
CS152: Programming Languages

Lecture 3 — Operational Semantics

Dan Grossman
Spring 2011

Where we are

� Done: Caml basics, “IMP” syntax, structural induction

� Now: Operational semantics for our little “IMP” language

� Most of what you need for Homework 1

� (But Problem 4 requires proofs over semantics)

Dan Grossman CS152 Spring 2011, Lecture 3 2

Review

IMP’s abstract syntax is defined inductively:

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e
(c ∈ {. . . ,−2,−1, 0, 1, 2, . . . })
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . . })

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow

Dan Grossman CS152 Spring 2011, Lecture 3 3

Outline

� Semantics for expressions

1. Informal idea; the need for heaps

2. Definition of heaps

3. The evaluation judgment (a relation form)

4. The evaluation inference rules (the relation definition)

5. Using inference rules
� Derivation trees as interpreters
� Or as proofs about expressions

6. Metatheory: Proofs about the semantics

� Then semantics for statements
� ...

Dan Grossman CS152 Spring 2011, Lecture 3 4

Informal idea

Given e, what c does it evaluate to?

1 + 2 x+ 2

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

� Could use partial functions, but then ∃ H and e for which
there is no c

We’ll define a relation over triples of H, e, and c

� Will turn out to be function if we view H and e as inputs and
c as output

� With our metalanguage, easier to define a relation and then
prove it is a function (if, in fact, it is)

Dan Grossman CS152 Spring 2011, Lecture 3 5

Heaps

H ::= · | H,x �→ c

A lookup-function for heaps:

H(x) =

⎧⎨
⎩

c if H = H ′, x �→ c
H ′(x) if H = H ′, y �→ c′ and y �= x

0 if H = ·

� Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

� For expression evaluation, “we are given an H”

Dan Grossman CS152 Spring 2011, Lecture 3 6

The judgment

We will write: H ; e ⇓ c

to mean, “e evaluates to c under heap H”

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax H ; e ⇓ c to follow PL convention
and to distinguish it from other relations

We can write: ., x �→ 3 ; x + y ⇓ 3, which will turn out to be
true
(this triple will be in the relation we define)

Or: ., x �→ 3 ; x + y ⇓ 6, which will turn out to be false
(this triple will not be in the relation we define)

Dan Grossman CS152 Spring 2011, Lecture 3 7

Inference rules

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

mult
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 ∗ e2 ⇓ c1∗c2

Top: hypotheses
Bottom: conclusion (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you “instantiate consistently”

� So rules “work” “for all” H, c, e1, etc.

� But “each” e1 has to be the “same” expression

Dan Grossman CS152 Spring 2011, Lecture 3 8

Instantiating rules

Example instantiation:

·, y �→ 4 ; 3 + y ⇓ 7 ·, y �→ 4 ; 5 ⇓ 5

·, y �→ 4 ; (3 + y) + 5 ⇓ 12

Instantiates:
add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

with
H = ·, y �→ 4
e1 = (3 + y)
c1 = 7
e2 = 5
c2 = 5

Dan Grossman CS152 Spring 2011, Lecture 3 9

Derivations

A (complete) derivation is a tree of instantiations with axioms at
the leaves

Example:

·, y �→4 ; 3 ⇓ 3 ·, y�→4 ; y ⇓ 4

·, y�→4 ; 3 + y ⇓ 7 ·, y�→4 ; 5 ⇓ 5

·, y�→4 ; (3 + y) + 5 ⇓ 12

By definition, H ; e ⇓ c if there exists a derivation with
H ; e ⇓ c at the root

Dan Grossman CS152 Spring 2011, Lecture 3 10

Back to relations

So what relation do our inference rules define?

� Start with empty relation (no triples) R0

� Let Ri be Ri−1 union all H ; e ⇓ c such that we can
instantiate some inference rule to have conclusion H ; e ⇓ c
and all hypotheses in Ri−1

� So Ri is all triples at the bottom of height-j complete
derivations for j ≤ i

� R∞ is the relation we defined
� All triples at the bottom of complete derivations

For the math folks: R∞ is the smallest relation closed under the
inference rules

Dan Grossman CS152 Spring 2011, Lecture 3 11

What are these things?

