
CS152: Programming Languages

Lecture 1 — Course Introduction

Dan Grossman
Spring 2011

Today

� Administrative stuff

� Introducing myself
� Expanded version because I’m a visitor

� Course motivation and goals
� A Java example

� Course overview
� Expanded version because you’re shopping

� Course pitfalls

� Start on Caml tutorial (most of Thursday)
� Advice: start playing with it soon to learn and/or remember

(e.g., hw1, problem 1)
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Course facts

� Dan Grossman, Maxwell Dworkin 233,
grossman@seas.harvard.edu

� TF: Paul Govereau, Maxwell Dworkin 309,
govereau@cs.harvard.edu

� Office hours to-be-determined (see web page)
� Also encouraged to make appointments with me or even just

stop by

� Web page for:
� “homework 0”
� homework 1, fairly carefully pipelined with first lectures

� Do not wait to do it all
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Coursework

� 6 homework assignments [almost surely]
� “Paper/pencil” (LATEX recommended?)
� Programming (Caml required)
� Where you’ll probably learn the most
� Do challenge problems if you want but not technically “extra”

� One “introduction/summary” to a published research paper
� More details in a few weeks; high work/length ratio

� 2 exams
� my reference sheet plus your reference sheet; samples provided

� No textbook
� But several books on reserve (see web page and ask)
� Will post slides and will try to write lecture notes
� Lecture notes from CS152 Spring 2010 may prove useful

� 80%+ same material, but somewhat different order/style
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Academic integrity

� Don’t cheat in my class
� I’ll be personally offended
� Being honest is far more important than your grade

� Rough guidelines
� can sketch idea together
� cannot look at code solutions

� Ask questions and always describe what you did

� Please do work together and learn from each other
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Logistical Advice

� Take notes:
� Slides posted, but they are enough to teach from not to learn

from
� Will often work through examples by hand

� Arrive on time:
� Unlike many CS people, I start and end punctually

(10:07–11:30)
� Missing the first N minutes is so much less efficient than

missing the last N minutes
� I know you can get here on time (cf. exam days)
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Talking about myself

I’m a “visiting faculty member” just for this semester

� Normally at the University of Washington in Seattle

� This should not scare you away from taking this course

� Let me compensate for you not being able to look up my
evaluations or ask your friends about me...
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What will this guy be like?

� Last year’s CS152 is a reasonable approximation

� I’ve taught this material [mostly to graduate students] 8 times

� Planning about 15% new stuff to keep things fresh/improving
and because the term is longer

� I love teaching and I love the material in this course
� Hopefully “Lecture 1” is the most boring one?
� Most professors don’t teach while on sabbatical

Dan Grossman CS152 Spring 2011, Lecture 1 8

Student Evaluations

Evaluations from last time I taught a similar course (Fall 2009)

Excellent Very Good Fair Poor Very
Good Poor

Course as a whole 62% 29% 8% 0% 0% 0%
Course content 50% 33% 17% 0% 0% 0%
Instructor’s contribution 83% 12% 4% 0% 0% 0%
Instructor’s effectiveness 79% 12% 8% 0% 0% 0%
Instructor’s interest 75% 12% 12% 0% 0% 0%
Amount learned 54% 17% 25% 4% 0% 0%
Grading techniques 42% 42% 12% 4% 0% 0%
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More about me

Saving you a Google search:

� http://www.cs.washington.edu/homes/djg

� http://www.facebook.com/profile.php?id=10717335

Professional life story:
� St. Louis suburbs → Rice → Cornell → UW

� UW universally “top-10” CS and arguably #5
� But try to convince my grandma
� Seriously, if looking at grad school, we should talk

� Programming languages from theory to practice
� Morrisett was my Ph.D. advisor; Chong was an office-mate
� I’m here to refresh, collaborate, learn, and teach — and have

fun

Other: Ice hockey, cycling and running, non-fiction, my nephew,
beer, ...
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What could go wrong?

So this is sort of like “study abroad” for the professor instead of
the students

� Please don’t get too upset when I mess up the jargon, but
correct me

� TF, semester, concentration, ...

� Different logistics than I’m used to
� web page, grades, photocopier, ...
� will probably all settle down after this week

� Help me if you see me lost on campus :-)

More importantly, we may have to work together on the pace

� But based on last year’s CS152, I think we’ll be fine
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Programming-language concepts

Focus on semantic concepts:

What do programs mean (do/compute/produce/represent)?

How to define a language precisely?

English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, . . .

