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Revenge of Type Variables

Sorted lists in ML (partial):

type ’a slist

make : (’a -> ’a -> int) -> ’a slist

cons : ’a slist -> ’a -> ’a slist

find : ’a slist -> ’a -> ’a option

Getting by with OO subtyping:

interface Cmp { Int f(Object,Object); }

class SList {

... some field definitions ...

constructor (Cmp x) {...}

Slist cons(Object x) {...}

Object find(Object x) {...}

}
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Wanting Type Variables

Will downcast (potential run-time exception) the arguments to f

and the result of find

We are not enforcing list-element type-equality

OO-style subtyping is no replacement for parametric
polymorphism; we can have both:

interface Cmp<’a> { Int f(’a,’a); } // Cmp not a type

class SList<’a> { // SList not a type (SList<Int> e.g. is)

... some field definitions (can use type ’a) ...

constructor (Cmp<’a> x) {...}

Slist<’a> cons(’a x) {...}

’a find(’a) {...}

}
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Same Old Story

� Interface and class declarations are parameterized; they
produce types

� The constructor is polymorphic
� For all T, given a Cmp<T>, it makes a SList<T>

� If o has type SList<T>, its cons method:
� Takes a T
� Returns a SList<T>

No more downcasts; the best of both worlds
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Complications

“Interesting” interaction with overloading and multimethods

class B {

unit f(C<Int> x) {...}

unit f(C<String> x) {...}

}

class C<’a> { unit g(B x) { x.f(self); } }

For C<T> where T is neither Int nor String, can have no match

� Cannot resolve static overloading at compile-time without
code duplication and no abstraction (C++)

� To resolve overloading or multimethods at run-time, need
run-time type information including the instantiation T (C#)

� Could disallow such overloading (Java)

� Or could just reject this sort of call as unresolvable (?)
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Wanting bounds

There are compelling reasons to bound the instantiation of type
variables

Simple example: Use at supertype without losing that it’s a
subtype

interface I { unit print(); }

class Logger< ’a <: I > { // must apply to subtype of I

’a item;

’a get_it() { syslog(item.print()); item }

}

Without polymorphism or downcasting, client could only use
get_it result for printing

Without bound or downcasting, Logger could not print

Issue isn’t special to OOP
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Fancy Example from “A Theory of Objects” Abadi/Cardelli

With forethought and structural (non-named) subtyping, bounds
can avoid some subtyping limitations

interface Omnivore { unit eat(Food); }

interface Herbivore { unit eat(Veg); } // Veg <= Food

Allowing Herbivore≤Omnivore could make a vegetarian eat
meat (unsound)! But this works:

interface Omnivore< ’a <: Food > { unit eat(’a); }

interface Herbivore< ’a <: Veg > { unit eat(’a); }

If Herbivore<T> is legal, then Omnivore<T> is legal and
Herbivore<T> <: Omnivore<T> !

Useful for unit feed(’a food, Omnivore<’a> animal) {...}
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Bounded Polymorphism

This “bounded polymorphism” is useful in any language with
universal types and subtyping. Instead of ∀α.τ and Λα.e, we
have ∀α < τ ′.τ and Λα < τ ′.e:

� Change Δ to be a list of bounds (α < τ ) instead of a set of
type variables

� In e you can subsume from α to τ ′

� e1[τ1] typechecks when τ1 “satisfies the bound” in type of e1

One limitation: When is (∀α1<τ1.τ2) ≤ (∀α2<τ3.τ4)?

� Contravariant bounds and covariant bodies assuming bound
are sound, but makes subtyping undecidable

� Requiring invariant bounds and covariant bodies regains
decidability, but obviously allows less subtyping
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Classless OOP

OOP gave us code-reuse via inheritance and extensibility via
late-binding

Can we throw out classes and still get OOP? Yes

Can it have a type system that prevents “no match found” and
“no best match” errors? Yes, but we won’t get there

This is mind-opening stuff if you’ve never seen it

Will make up syntax as we go...
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Make objects directly

Everything is an object. You can make objects directly:

let p = [

field x = 7;

field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.lte(y)

]

p now bound to an object

� Can invoke its methods and read/write its fields

No classes: Constructors are easy to encode

let make_pt = [

doit(x0,y0) { [ field x=x0; field y=y0;... ] }

]
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Inheritance and Override

Building objects from scratch won’t get us late-binding and code
reuse. Here’s the trick:

� clone method produces a (shallow) copy of an object

� method “slots” can be mutable

let o1 = [ // still have late-binding

odd(x) {if x.eq(0) then false else self.even(x-1)}

even(x) {if x.eq(0) then true else self.odd(x-1) }

]

let o2 = o1.clone()

o2.even(x) := {(x.mod(2)).eq(0)}

Language doesn’t grow: just methods and mutable “slots”
Can use for constructors too: clone and assign fields
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Extension

But that trick doesn’t work to add slots to an object, a common
use of subclassing

Having something like “extend e1 (x=e2)” that mutates e1 to have
a new slot is problematic semantically (what if e1 has a slot named
x) and for efficiency (may not be room where e1 is allocated)

Instead, we can build a new object with a special parent slot:
[parent=e1; x=e2]

parent is very special because definition of method-lookup (the
issue in OO) depends on it (else this isn’t inheritance)
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Method Lookup

To find the m method of o:

� Look for a slot named m

� If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot, we still
have self refer to the original o.

Two inequivalent ways to define parent=e1:

� Delegation: parent refers to result of e1

� Embedding: parent refers to result of e1.clone()

Mutation of result of e1 (or its parent or grandparent or ...)
exposes the difference

� We’ll assume delegation
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Oh so flexible

Delegation is way more flexible (and simple!) (and dangerous!)
than class-based OO: The object being delegated to is usually used
like a class, but its slots may be mutable

� Assigning to a slot in a delegated object changes every object
that delegates to it (transitively)

� Clever change-propagation but as dangerous as globals and
arguably more subtle?

� Assigning to a parent slot is “dynamic inheritance” —
changes where slots are inherited from

Classes restrict what you can do and how you think, e.g., never
thinking of clever run-time modifications of inheritance
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Javascript: A Few Notes

� Javascript gives assignment “extension” semantics if field not
already there. Implementations use indirection (hashtables).

� parent is called prototype
� new F(...) creates a new object o, calls F with this bound

to o, and returns o.
� No special notion of constructor
� Functions are objects too
� This isn’t quite prototype-based inheritance, but can code it

up:

function inheritFrom(o) {

function F() {}

F.prototype = o;

return new F();

}

� No clone (depending on version), but can copy fields
explicitly
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Rarely what you want

We have the essence of OOP in a tiny language with more
flexibility than we usually want

Avoid it via careful coding idioms:
� Create trait/abstract objects: Just immutable methods

� Analogous role to virtual-method tables

� Extend with prototype/template objects: Add mutable fields
but don’t mutate them

� Analogous role to classes

� Clone prototypes to create concrete/normal objects
� Analogous role to objects (clone is constructor)

Traits can extend other traits and prototypes other prototypes

� Analogous to subclassing
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Coming full circle

This idiom is so important, it’s worth having a type system that
enforces it

For example, a template object cannot have its members accessed
(except clone)

We end up getting close to classes, but from first principles and
still allowing the full flexibility when you want it
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