, z), one can decide whether
the model adequately describes the data. As an estimate
for the natural variability, we calculate the rms of the
temperature and salinity fields, using the data from the
siX summer cruises.

4) ERROR ESTIMATES

The SVD estimate for the covariance of the param-
eter vector b is made of two parts: one due to errors in
the data, and the second due to lack of resolution of
the parameters (Wiggins, 1972). The error bars shown
in the profiles for the mixing coefficients represent only
the first part of the error estimate—for the noise vari-
ance only. Because the mixing coefficients are resolved
only to about 30%, the shown error bars should be
multiplied by about three to obtain the order of mag-
nitude of the full error bars for the mixing coefficients.

d. Calibrating the model

In order to decide on the final details of the model
to be applied to the data from the six cruises, we have
tried several versions of the model on the data from a
single cruise (MC24). These experiments are summa-
rized here, and were described in detail in Tziperman
(1987).



MARCH 1988

Using the tracer equations without mixing to cal-
culate the reference velocities reduced the residuals [see
(12)] by about 50% compared to those found when
specifying a level of no motion (at 460 m). The addition
of vertical mixing to the tracer equations did not cause
significant additional reduction in the residuals, but
did eliminate some non random structure from the
residuals found in the model without mixing for the
deep levels.

The mixing coefficients were resolved only to about
30%, and their magnitude was around several cm?s~!.
Up-weighting the vertical mixing coefficient in the in-
version by specifying a priori value of 10 instead of 1
cm?s™! [see (11)] improved its resolution to about 40%,
but did not change the magnitude of the solution for
the coefficient. This result indicates that the magnitude
of the mixing coefficients is not likely to be larger than
what was found here.

Adding the horizontal mixing did not improve the
results significantly, and the horizontal mixing coeffi-
cients were also not very well resolved. Because one
tends to trust vertical derivatives of the high vertical
resolution CTD data more than horizontal derivatives
taken from the data, it was decided to include only the
vertical mixing in the model. A 10th-degree polynomial
(5) was chosen to represent the depth dependence of
the mixing coefficient. This allows a vertical resolution
of the coeflicients of about 300 m, about the height of
the intermediate salinity maximum.

Figure 3 shows the different terms in the temperature
equation as function of depth for one of the stations
where Eq. (4) was evaluated. The dominant balance is

Depth(m)

T T 1 Ll L
-0.10-0.06 -0.02 0.02 0.08 0.10
Terms in temp eqnx3 months

FIG. 3. Different terms in the advection—diffusion equations for
the temperature. Dotted lines are the horizontal advection terms,
uT,, vT,; the dashed line is the sum of the horizontal advection
terms, T + vT,; the chain-dotted line is the vertical advection term
wT, and the chain-dashed line is the vertical diffusion term [x,(2)T),.
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between the horizontal advection terms, which take
care of most of the residuals, with vertical advection
and mixing an order of magnitude smaller.

The well resolved horizontal velocities, were not
sensitive to the initial reference level chosen, nor to
the parameterization of the mixing used. We therefore
conclude that the results—in particular for the hori-
zontal velocity field—are believable, and proceed to
use the final inverse model chosen here to analyze the
data from all the six summer cruises. The initial ref-
erence level for the calculation was chosen as the deep-
est level in which data is available at all horizontal
stations: 400 m for MC14, MC19 and 460 m for the
rest of the cruises. (At some of the stations data were
available below the reference level, and were used to
evaluate equations at the deeper levels.)

4. Results for the six summer cruises

Figure (4) shows velocity vectors for the absolute
flow field calculated by the inverse at three levels and
for all six cruises. The profiles of the mixing coefhicients
calculated for the six cruises are shown in Fig. (5).

The variability of the region’s circulation is very
strong. Both the magnitude of the velocities and the
structure of the circulation differ significantly from one
cruise to another. The velocity calculated for different
summer and fall cruises varies from [-2 cm s™! in
MC24, to 10 cm s™! in MC13 and MC19, and it is
difficult to identify common features marking the
summer or fall circulation of the region.

With the strong variability dominating the mean
flows, one must be careful when calculating the cir-
culation of the region—even for a given season—using
data from an occasional cruise in the region. It is pos-
sible, though, that by using a smoothed climatological
dataset with basin scale coverage, one would be able
to identify more steady circulation patterns. Examining
the velocity vector diagrams in Fig. 4, one can recognize
features with horizontal scales of 100-150 km (for ex-
ample, see the cyclonic gyre at 460 m and the anticy-
clonic gyres at 208 and 160 m, in MC15). It is possible,
of course, that there is smaller and larger scale vari-
ability not resolved by the data.

