CS152: Programming Languages

Lecture 3 — Operational Semantics

Dan Grossman Spring 2011

Where we are

- ▶ Done: Caml basics, "IMP" syntax, structural induction
- ▶ Now: Operational semantics for our little "IMP" language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Review

IMP's abstract syntax is defined inductively:

```
\begin{array}{lll} s & ::= & \mathsf{skip} \mid x := e \mid s; s \mid \mathsf{if} \ e \ s \ s \mid \mathsf{while} \ e \ s \\ e & ::= & c \mid x \mid e + e \mid e * e \\ (c & \in & \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\ (x & \in & \{\mathtt{x}_1, \mathtt{x}_2, \ldots, \mathtt{y}_1, \mathtt{y}_2, \ldots, \mathtt{z}_1, \mathtt{z}_2, \ldots, \ldots\}) \end{array}
```

We haven't yet said what programs mean! (Syntax is boring)

Encode our "social understanding" about variables and control flow

Outline

- Semantics for expressions
 - 1. Informal idea; the need for heaps
 - 2. Definition of heaps
 - 3. The evaluation judgment (a relation form)
 - 4. The evaluation inference rules (the relation definition)
 - 5. Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 - 6. Metatheory: Proofs about the semantics
- Then semantics for statements
 - **.**...

Informal idea

Given e, what c does it evaluate to?

$$1+2$$

$$x + 2$$

Informal idea

Given e, what c does it evaluate to?

$$1+2$$
 $x+2$

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

lacktriangle Could use partial functions, but then \exists H and e for which there is no c

We'll define a *relation* over triples of $oldsymbol{H}$, $oldsymbol{e}$, and $oldsymbol{c}$

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

Heaps

$$H := \cdot \mid H, x \mapsto c$$

A lookup-function for heaps:

$$H(x) = \left\{ egin{array}{ll} c & ext{if} & H = H', x \mapsto c \ H'(x) & ext{if} & H = H', y \mapsto c' ext{ and } y
eq x \ 0 & ext{if} & H = \cdot \end{array}
ight.$$

Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements

► For expression evaluation, "we are given an H"

The judgment

$$H$$
; $e \Downarrow c$

to mean, "e evaluates to c under heap $oldsymbol{H}$ "

It is just a relation on triples of the form (H,e,c)

We just made up metasyntax H ; $e \Downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: $., x \mapsto 3 ; x + y \downarrow 3$, which will turn out to be true (this triple will be in the relation we define)

Or: $., x \mapsto 3$; $x + y \downarrow 6$, which will turn out to be *false* (this triple will not be in the relation we define)

Inference rules

$$\frac{\text{CONST}}{H \ ; c \Downarrow c} \qquad \frac{\text{VAR}}{H \ ; x \Downarrow H(x)}$$

$$\frac{H \ ; e_1 \Downarrow c_1 \qquad H \ ; e_2 \Downarrow c_2}{H \ ; e_1 + e_2 \Downarrow c_1 + c_2} \qquad \frac{H \ ; e_1 \Downarrow c_1 \qquad H \ ; e_2 \Downarrow c_2}{H \ ; e_1 * e_2 \Downarrow c_1 * c_2}$$

Top: hypotheses

Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you "instantiate consistently"

- ▶ So rules "work" "for all" H, c, e_1 , etc.
- lacktriangle But "each" e_1 has to be the "same" expression

Instantiating rules

Example instantiation:

$$\frac{\cdot, \mathtt{y} \mapsto \mathtt{4} ; \mathtt{3} + \mathtt{y} \Downarrow \mathtt{7} \quad \cdot, \mathtt{y} \mapsto \mathtt{4} ; \mathtt{5} \Downarrow \mathtt{5}}{\cdot, \mathtt{y} \mapsto \mathtt{4} ; (\mathtt{3} + \mathtt{y}) + \mathtt{5} \Downarrow \mathtt{12}}$$

