
CS152: Programming Languages

Lecture 10 — Type-Safety Proof

Dan Grossman
Spring 2011

Outline

� Type-safety proof
� Also posted in non-slide form

� Discuss the proof
� Consider lemma dependencies and what they represent
� Consider elegance of inverting static and dynamic derivations

� Next lecture: Add more constructs to our typed language
� Pairs, records, sums, recursion, ...
� For each, sketch proof additions (follow a general approach)

� Further ahead: More flexible typing via polymorphism

Dan Grossman CS152 Spring 2011, Lecture 10 2

Review: Lambda-Calculus with Constants

e ::= λx. e | x | e e | c v ::= λx. e | c

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

x[e/x] = e

y �= x

y[e/x] = y c[e/x] = c

e1[e/x]=e′1 y �=x y �∈FV (e)

(λy. e1)[e/x] = λy. e′1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e′2

Stuck states: not values and no step applies...

Avoid stuck states to:

� Catch bugs (why would you want to get to such a state?)

� Ease implementation (no need to check for being stuck)

Dan Grossman CS152 Spring 2011, Lecture 10 3

Review: Typing Judgment

Defined a type system to classify λ-terms

Some terms have types; some don’t

τ ::= int | τ → τ Γ ::= · | Γ, x : τ

Γ � c : int Γ � x : Γ(x)

Γ, x : τ1 � e : τ2

Γ � λx. e : τ1 → τ2

Γ � e1 : τ2 → τ1 Γ � e2 : τ2

Γ � e1 e2 : τ1

Theorem: A program that typechecks under · won’t get stuck, i.e.,
If · � e : τ then e diverges or ∃v, n such that e →n v

Dan Grossman CS152 Spring 2011, Lecture 10 4

Preservation and Progress

Theorem (slightly restated): If · � e : τ and e →n e′, then e′ is
a value or there exists an e′′ such that e′ → e′′

Follows from two key lemmas:

� Lemma (Preservation): If · � e : τ and e → e′, then
· � e′ : τ .

� Lemma (Progress): If · � e : τ , then e is a value or there
exists an e′ such that e → e′.

Proof of theorem given lemmas:
� “Preservation*”: If · � e : τ and e →n e′, then · � e′ : τ

� Trivial induction on n given Preservation

� So Progress ensures e′ is not stuck

Dan Grossman CS152 Spring 2011, Lecture 10 5

Progress

Lemma: If · � e : τ , then e is a value or there exists an e′ such
that e → e′

Proof: We first prove this lemma:

Lemma (Canonical Forms): If · � v : τ , then:

� if τ is int, then v is some c

� if τ has the form τ1 → τ2 then v has the form λx. e

Proof: By inspection of the form of values and typing rules

� That is, by inversion, only one typing rule applies if τ = int
and in that rule v is a constant, and similarly for τ1 → τ2

Now prove Progress by induction on the derivation of · � e : τ ...

Dan Grossman CS152 Spring 2011, Lecture 10 6

Progress: Induction on derivation of · � e : τ

Derivation must end with one of four rules:

� · � x : τ — impossible because · � e : τ

� · � c : int — then e is a value

� · � λx. e : τ — then e is a value

� · � e1 e2 : τ where ∃τ ′. · � e1 : τ ′ → τ and · � e2 : τ ′
By induction e1 is some v1 or can become some e′1.
If it can become e′1, then e1 e2 → e′1 e2.
Else by induction e2 is some v2 or can become some e′2.
If it becomes e′2, then v1 e2 → v1 e′2.
Else e is v1 v2.
· � v1 : τ ′ → τ and Canonical Forms ensures v1 has the
form λx. e′.
So v1 v2 → e′[v2/x].

Note: If we add +, we need the other part of Canonical Forms.

Dan Grossman CS152 Spring 2011, Lecture 10 7

Preservation

Lemma: If · � e : τ and e → e′, then · � e′ : τ

Proof: By induction on the derivation of · � e : τ . Bottom rule
could conclude:

� · � x : τ — actually, it can’t; ·(x) doesn’t exist

� · � c : int — then e → e′ is impossible, so lemma holds
vacuously

� · � λx. e : τ — then e → e′ is impossible, so lemma holds
vacuously

� · � e1 e2 : τ where ∃τ ′. · � e1 : τ ′ → τ and · � e2 : τ ′
There are 3 ways e1 e2 → e′ could be derived.
Subcase for each ...

Dan Grossman CS152 Spring 2011, Lecture 10 8

Preservation, e = e1 e2 case

We have: · � e1 : τ ′ → τ , · � e2 : τ ′, and e1 e2 → e′.
We need: · � e′ : τ .
The derivation of e1 e2 → e′ ensures 1 of these:

� e′ is e′1 e2 and e1 → e′1:
So with · � e1 : τ ′ → τ and induction, · � e′1 : τ ′ → τ .
So with · � e2 : τ ′ we can derive · � e′1 e2 : τ .

� e′ is e1 e′2 and e2 → e′2:
So with · � e2 : τ ′ and induction, · � e′2 : τ ′.
So with · � e1 : τ ′ → τ we can derive · � e1 e′2 : τ .

� e1 is some λx. e3 and e2 is some v and e′ is e3[v/x]
Inverting · � λx. e3 : τ ′ → τ gives ·, x:τ ′ � e3 : τ .
So it would suffice to know: If ·, x:τ ′ � e3 : τ and
· � e2 : τ ′, then · � e3[e2/x] : τ .
That’s true but we need to prove it via a Substitution Lemma.

Lemma (Substitution): If Γ, x:τ ′ � e1 : τ and Γ � e2 : τ ′, then
Γ � e1[e2/x] : τ .