In many of the cruises there is an increase in the
velocity from the depth of the Levantine Intermediate
Water (LIW), to the deeper level shown (Fig. 4) at 460
m. There is a corresponding zero crossing of the hor-
izontal advection terms around the level of the LIW
in many stations (profiles 1 and 2 in Fig. 3). The strong
salinity and temperature signal at the LIW level seems
to create large horizontal gradients, and the inverse is
forced to reduce the velocities at this depth (by increas-
ing it at the initial reference level at 460 m), in order
to reduce the residuals at the depth of the LIW. If we
suppress this minimum by down weighting the equa-
tions at the LIW level, the dimensional residuals there
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FI1G. 4. Velocity vectors for the six cruises at three levels. The distance between tick marks on the axes
is equivalent 5 cm s~ for the upper level and 1.5 cm s~ for the lower two levels.

rise above the level of natural variability (i.e., noise
level), indicating inconsistent solution. This suggests
that the velocity minimum is real and not a result of

the weighting used here. Direct current measurements
are necessary to satisfactorily resolve this issue.
The mixing coeflicients calculated for the six cruises
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FIG. 4. (Continued)

(Fig. 5) are not significantly different from zero when
the error due to the lack of resolution is included. The
mixing terms were not crucial to the success of the
model in reducing the residuals.

The residuals found for most of the cruises are ac-
ceptable according to the criteria described in the pre-

vious sections. There are problems, however, with the
more energetic cruises, MC13 and MC19. The residuals
of the temperature and salinity equations evaluated at
some locations were larger than may be expected due
to errors in the data and the natural variability around
the mean summer fields. The reason for that may be
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FI1G. 5. Profiles of the vertical mixing coefficients calculated for all of’ the six cruises. The three solid lines are the SVD solution and error
bars, and the dashed line is the value of the mixing coefficients when inequalities forcing it to be positive are applied. Units are cm? s~

the aliasing of the data by the small but strong meso-
scale eddies in the region. Time variations and nonlin-
ear vorticity balance which may be important for the
small eddies but are not included in the model, may
have caused the increase in residuals.

Figure 6 compares the residuals and circulation
found by the inverse when using the data with only
limited vertical averaging done (see §2), and when using
objective mapping (Bretherton et al., 1976) with a 150
km correlation distance to filter out the eddies. The
residuals are smaller and more acceptable for the
smoothed data. The circulation calculated from the
smoothed data is similar to that obtained from the
non smoothed data, although weaker.

In spite of the somewhat larger residuals in two of

the cruises, it seemed preferable to present the inverse
results obtained from the “raw” data rather than the

smoothed one. The smoothed data probably does not
represent the time mean fields, or even the mean sea-
sonal fields, as the different smoothed summer cruises
are not similar. We believe that the circulation pre-
sented in Fig. 4 is a better representation of the actual
circulation of the region during the six cruises than

. that calculated from the smoothed data. Smoothing by

objective mapping may still be necessary when calcu-
lating the basin scale circulation of the region from
climatological data, to filter out the strong mesoscale
eddies. '

5. Discussion and summary

A finite difference inverse model was applied to hy-
drographic data collected in six summer and fall cruises
in the eastern Levantine Basin of the Mediterranean



MARCH 1988 ELI TZIPERMAN AND ARTUR HECHT 515
0.0+
- (4 N - \ - N

Depth

4 s

0.00 0.4 0.08 0.2 0.1
Temperoture residuols

MC19

MC19, smoothed.

F1G. 6. Comparing the circulation at 460 m and horizontally averaged residuals f f | 7(x, y, z)|dxdy when using the raw and smoothed
data. The profiles show the residuals obtained from the non smoothed and smoothed data (squares and triangles respectively), together with
the rms of the region’s temperature profile, indicating the natural variability of the region, and calculated from data of the six cruises.
Residuals are multiplied by 3 months, and shown in degrees Celsius. Scale for the velocity vectors is as in Fig. 4.

Sea. The model consists of the geostrophic equations,
mass conservation, and advection diffusion equations
for the temperature and salinity. Mixing processes are
parameterized with vertical eddy mixing coefficients,
and the vertical velocity is taken to be depth indepen-
dent. The model is used to calculate absolute geo-
strophic velocities and mixing coefficients.

The model successfully explains the temperature and
salinity fields in the eastern Levantine region, with re-
siduals in the advection diffusion equations below the
noise level due to natural variability in the region.
Smoothing of the hydrography by objective mapping
was necessary to obtain acceptable residuals for the
more energetic cruises. When calculating the circula-
tion of the entire Levantine basin, one probably ought
to use such smoothing in order to filter out the strong
mesoscale eddies.

