
CS152: Programming Languages

Lecture 16 — Recursive Types

Dan Grossman
Spring 2011

Where are we

I System F gave us type abstraction
I code reuse
I strong abstractions
I different from real languages (like ML), but the right

foundation

I This lecture: Recursive Types (different use of type variables)
I For building unbounded data structures
I Turing-completeness without a fix primitive

I Next lecture: Existential types (dual to universal types)
I First-class abstract types
I Closely related to closures and objects

I Next lecture: Type-and-effect systems

Dan Grossman CS152 Spring 2011, Lecture 16 2

Recursive Types

We could add list types (list(τ)) and primitives ([], ::, match), but
we want user-defined recursive types

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

I Seems like a named type is unavoidable
I But that’s what we thought with let rec and we used fix

I Analogously to fix λx. e, we’ll introduce µα.τ
I Each α “stands for” entire µα.τ

Dan Grossman CS152 Spring 2011, Lecture 16 3

Mighty µ

In τ , type variable α stands for µα.τ , bound by µ

Examples (of many possible encodings):

I int list (finite or infinite): µα.unit + (int ∗ α)

I int list (infinite “stream”): µα.int ∗ α
I Need laziness (thunking) or mutation to build such a thing
I Under CBV, can build values of type µα.unit→ (int ∗ α)

I int list list: µα.unit + ((µβ.unit + (int ∗ β)) ∗ α)

Examples where type variables appear multiple times:

I int tree (data at nodes): µα.unit + (int ∗ α ∗ α)

I int tree (data at leaves): µα.int + (α ∗ α)

Dan Grossman CS152 Spring 2011, Lecture 16 4

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:

I empty list = A(())
Has type: µα.unit + (int ∗ α)

I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))
Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)

Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:
I empty list = A(())

Has type: µα.unit + (int ∗ α)

I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))
Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)

Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:
I empty list = A(())

Has type: µα.unit + (int ∗ α)
I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))

Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)

Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:
I empty list = A(())

Has type: µα.unit + (int ∗ α)
I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))

Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)

I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)

Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:
I empty list = A(())

Has type: µα.unit + (int ∗ α)
I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))

Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)

Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:
I empty list = A(())

Has type: µα.unit + (int ∗ α)
I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))

Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)
Dan Grossman CS152 Spring 2011, Lecture 16 5

Using µ types (continued)

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` A(e) : τ1 + τ2

So we could show
∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆)

But we want µα.unit + (int ∗ α)

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is
(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α]

The key: Subsumption — recursive types are equal to their
“unrolling”

Dan Grossman CS152 Spring 2011, Lecture 16 6

Using µ types (continued)

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` A(e) : τ1 + τ2

So we could show
∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆)

But we want µα.unit + (int ∗ α)

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is
(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α]

The key: Subsumption — recursive types are equal to their
“unrolling”

Dan Grossman CS152 Spring 2011, Lecture 16 6

Using µ types (continued)

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` A(e) : τ1 + τ2

So we could show
∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆)

But we want µα.unit + (int ∗ α)

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is
(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α]

The key: Subsumption — recursive types are equal to their
“unrolling”

Dan Grossman CS152 Spring 2011, Lecture 16 6

Using µ types (continued)

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` A(e) : τ1 + τ2

So we could show
∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆)

But we want µα.unit + (int ∗ α)

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is
(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α]

The key: Subsumption — recursive types are equal to their
“unrolling”

Dan Grossman CS152 Spring 2011, Lecture 16 6

Return of subtyping

Can use subsumption and these subtyping rules:

roll

τ [(µα.τ)/α] ≤ µα.τ

unroll

µα.τ ≤ τ [(µα.τ)/α]

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want:
Constructors use roll, destructors use unroll

Notice how little we did: One new form of type (µα.τ) and two
new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)

Dan Grossman CS152 Spring 2011, Lecture 16 7

Metatheory

Despite additions being minimal, must reconsider how recursive
types change STLC and System F:

I Erasure (no run-time effect): unchanged

I Termination: changed!
I (λx:µα.α→ α. x x)(λx:µα.α→ α. x x)
I In fact, we’re now Turing-complete without fix

(actually, can type-check every closed λ term)

I Safety: still safe, but Canonical Forms harder

I Inference: Shockingly efficient for “STLC plus µ”
(A great contribution of PL theory with applications in OO
and XML-processing languages)

Dan Grossman CS152 Spring 2011, Lecture 16 8

Syntax-directed µ types

Recursive types via subsumption “seems magical”

Instead, we can make programmers tell the type-checker
where/how to roll and unroll

“Iso-recursive” types: remove subtyping and add expressions:

τ ::= . . . | µα.τ
e ::= . . . | rollµα.τ e | unroll e
v ::= . . . | rollµα.τ v

e→ e′

rollµα.τ e→ rollµα.τ e
′

e→ e′

unroll e→ unroll e′

unroll (rollµα.τ v)→ v

∆; Γ ` e : τ [(µα.τ)/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

Dan Grossman CS152 Spring 2011, Lecture 16 9

Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

I Implicit typing can be impossible, difficult, or confusing

I Explicit coercions can be annoying and clutter language with
no-ops

I Most languages do some of each

Anything is decidable if you make the code producer give the
implementation enough “hints” about the “proof”

Dan Grossman CS152 Spring 2011, Lecture 16 10

ML datatypes revealed

How is µα.τ related to
type t = Foo of int | Bar of int * t

Constructor use is a “sum-injection” followed by an implicit roll

I So Foo e is really rollt Foo(e)

I That is, Foo e has type t (the rolled type)

A pattern-match has an implicit unroll

I So match e with... is really match unroll e with...

This “trick” works because different recursive types use different
tags – so the type-checker knows which type to roll to

Dan Grossman CS152 Spring 2011, Lecture 16 11