Dan Grossman CS152 Spring 2011, Lecture 10 9

Where are we

Almost done with Preservation, but in the case where
(λx. e3) e2 → e3[e2/x], need:

If ·, x:τ ′ � e3 : τ and · � e2 : τ ′, then · � e3[e2/x] : τ .

� Intuitive: Replace assumption that x : τ ′ with an expression
that has type τ ′

� But we need an inductive proof because e3 can be arbitrarily
big and substitution is a subtle thing

Prove this lemma: If Γ, x:τ ′ � e1 : τ and Γ � e2 : τ ′, then
Γ � e1[e2/x] : τ .

� “Renaming” e3 to e1 in our “helper lemma” (no big deal)
� Strengthened induction hypothesis to work for any Γ

� Else the proof will fail

Dan Grossman CS152 Spring 2011, Lecture 10 10

Proving the Substitution Lemma

If Γ, x:τ ′ � e1 : τ and Γ � e2 : τ ′, then Γ � e1[e2/x] : τ
Proof: By induction on derivation of Γ, x:τ ′ � e1 : τ

� Γ, x:τ ′ � c : int. Then c[e2/x] = c and Γ � c : int

� Γ, x:τ ′ � y : (Γ, x:τ ′)(y).
Either y = x or y �= x.
If y = x, then (Γ, x:τ ′)(x) is τ ′ (i.e., τ = τ ′) and
x[e2/x] is e2. So Γ � e2 : τ ′ satisfies the lemma.
If y �= x, then (Γ, x:τ ′)(y) is Γ(y) and y[e2/x] is y.
So we can derive Γ � y : Γ(y).

� Γ, x:τ ′ � ea eb : τ .
Then ∃τa, τb where Γ, x:τ ′ � ea : τa and Γ, x:τ ′ � eb : τb.
So by induction Γ �ea[e2/x] : τa and Γ �eb[e2/x] : τb.
So we can derive Γ � ea[e2/x] eb[e2/x] : τ .
And (ea eb)[e2/x] is ea[e2/x] eb[e2/x].

� Only the (nested) function case is left ...

Dan Grossman CS152 Spring 2011, Lecture 10 11

Still Proving Substitution

If Γ, x:τ ′ � e1 : τ and Γ � e2 : τ ′, then Γ � e1[e2/x] : τ
Proof: By induction on derivation of Γ, x:τ ′ � e1 : τ

The last case uses these two technical lemmas (easy inductions):
� Exchange: If Γ, x:τ1, y:τ2 � e : τ , then Γ, y:τ2, x:τ1 � e : τ

� Weakening: If Γ � e : τ and x �∈ Dom(Γ), then Γ, x:τ ′ � e : τ .

The last case:

� Γ, x:τ ′ � λy. ea : τ . (can assume y �= x and y �∈ Dom(Γ))

Then ∃τa, τb where Γ, x:τ ′, y:τa � ea : τb and τ = τa → τb.
By Exchange Γ, y:τa, x:τ

′ � ea : τb.
By Weakening and Γ � e2 : τ ′, we know Γ, y:τa � e2 : τ ′.
So by induction (using Γ, y:τa for Γ), Γ, y:τa � ea[e2/x] : τb.

� (This is where we needed the stronger induction hypothesis)

So we can derive Γ � λy. ea[e2/x] : τa → τb.
And (λy. ea)[e2/x] is λy. (ea[e2/x]).

Dan Grossman CS152 Spring 2011, Lecture 10 12

Lemma dependencies

Safety (evaluation never gets stuck)
� Preservation (to stay well-typed)

� Substitution (β-reduction stays well-typed)
� Weakening (substituting under nested λs well-typed)
� Exchange (technical point)

� Progress (well-typed not stuck yet)
� Canonical Forms (primitive reductions apply where needed)

Comments:

� Substitution strengthened to open terms for the proof

� When we add heaps, Preservation will use Weakening directly

Dan Grossman CS152 Spring 2011, Lecture 10 13

Summary

What may seem a weird lemma pile is a powerful recipe:

Soundness: We don’t get stuck because our induction hypothesis
(typing) holds (Preservation) and stuck terms aren’t well typed
(contrapositive of Progress)

Preservation holds by induction on typing (replace subterms with
same type) and Substitution (for β-reduction). Substitution must
work over open terms and requires Weakening and Exchange.

Progress holds by induction on expressions (or typing) because
either a subexpression progresses or we can make a primitive
reduction (using Canonical Forms).

Dan Grossman CS152 Spring 2011, Lecture 10 14

Induction on derivations – Another Look

Application cases (e = e1 e2) are elegant and worth mastering
� Other constructs with eager evaluation of subexpressions

would work analogously (e.g., e1 + e2 or (e1, e2))

For Preservation, lemma assumes · � e1 e2 : τ .

Inverting the typing derivation ensures it has the form:

D1

· � e1 : τ ′ → τ

D2

· � e2 : τ ′

· � e1 e2 : τ

One Preservation subcase: If e1 e2 → e′1 e2, inverting that
derivation means:

D
e1 → e′1

e1 e2 → e′1 e2

Dan Grossman CS152 Spring 2011, Lecture 10 15

continued. . .

The inductive hypothesis means there is a derivation of this form:

D3

· � e′1 : τ ′ → τ

So a derivation of this form exists:

D3

· � e′1 : τ ′ → τ

D2

· � e2 : τ ′

· � e′1 e2 : τ

(The app case of the Substitution Lemma is similar but we use induction

twice to get the new derivation)

Dan Grossman CS152 Spring 2011, Lecture 10 16