Advection by the horizontal velocities is the domi-
nant physical process affecting the temperature and sa-
linity distributions, with mixing and vertical advection
smaller by an order of magnitude. The model success-
fully resolves the horizontal velocities, but is unable to
fully resolve the mixing coefficients and vertical veloc-
ities.

The circulation patterns and strength vary signifi-
cantly from cruise to cruise, even for cruises that were
taken at the same season. The variability is on scales
of 100-150 km, much larger than the Rossby radius
of deformation (15 km). Further studies are needed to
connect the strong variability found to the forcing by
wind, evaporation and bottom topography.

Because of the small size of the region covered by
the data, it was impossible to infer the general circu-
lation of the region. The results do show, however, that
one has to be very careful when inferring the region’s
circulation from a single realization of the hydrography,

as the results will be dominated by the very strong time
dependent eddies.

Work is in progress to apply the knowledge and ex-
perience obtained in this study to the analysis of cli-
matological hydrographic data, to calculate the basin-
scale circulation of the eastern Mediterranean.
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APPENDIX
Inclusion of Inequalities in the SVD Solution

Lawson and Hanson (1974, p. 168) gave an algo-
rithm (LSI/LDP, which stands for least squares with
inequality constraints, and least distance programming)
for incorporating linear inequalities in the SVD solu-
tion of a linear system of equations. Given an equations
matrix A,x, of rank m, a right hand side Ty, in-
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equalities matrix and rhs G, x,, and h,, x; , the algorithm
finds the vector solution b which minimizes ||Ab — T'||?
subject to Gb = h. The algorithm may not find the
solution when the equations matrix A is not full rank,
as happens in the model presented above. This appen-
dix presents an extension of the LSI/LDP algorithm,
to allow for rank deficient A matrices.

Fu (1981) incorporated inequalities in the SVD so-
lution of an underdetermined system by looking for
the smallest vector from the null space of the equations
matrix A that will satisfy the inequalities. This method
can satisfy only the null space part of the inequalities,
and it may give an unphysically large solution when
the null space is too small (i.e., when the problem is
not very underdetermined). These problems are dem-
onstrated below by a simple example. A different ap-
proach was taken by Olbers et al. (1985) who used a
tapered cutoff modification to the LSI/LDP algorithm
to eliminate the effects of very small eigenvalues on
the parameter variance. The advantages and disadvan-
tages of tapered cutoff versus sharp cutoff were dis-
cussed in detail by Wiggins (1972).

1. Example

Before going into the details of the mathematical
formalism, consider the following simple example
(shown in Fig. A1) demonstrating the difference be-
tween the approach here and in Fu (1981), and the
difficulties with LSI/LDP when the system of equations
is not full rank. The problem consists of a single equa-
tion (the line in Fig. Al), and one inequality (shaded

(b) »

\

FIG. Al. Trying to solve non full rank system with LSI/LDP, Fu’s
method, and using the present approach. See text for details.
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region in Fig. A1). Fu’s approach here is to find the
SVD solution to the equation (dashed arrow in Fig.
Al) and then to look for the smallest null space vector
which brings the solution into the feasible space de-
termined by the inequalities (shaded area in Fig. Al).
The null space vector in this example lies along the
line (a’-b), and therefore the smallest null space vector
to bring the solution into the feasible space is (a'-b),
and the solution is at (). Note that the solution ob-
tained this way has a large amplitude (0-b), which, in
some cases may be nonphysical. In practical problems,
the eigenvalues corresponding to the null space vectors
are very small, but not necessarily zero. (One may want
to term this the physical null space, to distinguish it
from the mathematical null space containing strictly
zero eigenvalues). Adding a large null space vector to
the solution may therefore cause significantly larger
residuals. (Adding null space vectors to the solution
does not increase the residuals only when the corre-
sponding eign values are identically zero.)

This is typically what happens in the model when
we try to satisfy the inequalities on the mixing coeffi-
cients with the null space vectors only: the vertical ve-
locities and the coefficients in the Chebyshev expansion
of the mixing coefficients become unphysically large,
and so do the residuals.

Finally, note that if the equation line (a’-b) is parallel
to the feasible space (shaded region in Fig. Al) one
cannot find a null space vector to satisfy the inequal-
ities. More generally, the method is not able to satisfy
the inequalities when one of the rows of G belongs to
the range part of A.

The LSI/LDP algorithm would try to minimize || Ab
— T'|I? subject to the inequalities. Because the system
is not full rank, the algorithm searches for a solution
only in the direction of the range vectors (i.e., in the
direction of the SVD solution). The solution must
therefore lie along in the dashed arrow in Fig. Al in
the feasible space, and as close as possible to the line
(a’-b). The solution is then the point (a). Note that if
the equation line is perpendicular to the feasible space,
the LSI/LDP algorithm cannot find a solution, even if
the inequalities are compatible. More generally, the
algorithm cannot find a solution when the inequalities
matrix is perpendicular to the range vectors of A.