Instantiates:

$$rac{H \ ; e_1 \Downarrow c_1}{H \ ; e_1 + e_2 \Downarrow c_1 + c_2}$$

with

$$H = \cdot, y \mapsto 4$$
 $e_1 = (3 + y)$
 $c_1 = 7$
 $e_2 = 5$
 $c_2 = 5$

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

$$\frac{\overline{\cdot, y \mapsto 4 ; 3 \downarrow 3} \quad \overline{\cdot, y \mapsto 4 ; y \downarrow 4}}{\cdot, y \mapsto 4 ; 3 + y \downarrow 7} \quad \overline{\cdot, y \mapsto 4 ; 5 \downarrow 5}$$

$$\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12$$

By definition, H ; $e \Downarrow c$ if there exists a derivation with H ; $e \Downarrow c$ at the root

Back to relations

So what relation do our inference rules define?

- lacktriangle Start with empty relation (no triples) R_0
- Let R_i be R_{i-1} union all H; $e \Downarrow c$ such that we can instantiate some inference rule to have conclusion H; $e \Downarrow c$ and all hypotheses in R_{i-1}
 - lacktriangle So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$
- $ightharpoonup R_{\infty}$ is the relation we defined
 - ▶ All triples at the bottom of complete derivations

For the math folks: R_{∞} is the smallest relation closed under the inference rules

What are these things?

We can view the inference rules as defining an interpreter

- Complete derivation shows recursive calls to the "evaluate expression" function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not "search"
- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - ► Facts established from hypotheses to conclusions

Some theorems

- ▶ Progress: For all H and e, there exists a c such that H; e \Downarrow c.
- ▶ Determinacy: For all H and e, there is at most one c such that H ; e ψ c.

We rigged it that way...

what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e.

A statement doesn't produce a constant.

A statement doesn't produce a constant.

It produces a new, possibly-different heap.

▶ If it terminates

A statement doesn't produce a constant.

It produces a new, possibly-different heap.

If it terminates

We could define H_1 ; $s \Downarrow H_2$

- lacktriangle Would be a partial function from H_1 and s to H_2
- ▶ Works fine; could be a homework problem

A statement doesn't produce a constant.

It produces a new, possibly-different heap.

If it terminates

We could define H_1 ; $s \Downarrow H_2$

- lacktriangle Would be a partial function from H_1 and s to H_2
- Works fine; could be a homework problem

Instead we'll define a "small-step" semantics and then "iterate" to "run the program"

$$H_1$$
; $s_1 \rightarrow H_2$; s_2

Statement semantics

$$H_1 ; s_1 \rightarrow H_2 ; s_2$$

$$egin{align} H ; e \Downarrow c \ \hline H ; x := e
ightarrow H, x \mapsto c ;$$
 skip

$$egin{aligned} rac{ ext{SEQ1}}{H\;;\; \mathsf{skip}; s
ightarrow H\;; s} & H\;; s_1
ightarrow H'\;; s_1' \ \hline H\;;\; s_1; s_2
ightarrow H'\;; s_1'; s_2 \ \hline H\;;\; e \Downarrow c \qquad c {>} 0 \ \hline H\;;\; ext{if}\; e\; s_1\; s_2
ightarrow H\;; s_1 \ \hline H\;;\; ext{if}\; e\; s_1\; s_2
ightarrow H\;; s_2 \ \hline \end{array}$$

SEQ2

Statement semantics cont'd

What about while $e \ s$ (do s and loop if e > 0)?

Statement semantics cont'd

What about **while** $e \ s$ (do s and loop if e > 0)?

WHILE

$$H$$
 ; while $e \ s o H$; if $e \ (s;$ while $e \ s)$ skip

Many other equivalent definitions possible

Program semantics

Defined $H : s \to H' : s'$, but what does "s" mean/do?

Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \dots$, with each step justified by a complete derivation using our single-step statement semantics

Let H_1 ; $s_1 \rightarrow^n H_2$; s_2 mean "becomes after n steps"

Let $H_1 ; s_1
ightharpoonup ^* H_2 ; s_2$ mean "becomes after 0 or more steps"

Pick a special "answer" variable ans

The program s produces c if \cdot ; $s \rightarrow^* H$; skip and $H(\mathtt{ans}) = c$

Does every s produce a c?

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(\mathtt{y}:=\mathtt{y}*\mathtt{x};\mathtt{x}:=\mathtt{x}-1)$.

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s=(y:=y*x;x:=x-1).

$$\cdot$$
; x := 3; y := 1; while x s

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

$$\cdot$$
; x := 3; y := 1; while x s

$$\rightarrow$$
 \cdot , x \mapsto 3; skip; y := 1; while x s

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s=(y:=y*x;x:=x-1).

$$\cdot$$
; x := 3; y := 1; while x s

- \rightarrow \cdot , x \mapsto 3; skip; y := 1; while x s
- \rightarrow \cdot , x \mapsto 3; y := 1; while x s

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

$$\cdot$$
; x := 3; y := 1; while x s

- \rightarrow \cdot , x \mapsto 3; skip; y := 1; while x s
- \rightarrow \cdot , x \mapsto 3; y := 1; while x s
- \rightarrow^2 \cdot , x \mapsto 3, y \mapsto 1; while x s

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s=(y:=y*x;x:=x-1).

$$\cdot$$
; x := 3; y := 1; while x s

- \rightarrow \cdot , x \mapsto 3; skip; y := 1; while x s
- \rightarrow \cdot , x \mapsto 3; y := 1; while x s
- \rightarrow^2 , x \mapsto 3, y \mapsto 1; while x s
- \rightarrow \cdot , x \mapsto 3, y \mapsto 1; if x (s; while x s) skip

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s=(y:=y*x;x:=x-1).

$$\cdot$$
; x := 3; y := 1; while x s

- \rightarrow \cdot , x \mapsto 3; skip; y := 1; while x s
- \rightarrow \cdot , x \mapsto 3; y := 1; while x s
- \rightarrow^2 \cdot , x \mapsto 3, y \mapsto 1; while x s
- \rightarrow \cdot , x \mapsto 3, y \mapsto 1; if x (s; while x s) skip
- \rightarrow \cdot , x \mapsto 3, y \mapsto 1; y := y * x; x := x 1; while x s

$$\rightarrow$$
² ·, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; while x s

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; \text{ while } x \ s$$

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \text{ while } x \ s$$

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; \text{ while } x \ s$$

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \text{ while } x \ s$$

$$\rightarrow \dots, y \mapsto 3, x \mapsto 2; \text{ if } x \ (s; \text{ while } x \ s) \text{ skip}$$

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; \text{ while } x \ s$$

$$\rightarrow^{2} \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \text{ while } x \ s$$

$$\rightarrow \dots, y \mapsto 3, x \mapsto 2; \text{ if } x \ (s; \text{ while } x \ s) \text{ skip}$$

$$\dots$$

Where we are

Defined H ; $e \Downarrow c$ and H ; $s \to H'$; s' and extended the latter to give s a meaning

- ► The way we did expressions is "large-step operational semantics"
- ► The way we did statements is "small-step operational semantics"
- ▶ So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

▶ Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by "running" it.

Example: Our last program terminates with x holding 0.

Establishing Properties

We can prove a property of a terminating program by "running" it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n, \cdot ; $s \rightarrow^n H$; **skip** cannot be derived.

Example: while 1 skip

Establishing Properties

We can prove a property of a terminating program by "running" it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n, \cdot ; $s \rightarrow^n H$; **skip** cannot be derived.

Example: while 1 skip

By induction on n, but requires a stronger induction hypothesis.

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and H; $s \to^* H'$; s', then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know H; $(s_1; s_2)$ terminates.