
CS152: Programming Languages

Lecture 1 — Course Introduction

Dan Grossman
Spring 2011

Today

� Administrative stuff

� Introducing myself
� Expanded version because I’m a visitor

� Course motivation and goals
� A Java example

� Course overview
� Expanded version because you’re shopping

� Course pitfalls

� Start on Caml tutorial (most of Thursday)
� Advice: start playing with it soon to learn and/or remember

(e.g., hw1, problem 1)

Dan Grossman CS152 Spring 2011, Lecture 1 2

Course facts

� Dan Grossman, Maxwell Dworkin 233,
grossman@seas.harvard.edu

� TF: Paul Govereau, Maxwell Dworkin 309,
govereau@cs.harvard.edu

� Office hours to-be-determined (see web page)
� Also encouraged to make appointments with me or even just

stop by

� Web page for:
� “homework 0”
� homework 1, fairly carefully pipelined with first lectures

� Do not wait to do it all

Dan Grossman CS152 Spring 2011, Lecture 1 3

Coursework

� 6 homework assignments [almost surely]
� “Paper/pencil” (LATEX recommended?)
� Programming (Caml required)
� Where you’ll probably learn the most
� Do challenge problems if you want but not technically “extra”

� One “introduction/summary” to a published research paper
� More details in a few weeks; high work/length ratio

� 2 exams
� my reference sheet plus your reference sheet; samples provided

� No textbook
� But several books on reserve (see web page and ask)
� Will post slides and will try to write lecture notes
� Lecture notes from CS152 Spring 2010 may prove useful

� 80%+ same material, but somewhat different order/style

Dan Grossman CS152 Spring 2011, Lecture 1 4

Academic integrity

� Don’t cheat in my class
� I’ll be personally offended
� Being honest is far more important than your grade

� Rough guidelines
� can sketch idea together
� cannot look at code solutions

� Ask questions and always describe what you did

� Please do work together and learn from each other

Dan Grossman CS152 Spring 2011, Lecture 1 5

Logistical Advice

� Take notes:
� Slides posted, but they are enough to teach from not to learn

from
� Will often work through examples by hand

� Arrive on time:
� Unlike many CS people, I start and end punctually

(10:07–11:30)
� Missing the first N minutes is so much less efficient than

missing the last N minutes
� I know you can get here on time (cf. exam days)

Dan Grossman CS152 Spring 2011, Lecture 1 6



Talking about myself

I’m a “visiting faculty member” just for this semester

� Normally at the University of Washington in Seattle

� This should not scare you away from taking this course

� Let me compensate for you not being able to look up my
evaluations or ask your friends about me...

Dan Grossman CS152 Spring 2011, Lecture 1 7

What will this guy be like?

� Last year’s CS152 is a reasonable approximation

� I’ve taught this material [mostly to graduate students] 8 times

� Planning about 15% new stuff to keep things fresh/improving
and because the term is longer

� I love teaching and I love the material in this course
� Hopefully “Lecture 1” is the most boring one?
� Most professors don’t teach while on sabbatical

Dan Grossman CS152 Spring 2011, Lecture 1 8

Student Evaluations

Evaluations from last time I taught a similar course (Fall 2009)

Excellent Very Good Fair Poor Very
Good Poor

Course as a whole 62% 29% 8% 0% 0% 0%
Course content 50% 33% 17% 0% 0% 0%
Instructor’s contribution 83% 12% 4% 0% 0% 0%
Instructor’s effectiveness 79% 12% 8% 0% 0% 0%
Instructor’s interest 75% 12% 12% 0% 0% 0%
Amount learned 54% 17% 25% 4% 0% 0%
Grading techniques 42% 42% 12% 4% 0% 0%

Dan Grossman CS152 Spring 2011, Lecture 1 9

More about me

Saving you a Google search:

� http://www.cs.washington.edu/homes/djg

� http://www.facebook.com/profile.php?id=10717335

Professional life story:
� St. Louis suburbs → Rice → Cornell → UW

� UW universally “top-10” CS and arguably #5
� But try to convince my grandma
� Seriously, if looking at grad school, we should talk

� Programming languages from theory to practice
� Morrisett was my Ph.D. advisor; Chong was an office-mate
� I’m here to refresh, collaborate, learn, and teach — and have

fun

Other: Ice hockey, cycling and running, non-fiction, my nephew,
beer, ...

Dan Grossman CS152 Spring 2011, Lecture 1 10

What could go wrong?

So this is sort of like “study abroad” for the professor instead of
the students

� Please don’t get too upset when I mess up the jargon, but
correct me

� TF, semester, concentration, ...

� Different logistics than I’m used to
� web page, grades, photocopier, ...
� will probably all settle down after this week

� Help me if you see me lost on campus :-)

More importantly, we may have to work together on the pace

� But based on last year’s CS152, I think we’ll be fine

Dan Grossman CS152 Spring 2011, Lecture 1 11

Programming-language concepts

Focus on semantic concepts:

What do programs mean (do/compute/produce/represent)?

How to define a language precisely?

English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, . . .

This course does not gives superficial exposure to N weird PLs

� More like CS121 than CS51, but not really like either

� But it will help you learn new languages via foundations

Dan Grossman CS152 Spring 2011, Lecture 1 12



Does it matter?

