
CS152: Programming Languages

Lecture 24 — Bounded Polymorphism; Classless
OOP

Dan Grossman
Spring 2011

Revenge of Type Variables

Sorted lists in ML (partial):

type ’a slist

make : (’a -> ’a -> int) -> ’a slist

cons : ’a slist -> ’a -> ’a slist

find : ’a slist -> ’a -> ’a option

Getting by with OO subtyping:

interface Cmp { Int f(Object,Object); }

class SList {

... some field definitions ...

constructor (Cmp x) {...}

Slist cons(Object x) {...}

Object find(Object x) {...}

}

Dan Grossman CS152 Spring 2011, Lecture 24 2

Wanting Type Variables

Will downcast (potential run-time exception) the arguments to f

and the result of find

We are not enforcing list-element type-equality

OO-style subtyping is no replacement for parametric
polymorphism; we can have both:

interface Cmp<’a> { Int f(’a,’a); } // Cmp not a type

class SList<’a> { // SList not a type (SList<Int> e.g. is)

... some field definitions (can use type ’a) ...

constructor (Cmp<’a> x) {...}

Slist<’a> cons(’a x) {...}

’a find(’a) {...}

}

Dan Grossman CS152 Spring 2011, Lecture 24 3

Same Old Story

� Interface and class declarations are parameterized; they
produce types

� The constructor is polymorphic
� For all T, given a Cmp<T>, it makes a SList<T>

� If o has type SList<T>, its cons method:
� Takes a T
� Returns a SList<T>

No more downcasts; the best of both worlds

Dan Grossman CS152 Spring 2011, Lecture 24 4

Complications

“Interesting” interaction with overloading and multimethods

class B {

unit f(C<Int> x) {...}

unit f(C<String> x) {...}

}

class C<’a> { unit g(B x) { x.f(self); } }

For C<T> where T is neither Int nor String, can have no match

� Cannot resolve static overloading at compile-time without
code duplication and no abstraction (C++)

� To resolve overloading or multimethods at run-time, need
run-time type information including the instantiation T (C#)

� Could disallow such overloading (Java)

� Or could just reject this sort of call as unresolvable (?)

Dan Grossman CS152 Spring 2011, Lecture 24 5

Wanting bounds

There are compelling reasons to bound the instantiation of type
variables

Simple example: Use at supertype without losing that it’s a
subtype

interface I { unit print(); }

class Logger< ’a <: I > { // must apply to subtype of I

’a item;

’a get_it() { syslog(item.print()); item }

}

Without polymorphism or downcasting, client could only use
get_it result for printing

Without bound or downcasting, Logger could not print

Issue isn’t special to OOP
Dan Grossman CS152 Spring 2011, Lecture 24 6

Fancy Example from “A Theory of Objects” Abadi/Cardelli

With forethought and structural (non-named) subtyping, bounds
can avoid some subtyping limitations

interface Omnivore { unit eat(Food); }

interface Herbivore { unit eat(Veg); } // Veg <= Food

Allowing Herbivore≤Omnivore could make a vegetarian eat
meat (unsound)! But this works:

interface Omnivore< ’a <: Food > { unit eat(’a); }

interface Herbivore< ’a <: Veg > { unit eat(’a); }

If Herbivore<T> is legal, then Omnivore<T> is legal and
Herbivore<T> <: Omnivore<T> !

Useful for unit feed(’a food, Omnivore<’a> animal) {...}

Dan Grossman CS152 Spring 2011, Lecture 24 7

Bounded Polymorphism

This “bounded polymorphism” is useful in any language with
universal types and subtyping. Instead of ∀α.τ and Λα.e, we
have ∀α < τ ′.τ and Λα < τ ′.e:

� Change Δ to be a list of bounds (α < τ) instead of a set of
type variables

� In e you can subsume from α to τ ′

� e1[τ1] typechecks when τ1 “satisfies the bound” in type of e1

One limitation: When is (∀α1<τ1.τ2) ≤ (∀α2<τ3.τ4)?

� Contravariant bounds and covariant bodies assuming bound
are sound, but makes subtyping undecidable

� Requiring invariant bounds and covariant bodies regains
decidability, but obviously allows less subtyping

Dan Grossman CS152 Spring 2011, Lecture 24 8

Classless OOP

OOP gave us code-reuse via inheritance and extensibility via
late-binding

Can we throw out classes and still get OOP? Yes

Can it have a type system that prevents “no match found” and
“no best match” errors? Yes, but we won’t get there

This is mind-opening stuff if you’ve never seen it

Will make up syntax as we go...

