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Where are we

I System F gave us type abstraction
I code reuse
I strong abstractions
I different from real languages (like ML), but the right

foundation

I This lecture: Recursive Types (different use of type variables)
I For building unbounded data structures
I Turing-completeness without a fix primitive

I Next lecture: Existential types (dual to universal types)
I First-class abstract types
I Closely related to closures and objects

I Next lecture: Type-and-effect systems
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Recursive Types

We could add list types (list(τ )) and primitives ([], ::, match), but
we want user-defined recursive types

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

I Seems like a named type is unavoidable
I But that’s what we thought with let rec and we used fix

I Analogously to fix λx. e, we’ll introduce µα.τ
I Each α “stands for” entire µα.τ
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Mighty µ

In τ , type variable α stands for µα.τ , bound by µ

Examples (of many possible encodings):

I int list (finite or infinite): µα.unit + (int ∗ α)

I int list (infinite “stream”): µα.int ∗ α
I Need laziness (thunking) or mutation to build such a thing
I Under CBV, can build values of type µα.unit→ (int ∗ α)

I int list list: µα.unit + ((µβ.unit + (int ∗ β)) ∗ α)

Examples where type variables appear multiple times:

I int tree (data at nodes): µα.unit + (int ∗ α ∗ α)

I int tree (data at leaves): µα.int + (α ∗ α)
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Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:

I empty list = A(())
Has type: µα.unit + (int ∗ α)

I cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y))
Has type:
int→ (µα.unit + (int ∗ α))→ (µα.unit + (int ∗ α))

I head =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.1)

Has type: (µα.unit + (int ∗ α))→ (unit + int)
I tail =

λx:(µα.unit + (int ∗ α)).match x with A . A(()) | By. B(y.2)

Has type:
(µα.unit + (int ∗ α))→ (unit + µα.unit + (int ∗ α))

But our typing rules allow none of this (yet)
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Using µ types (continued)

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ ` τ2
∆; Γ ` A(e) : τ1 + τ2

So we could show
∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊆ ∆)

But we want µα.unit + (int ∗ α)

Notice: unit + (int ∗ (µα.unit + (int ∗ α))) is
(unit + (int ∗ α))[(µα.unit + (int ∗ α))/α]

The key: Subsumption — recursive types are equal to their
“unrolling”
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Return of subtyping

Can use subsumption and these subtyping rules:

roll

τ [(µα.τ )/α] ≤ µα.τ

unroll

µα.τ ≤ τ [(µα.τ )/α]

Subtyping can “roll” or “unroll” a recursive type

Can now give empty-list, cons, and head the types we want:
Constructors use roll, destructors use unroll

Notice how little we did: One new form of type (µα.τ ) and two
new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)
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Metatheory

Despite additions being minimal, must reconsider how recursive
types change STLC and System F:

I Erasure (no run-time effect): unchanged

I Termination: changed!
I (λx:µα.α→ α. x x)(λx:µα.α→ α. x x)
I In fact, we’re now Turing-complete without fix

(actually, can type-check every closed λ term)

I Safety: still safe, but Canonical Forms harder

I Inference: Shockingly efficient for “STLC plus µ”
(A great contribution of PL theory with applications in OO
and XML-processing languages)
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Syntax-directed µ types

Recursive types via subsumption “seems magical”

Instead, we can make programmers tell the type-checker
where/how to roll and unroll

“Iso-recursive” types: remove subtyping and add expressions:

τ ::= . . . | µα.τ
e ::= . . . | rollµα.τ e | unroll e
v ::= . . . | rollµα.τ v

e→ e′

rollµα.τ e→ rollµα.τ e
′

e→ e′

unroll e→ unroll e′

unroll (rollµα.τ v)→ v

∆; Γ ` e : τ [(µα.τ )/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ )/α]
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Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

I Implicit typing can be impossible, difficult, or confusing

I Explicit coercions can be annoying and clutter language with
no-ops

I Most languages do some of each

Anything is decidable if you make the code producer give the
implementation enough “hints” about the “proof”
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ML datatypes revealed

How is µα.τ related to
type t = Foo of int | Bar of int * t

Constructor use is a “sum-injection” followed by an implicit roll

I So Foo e is really rollt Foo(e)

I That is, Foo e has type t (the rolled type)

A pattern-match has an implicit unroll

I So match e with... is really match unroll e with...

This “trick” works because different recursive types use different
tags – so the type-checker knows which type to roll to
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