To make sure the solution can be found even when
A is not full rank, without limiting the structure of the
inequalities matrix G, we need to allow searching for
a feasible solution in any direction—range or null. The
procedure outlined below searches for the solution that
lies in the feasible space defined by the inequalities and
requires the solution to have the smallest possible null
space vector in addition to minimizing the residuals
of the equations. The solution for the above example
must lie then on the line (a-b), and the exact location
depends on the relative weight given to minimizing the
null space vector vs minimizing the residuals (see the
parameter ¢ below). In general, if the inequalities are
compatible, the algorithm outlined below will always
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find a solution. If both Fu’s and LSI/LDP solutions
exists, the solution will lie somewhere between them.

2. The formalism

Given a system of equations Ab = T, and inequalities
Gb = h, where A is an n X m matrix of rank k, T is
an n X 1 column vector, G is as #; X m matrix, and h
an n; X 1 column vector, the SVD of A is

A= UnXkAkavEXm- n

The solution to the system of equations, without the
inequalities, may be written (Wunsch, 1978) as

k m
b=bsyp+ b= 2 aVi+ 2 B8V, (2)

i=1 j=k+1

The first £ V vectors are the columns of the V matrix
from the SVD of the equations matrix A. The other
m~k are orthonormal vectors spanning the null space
part of A. Fu (1981) described a way of calculating
these null space V vectors.

We look for the solution vector b which solves the
problem

min | (UnxiAixiVixm)b = T2 + €{lbpull?,
subject to Gb = h. 3)

The small constant ¢ is discussed below. The solution
to this problem is unique, because both the range and
the null parts of b are constrained by the minimization.
This is not the case when using LSI/LDP with a singular
matrix A, as demonstrated by the example above. It is
important to note that only the range part of the matrix
A (the first k eigenvalues) is taken into account when
the algorithm given below minimizes |Ab — T||? in
(3). The solution to problem (3) is now found by
transforming it to an equivalent LSI/LDP problem,

and then using the Lawson and Hanson algorithm to,

solve it.
Let us now append m — k equations to A, and form
a modified set of equations

AnXm ) =( I1n><l )___1‘:‘ (4)
ev(T,,,_k,xm Opm—x1 '

The rows of the matrix V(Tm_k)xm are the null space V
vectors. The rank of this matrix is m — k, and because
its rows are orthogonal to those of A, the rank of the
modified equation matrix, A, is k + (m — k) = m.

The LSI/LDP algorithm may now be used to solve
the modified problem, with the full rank A. The LSI/
LDP problem is now

min||Ab — I'|2, subjectto Gb = h. 5)

( An><m )b ( rn><l )
. _

€Vim_tyxm Oum—rx1

IAb — T)I? + E|VE-iyxmbll?

= |Ab — T'[? + €| byl (6)

A(n+m—k)><mb = (

But

lAb — T2 :
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so that the modified problem (5) with the full rank
equations matrix A is equivalent to the problem (3)
which we want to solve. .

The LSI/LDP algorithm requires the SVD of the A
matrix to be known. This can be written in terms of
the already known SVD of the smaller original equa-
tions matrix A,x,,, and there is no need to recalculate
the SVD for the larger matrix. Defining

" = Unxk Onx(m—k)
U(n+m-—k)><m - )
Om—-toxic  Vom—tyxim—io)
A = Ak Ogm—tyx(m—k)
mxXm — : 3
Opn—tyxim—ty  Ebm—tyxim—t)
'y vk><m
V X = s (7)
e v(m—k)Xm

it is not difficult to see that
A = UAVT
3. Choosing ¢

Consider again Fig. Al, to see the effect of varying
the magnitude of e. The example is of two unknowns,
one equation (the line a’-b), and one inequality (shaded
area). The solution to problem (3) in this case must lie
on the line a-b, in the feasible space, but its exact lo-
cation is determined by . When e is very small, min-
imizing |Ab — T'{|? + €?||byuyl? is equivalent to mini-
mizing |Ab — T'||? only. There is a weak constraint
only on the size of the null space vector, and the so-
lution approaches the point b. If, on the other hand, e
is chosen larger, then the algorithm tries to minimize
the null space vector while staying in the feasible space,
and the solution moves towards the point a.

Two considerations which may help in choosing the
right magnitude of ¢ are the size of the solution, and
the residuals after satisfying the inequalities. A change
in e changes the size of the null and range parts of the
solution b, and therefore also changes the residuals || Ab
— I'||. A priori limits on the size of the solution and
the residuals may help in determining the right ¢ for a
given problem.
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