We can view the inference rules as defining an interpreter

� Complete derivation shows recursive calls to the “evaluate
expression” function

� Recursive calls from conclusion to hypotheses
� Syntax-directed means the interpreter need not “search”

� See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

� Complete derivation proves facts from other facts starting
with axioms

� Facts established from hypotheses to conclusions

Dan Grossman CS152 Spring 2011, Lecture 3 12

Some theorems

� Progress: For all H and e, there exists a c such that
H ; e ⇓ c.

� Determinacy: For all H and e, there is at most one c such
that H ; e ⇓ c.

We rigged it that way...
what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the
expression e.

Dan Grossman CS152 Spring 2011, Lecture 3 13

On to statements

A statement doesn’t produce a constant.

It produces a new, possibly-different heap.

� If it terminates

We could define H1 ; s ⇓ H2

� Would be a partial function from H1 and s to H2

� Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to
“run the program”

H1 ; s1 → H2 ; s2

Dan Grossman CS152 Spring 2011, Lecture 3 14

Statement semantics

H1 ; s1 → H2 ; s2

assign
H ; e ⇓ c

H ; x := e → H,x �→ c ; skip

seq1

H ; skip; s → H ; s

seq2

H ; s1 → H ′ ; s′1
H ; s1; s2 → H ′ ; s′1; s2

if1
H ; e ⇓ c c>0

H ; if e s1 s2 → H ; s1

if2
H ; e ⇓ c c≤0

H ; if e s1 s2 → H ; s2

Dan Grossman CS152 Spring 2011, Lecture 3 15

Statement semantics cont’d

What about while e s (do s and loop if e > 0)?

while

H ; while e s → H ; if e (s;while e s) skip

Many other equivalent definitions possible

Dan Grossman CS152 Spring 2011, Lecture 3 16

Program semantics

Defined H ; s → H ′ ; s′, but what does “s” mean/do?

Our machine iterates: H1;s1→H2;s2→H3;s3 . . . ,
with each step justified by a complete derivation using our
single-step statement semantics

Let H1 ; s1 →n H2 ; s2 mean “becomes after n steps”

Let H1 ; s1 →∗ H2 ; s2 mean “becomes after 0 or more steps”

Pick a special “answer” variable ans

The program s produces c if · ; s →∗ H ; skip and H(ans) = c

Does every s produce a c?

Dan Grossman CS152 Spring 2011, Lecture 3 17

Example program execution

x := 3; (y := 1;while x (y := y ∗ x; x := x−1))

Let’s write some of the state sequence. You can justify each step
with a full derivation. Let s = (y := y ∗ x; x := x−1).

·; x := 3; y := 1;while x s

→ ·, x �→ 3; skip; y := 1;while x s

→ ·, x �→ 3; y := 1;while x s

→2 ·, x �→ 3, y �→ 1; while x s

→ ·, x �→ 3, y �→ 1; if x (s;while x s) skip

→ ·, x �→ 3, y �→ 1; y := y ∗ x; x := x− 1;while x s

Dan Grossman CS152 Spring 2011, Lecture 3 18

Continued...

→2 ·, x �→ 3, y �→ 1, y �→ 3; x := x−1;while x s

→2 ·, x �→ 3, y �→ 1, y �→ 3, x �→ 2; while x s

→ . . . , y �→ 3, x �→ 2; if x (s;while x s) skip

. . .

→ . . . , y �→ 6, x �→ 0; skip

Dan Grossman CS152 Spring 2011, Lecture 3 19

Where we are

Defined H ; e ⇓ c and H ; s → H ′ ; s′ and extended the latter
to give s a meaning

� The way we did expressions is “large-step operational
semantics”

� The way we did statements is “small-step operational
semantics”

� So now you have seen both

Definition by interpretation: program means what an interpreter
(written in a metalanguage) says it means

� Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

� But we defined IMP to have no errors

� And expressions never diverge

Dan Grossman CS152 Spring 2011, Lecture 3 20

Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove a program diverges, i.e., for all H and n,
· ; s →n H ; skip cannot be derived.

Example: while 1 skip

By induction on n, but requires a stronger induction hypothesis.

Dan Grossman CS152 Spring 2011, Lecture 3 21

More General Proofs

We can prove properties of executing all programs (satisfying
another property)

Example: If H and s have no negative constants and
H ; s →∗ H ′ ; s′, then H ′ and s′ have no negative constants.

Example: If for all H, we know s1 and s2 terminate, then for all
H, we know H;(s1; s2) terminates.

Dan Grossman CS152 Spring 2011, Lecture 3 22