Novices write programs that “work as expected,” so why be
rigorous/precise/pedantic?

� The world runs on software
� Web-servers and nuclear reactors don’t “seem to work”

� You buy language implementations—what do they do?

� Software is buggy—semantics assigns blame

� Real languages have many features: building them from
well-understood foundations is good engineering

� Never say “nobody would write that” (surprising interactions)

Dan Grossman CS152 Spring 2011, Lecture 1 13

Is this Really about PL?

Building a rigorous and precise model is a hallmark of deep
understanding.

The value of a model is in its:

� Fidelity

� Convenience for establishing (proving) properties

� Revealing alternatives and design decisions

� Ability to communicate ideas concisely

Why we mostly do it for programming languages:

� Elegant things we all use

� Remarkably complicated (need rigor)

I believe this “theory” makes you a better computer scientist

� Focus on the model-building, not just the PL features

Dan Grossman CS152 Spring 2011, Lecture 1 14

APIs

Like almost anything in computing, we can describe the course in
terms of designing an API.

Many APIs have 1000s of functions with simple inputs

� Kernel calls take a struct or two and return an int

A typical language implementation more or less has just

� typecheck : program → bool

� compile : program → (string → value)

But defining program and these functions is subtle, hard

� Conversely, “a data structure is just a really dumb PL”

� Every extensible system ends up defining a PL (game engines,
editors, web browsers, CAD tools, ...)

Dan Grossman CS152 Spring 2011, Lecture 1 15

Java example

class A { int f() { return 0; } }

class B {

int g(A x) {

try { return x.f(); }

finally { s }

}

}

For all s, is it equivalent for g’s body to be “return 0;”?
Motivation: code optimizer, code maintainer, ...

Dan Grossman CS152 Spring 2011, Lecture 1 16

Punch-line

Not equivalent:

� Extend A

� x could be null

� s could modify global state, diverge, throw, ...

� s could return

A silly example, but:

� PL makes you a good adversary, programmer

� PL gives you the tools to argue equivalence (hard!)

Dan Grossman CS152 Spring 2011, Lecture 1 17

Course goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages
� mutation and iteration
� scope and functions
� types
� objects
� threads

3. Write programs to “connect theory with the code”

4. Sketch applicability to “real” languages

5. Provide background for current PL research
(less important for most of you)

Dan Grossman CS152 Spring 2011, Lecture 1 18



Course nongoals

� Study syntax; learn to specify grammars, parsers

� Transforming 3 + 4 or (+ 3 4) or +(3, 4) to
“application of plus operator to constants three and four”

� Stop me when I get too sloppy

� Learn specific programming languages (but some ML)

Dan Grossman CS152 Spring 2011, Lecture 1 19

What we will do

� Define really small languages
� Usually Turing complete
� Always unsuitable for real programming

� Extend them to realistic languages less rigorously

� Digress for cool results (this is fun!?!)

� Study models very rigorously via operational models

� Do programming assignments in Caml

Dan Grossman CS152 Spring 2011, Lecture 1 20

Plenty of Theory

Hard to give a taste of what the “theory” will look like, but here is
some cut-and-paste from topics we will cover in the next few weeks

Lectures 3–5

H ; e ⇓ c

H ; x := e → H,x �→ c ; skip

H ; e ⇓ c c>0

H ; if e s1 s2 → H ; s1

H ; e ⇓ c c≤0

H ; if e s1 s2 → H ; s2

Lectures 7–10

Γ, x : τ1 � e : τ2

Γ � λx. e : τ1 → τ2

Γ � e1 : τ2 → τ1 Γ � e2 : τ2

Γ � e1 e2 : τ1

Dan Grossman CS152 Spring 2011, Lecture 1 21

Caml

� Caml is an awesome, high-level language

� We will use a tiny core subset of it that is well-suited for
manipulating recursive data structures (like programs!)

� You mostly have to learn it outside of class
� Don’t procrastinate
� Don’t hesitate to ask questions

� Resources on course webpage

� I am not a language zealot, but knowing ML makes you a
better programmer

Dan Grossman CS152 Spring 2011, Lecture 1 22

Pitfalls

How to hate this course and get the wrong idea:

� Forget that we made simple models to focus on the essence

� Don’t quite get inductive definitions and proofs when
introduced

� Don’t try other ways to model/prove the idea
� You’ll probably be wrong
� And therefore you’ll learn more

� Think PL people focus on only obvious facts
� Need to start there

Dan Grossman CS152 Spring 2011, Lecture 1 23

Final Metacomment

Acknowledging others is crucial...

This course draws heavily on pedagogic ideas from at least:
Chambers, Chong, Felleisen, Flatt, Fluet, Harper, Morrisett, Myers,
Pierce, Rugina, Walker

And material covered in texts from Pierce, Wynskel, and others

(This is a course, not my work.)

Dan Grossman CS152 Spring 2011, Lecture 1 24



Caml tutorial

� “Let go of Java/C”

� If you have seen SML, Haskell, Scheme, Lisp, etc. this will
feel more familiar

� If you have seen Caml, focus here on “how I say things” and
what subset will be most useful to us in studying PL

� Give us some small code snippets so we have a common
experience we can talk about

� Also see me use the tools

Dan Grossman CS152 Spring 2011, Lecture 1 25


