

Last word on concrete syntax	Inductive definition
Converting a string into a tree is <i>parsing</i>	s ::= skip x := e s; s if e s s while e s e ::= c x e + e e * e
Creating concrete syntax such that parsing is unambiguous is one challenge of <i>grammar design</i>	This grammar is a finite description of an infinite set of trees
 Always trivial if you require enough parentheses or keywords 	The apparent self-reference is not a problem, provided the
 Extreme case: LISP, 1960s; Scheme, 1970s Extreme case: XML, 1990s 	definition uses well-founded induction
 Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course 	 Just like an always-terminating recursive function uses self-reference but is not a circular definition!
For the rest of this source we start with shotwart surtay.	Can give precise meaning to our metanotation & avoid circularity:
For the rest of this course, we start with abstract syntaxUsing strings only as a convenient shorthand and asking if it's	• Let $E_0 = \emptyset$.
ever unclear what tree we mean	For $i > 0$, let E_i be E_{i-1} union "expressions of the form c , $x, e_1 + e_2$, or $e_1 * e_2$ where $e_1, e_2 \in E_{i-1}$ ".
	$x, e_1 + e_2, \text{ or } e_1 * e_2 \text{ where } e_1, e_2 \in E_{i-1} \text{ .}$ $\blacktriangleright \text{ Let } E = \bigcup_{i \ge 0} E_i.$
	The set E is what we mean by our compact metanotation
Dan Grossman CS152 Spring 2011, Lecture 2 7	Dan Grossman CS152 Spring 2011, Lecture 2 8
Inductive definition	Proving Obvious Stuff
$s ::= skip \mid x := e \mid s; s \mid if \ e \ s \ s \mid$ while $e \ s$	All we have is syntax (sets of abstract-syntax trees), but let's get
e ::= c x e + e e * e	the idea of proving things carefully
• Let $E_0 = \emptyset$.	Theorem 1: There exist expressions with three constants.
For $i > 0$, let E_i be E_{i-1} union "expressions of the form c ,	
x, e_1+e_2 , or e_1*e_2 where $e_1, e_2 \in E_{i-1}$ ". \blacktriangleright Let $E=igcup_{i\geq 0}E_i$.	
The set E is what we mean by our compact metanotation	
To get it: What set is E_1 ? E_2 ? Could explain statements the same way: What is S_1 ? S_2 ? S ?	
Dan Grossman CS152 Spring 2011, Lecture 2 9	Dan Grossman CS152 Spring 2011, Lecture 2 10
Our First Theorem	Our Second Theorem
There exist expressions with three constants.	All expressions have at least one constant or variable.
Pedantic Proof: Consider $e = 1 + (2 + 3)$. Showing $e \in E_3$ suffices because $E_3 \subseteq E$. Showing $2 + 3 \in E_2$ and $1 \in E_2$	Pedantic proof: By induction on i , for all $e \in E_i$, e has ≥ 1 constant or variable.
suffices	\blacktriangleright Base: $i=0$ implies $E_i=\emptyset$
PL-style proof: Consider $e=1+(2+3)$ and definition of $E.$	Inductive: $i > 0$. Consider <i>arbitrary</i> $e \in E_i$ by cases:
	$\bullet \ e \in E_{i-1} \dots$ $\bullet \ e = c \dots$
Theorem 2: All expressions have at least one constant or variable.	▶ $e = x \dots$ ▶ $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1} \dots$
	• $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1} \dots$ • $e = e_1 * e_2$ where $e_1, e_2 \in E_{i-1} \dots$
Dan Grossman CS152 Spring 2011, Lecture 2 11	Dan Grossman CS152 Spring 2011, Lecture 2 12

A "Better" Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- ► c . . .
- ► x ...

Dan Grossman

- $\blacktriangleright e_1 + e_2 \dots$
- $\blacktriangleright e_1 * e_2 \dots$

Structural induction invokes the induction hypothesis on ${\it smaller}$ terms. It is equivalent to the pedantic proof, and more convenient in PL

CS152 Spring 2011, Lecture 2

13