Dan Grossman CS152 Spring 2011, Lecture 24 9

Make objects directly

Everything is an object. You can make objects directly:

let p = [

field x = 7;

field y = 9;

right_quad(){ x.gt(0) && y.gt(0) } // cf. 0.lte(y)

]

p now bound to an object

� Can invoke its methods and read/write its fields

No classes: Constructors are easy to encode

let make_pt = [

doit(x0,y0) { [field x=x0; field y=y0;...] }

]

Dan Grossman CS152 Spring 2011, Lecture 24 10

Inheritance and Override

Building objects from scratch won’t get us late-binding and code
reuse. Here’s the trick:

� clone method produces a (shallow) copy of an object

� method “slots” can be mutable

let o1 = [// still have late-binding

odd(x) {if x.eq(0) then false else self.even(x-1)}

even(x) {if x.eq(0) then true else self.odd(x-1) }

]

let o2 = o1.clone()

o2.even(x) := {(x.mod(2)).eq(0)}

Language doesn’t grow: just methods and mutable “slots”
Can use for constructors too: clone and assign fields

Dan Grossman CS152 Spring 2011, Lecture 24 11

Extension

But that trick doesn’t work to add slots to an object, a common
use of subclassing

Having something like “extend e1 (x=e2)” that mutates e1 to have
a new slot is problematic semantically (what if e1 has a slot named
x) and for efficiency (may not be room where e1 is allocated)

Instead, we can build a new object with a special parent slot:
[parent=e1; x=e2]

parent is very special because definition of method-lookup (the
issue in OO) depends on it (else this isn’t inheritance)

Dan Grossman CS152 Spring 2011, Lecture 24 12

Method Lookup

To find the m method of o:

� Look for a slot named m

� If not found, look in object held in parent slot

But we still have late-binding: for method in parent slot, we still
have self refer to the original o.

Two inequivalent ways to define parent=e1:

� Delegation: parent refers to result of e1

� Embedding: parent refers to result of e1.clone()

Mutation of result of e1 (or its parent or grandparent or ...)
exposes the difference

� We’ll assume delegation

Dan Grossman CS152 Spring 2011, Lecture 24 13

Oh so flexible

Delegation is way more flexible (and simple!) (and dangerous!)
than class-based OO: The object being delegated to is usually used
like a class, but its slots may be mutable

� Assigning to a slot in a delegated object changes every object
that delegates to it (transitively)

� Clever change-propagation but as dangerous as globals and
arguably more subtle?

� Assigning to a parent slot is “dynamic inheritance” —
changes where slots are inherited from

Classes restrict what you can do and how you think, e.g., never
thinking of clever run-time modifications of inheritance

Dan Grossman CS152 Spring 2011, Lecture 24 14

Javascript: A Few Notes

� Javascript gives assignment “extension” semantics if field not
already there. Implementations use indirection (hashtables).

� parent is called prototype
� new F(...) creates a new object o, calls F with this bound

to o, and returns o.
� No special notion of constructor
� Functions are objects too
� This isn’t quite prototype-based inheritance, but can code it

up:

function inheritFrom(o) {

function F() {}

F.prototype = o;

return new F();

}

� No clone (depending on version), but can copy fields
explicitly

Dan Grossman CS152 Spring 2011, Lecture 24 15

Rarely what you want

We have the essence of OOP in a tiny language with more
flexibility than we usually want

Avoid it via careful coding idioms:
� Create trait/abstract objects: Just immutable methods

� Analogous role to virtual-method tables

� Extend with prototype/template objects: Add mutable fields
but don’t mutate them

� Analogous role to classes

� Clone prototypes to create concrete/normal objects
� Analogous role to objects (clone is constructor)

Traits can extend other traits and prototypes other prototypes

� Analogous to subclassing

Dan Grossman CS152 Spring 2011, Lecture 24 16

Coming full circle

This idiom is so important, it’s worth having a type system that
enforces it

For example, a template object cannot have its members accessed
(except clone)

We end up getting close to classes, but from first principles and
still allowing the full flexibility when you want it

Dan Grossman CS152 Spring 2011, Lecture 24 17