This course does not gives superficial exposure to N weird PLs

� More like CS121 than CS51, but not really like either

� But it will help you learn new languages via foundations
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Does it matter?

Novices write programs that “work as expected,” so why be
rigorous/precise/pedantic?

� The world runs on software
� Web-servers and nuclear reactors don’t “seem to work”

� You buy language implementations—what do they do?

� Software is buggy—semantics assigns blame

� Real languages have many features: building them from
well-understood foundations is good engineering

� Never say “nobody would write that” (surprising interactions)
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Is this Really about PL?

Building a rigorous and precise model is a hallmark of deep
understanding.

The value of a model is in its:

� Fidelity

� Convenience for establishing (proving) properties

� Revealing alternatives and design decisions

� Ability to communicate ideas concisely

Why we mostly do it for programming languages:

� Elegant things we all use

� Remarkably complicated (need rigor)

I believe this “theory” makes you a better computer scientist

� Focus on the model-building, not just the PL features
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APIs

Like almost anything in computing, we can describe the course in
terms of designing an API.

Many APIs have 1000s of functions with simple inputs

� Kernel calls take a struct or two and return an int

A typical language implementation more or less has just

� typecheck : program → bool

� compile : program → (string → value)

But defining program and these functions is subtle, hard

� Conversely, “a data structure is just a really dumb PL”

� Every extensible system ends up defining a PL (game engines,
editors, web browsers, CAD tools, ...)
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Java example

class A { int f() { return 0; } }

class B {

int g(A x) {

try { return x.f(); }

finally { s }

}

}

For all s, is it equivalent for g’s body to be “return 0;”?
Motivation: code optimizer, code maintainer, ...
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Punch-line

Not equivalent:

� Extend A

� x could be null

� s could modify global state, diverge, throw, ...

� s could return

A silly example, but:

� PL makes you a good adversary, programmer

� PL gives you the tools to argue equivalence (hard!)
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Course goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages
� mutation and iteration
� scope and functions
� types
� objects
� threads

3. Write programs to “connect theory with the code”

4. Sketch applicability to “real” languages

5. Provide background for current PL research
(less important for most of you)
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Course nongoals

� Study syntax; learn to specify grammars, parsers

� Transforming 3 + 4 or (+ 3 4) or +(3, 4) to
“application of plus operator to constants three and four”

� Stop me when I get too sloppy

� Learn specific programming languages (but some ML)
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What we will do

� Define really small languages
� Usually Turing complete
� Always unsuitable for real programming

� Extend them to realistic languages less rigorously

� Digress for cool results (this is fun!?!)

� Study models very rigorously via operational models

� Do programming assignments in Caml
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Plenty of Theory

Hard to give a taste of what the “theory” will look like, but here is
some cut-and-paste from topics we will cover in the next few weeks

Lectures 3–5

H ; e ⇓ c

H ; x := e → H,x �→ c ; skip

H ; e ⇓ c c>0

H ; if e s1 s2 → H ; s1

H ; e ⇓ c c≤0

H ; if e s1 s2 → H ; s2

Lectures 7–10

Γ, x : τ1 � e : τ2

Γ � λx. e : τ1 → τ2

Γ � e1 : τ2 → τ1 Γ � e2 : τ2

Γ � e1 e2 : τ1
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Caml

� Caml is an awesome, high-level language

� We will use a tiny core subset of it that is well-suited for
manipulating recursive data structures (like programs!)

� You mostly have to learn it outside of class
� Don’t procrastinate
� Don’t hesitate to ask questions

� Resources on course webpage

� I am not a language zealot, but knowing ML makes you a
better programmer
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Pitfalls

How to hate this course and get the wrong idea:

� Forget that we made simple models to focus on the essence

� Don’t quite get inductive definitions and proofs when
introduced

� Don’t try other ways to model/prove the idea
� You’ll probably be wrong
� And therefore you’ll learn more

� Think PL people focus on only obvious facts
� Need to start there
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Final Metacomment

Acknowledging others is crucial...

This course draws heavily on pedagogic ideas from at least:
Chambers, Chong, Felleisen, Flatt, Fluet, Harper, Morrisett, Myers,
Pierce, Rugina, Walker

And material covered in texts from Pierce, Wynskel, and others

(This is a course, not my work.)
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Caml tutorial

� “Let go of Java/C”

� If you have seen SML, Haskell, Scheme, Lisp, etc. this will
feel more familiar

� If you have seen Caml, focus here on “how I say things” and
what subset will be most useful to us in studying PL

� Give us some small code snippets so we have a common
experience we can talk about

� Also see me use the tools
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