Where we are ► Done: Caml basics, "IMP" syntax, structural induction ▶ Now: Operational semantics for our little "IMP" language CS152: Programming Languages Most of what you need for Homework 1 Lecture 3 — Operational Semantics (But Problem 4 requires proofs over semantics) Dan Grossman Spring 2011 Outline Semantics for expressions IMP's abstract syntax is defined inductively: 1. Informal idea; the need for heaps s ::= skip | x := e | s; s | if e s s | while e se ::= c | x | e + e | e * e2. Definition of heaps $(c \in \{\dots, -2, -1, 0, 1, 2, \dots\})$ 3. The evaluation *judgment* (a relation form) $\in \{x_1, x_2, \dots, y_1, y_2, \dots, z_1, z_2, \dots, \}\}$ (x)4. The evaluation inference rules (the relation definition) We haven't yet said what programs *mean*! (Syntax is boring) 5. Using inference rules Derivation trees as interpreters Encode our "social understanding" about variables and control flow Or as proofs about expressions 6. Metatheory: Proofs about the semantics

Then semantics for statements

► ...

Informal idea

Dan Gro

Dan Grossman

Review

Given e, what c does it evaluate to?

1 + 2

x + 2

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

• Could use partial functions, but then \exists H and e for which there is no $m{c}$

CS152 Spring 2011. Lecture 3

We'll define a *relation* over triples of H, e, and c

- \blacktriangleright Will turn out to be *function* if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

S152 Spring 2011, Lecture 3

Heaps

Dan Grossman

$$H ::= \cdot \mid H, x \mapsto c$$

A lookup-function for heaps:

$$H(x) = \left\{egin{array}{ccc} c & ext{if} & H=H', x\mapsto c \ H'(x) & ext{if} & H=H', y\mapsto c' ext{ and } y
eq x \ 0 & ext{if} & H=\cdot \end{array}
ight.$$

CS152 Spring 2011. Lecture 3

Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements

CS152 Spring 2011. Lecture 3

▶ For expression evaluation, "we are given an H"

The judgment

We will write:

 $H ; e \Downarrow c$

to mean, "e evaluates to c under heap H"

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax H ; $e \Downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: $., x \mapsto 3$; $x + y \downarrow 3$, which will turn out to be true

(this triple will be in the relation we define)

Or: $., x \mapsto 3$; $x + y \Downarrow 6$, which will turn out to be *false* (this triple will not be in the relation we define)

CS152 Spring 2011. Lec

Instantiating rules

Example instantiation:

 $\frac{\cdot, \mathtt{y} \mapsto 4 \text{ ; } 3 + \mathtt{y} \Downarrow 7 \quad \cdot, \mathtt{y} \mapsto 4 \text{ ; } 5 \Downarrow 5}{\cdot, \mathtt{y} \mapsto 4 \text{ ; } (3 + \mathtt{y}) + 5 \Downarrow 12}$

Instantiates:

 $\frac{H ; e_1 \Downarrow c_1 \qquad H ; e_2 \Downarrow c_2}{H ; e_1 + e_2 \Downarrow c_1 + c_2}$

with $H=\cdot, {\tt y}\mapsto 4$ $e_1 = (3 + y)$ $c_1 = 7$ $e_2 = 5$ $c_2 = 5$

CS152 Spring 2011. Lecture 3

Back to relations

Dan Gr<u>ossma</u>

So what relation do our inference rules define?

- Start with empty relation (no triples) R_0
- Let R_i be R_{i-1} union all H; $e \downarrow c$ such that we can instantiate some inference rule to have conclusion H ; $e \Downarrow c$ and all hypotheses in R_{i-1}
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$
- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules

CS152 Spring 2011. Lecture 3

Inference rules

ADD

 $\overline{H ; x \Downarrow H(x)}$

VAR

 $\frac{H;e_1 \Downarrow c_1 \quad H;e_2 \Downarrow c_2}{H;e_1 \Downarrow c_1 \quad H;e_2 \Downarrow c_2} \quad \frac{H;e_1 \Downarrow c_1 \quad H;e_2 \Downarrow c_2}{H;e_1 \lor c_1 \quad H;e_2 \lor c_2}$ $H: e_1 + e_2 \Downarrow c_1 + c_2$ $H: e_1 * e_2 \Downarrow c_1 * c_2$

Top: hypotheses Bottom: conclusion (read first)

CONST

 $\overline{H; c \Downarrow c}$

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you "instantiate consistently"

- ▶ So rules "work" "for all" H, c, e₁, etc.
- ▶ But "each" e₁ has to be the "same" expression

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

CS152 Spring 2011. Lecture 3

Example:

$$\begin{array}{c} \hline \cdot, \mathsf{y} \mapsto 4 \ ; \ 3 \ \Downarrow \ 3 \\ \hline \cdot, \mathsf{y} \mapsto 4 \ ; \ 3 + \mathsf{y} \ \Downarrow \ 4 \\ \hline \hline \cdot, \mathsf{y} \mapsto 4 \ ; \ 3 + \mathsf{y} \ \Downarrow \ 7 \\ \hline \hline \cdot, \mathsf{y} \mapsto 4 \ ; \ (3 + \mathsf{y}) + 5 \ \Downarrow \ 12 \end{array}$$

By definition, H; $e \Downarrow c$ if there exists a derivation with $H : e \Downarrow c$ at the root

What are these things?

We can view the inference rules as defining an interpreter

Complete derivation shows recursive calls to the "evaluate expression" function

CS152 Spring 2011. Lecture 3

- Recursive calls from conclusion to hypotheses
- Syntax-directed means the interpreter need not "search"
- ▶ See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

Dan Grossma

 Some theorems Progress: For all H and e, there exists a c such that H; e ↓ c. Determinacy: For all H and e, there is at most one c such that H; e ↓ c. We rigged it that way what would division, undefined-variables, or gettime() do? Proofs are by induction on the the structure (i.e., height) of the expression e. 	On to statements A statement doesn't produce a constant. It produces a new, possibly-different heap. • If it terminates We could define H_1 ; $s \Downarrow H_2$ • Would be a partial function from H_1 and s to H_2 • Works fine; could be a homework problem Instead we'll define a "small-step" semantics and then "iterate" to "run the program" H_1 ; $s_1 \rightarrow H_2$; s_2
Dan Grossman CS152 Spring 2011, Lecture 3 13	Dan Grossman CS152 Spring 2011, Lecture 3 14
Statement semantics	Statement semantics cont'd
$egin{array}{c} H_1 \ ; \ s_1 ightarrow H_2 \ ; \ s_2 \end{array}$	What about while $e \ s$ (do s and loop if $e > 0$)?
$rac{H \ ; e \Downarrow c}{H \ ; x := e ightarrow H, x \mapsto c \ ;$ skip	$rac{ ext{WHILE}}{H ext{ ; while } e ext{ } s o H ext{ ; if } e ext{ } (s; ext{while } e ext{ } s) ext{ skip}}$
$ \begin{array}{ll} \overset{\text{SEQ1}}{\hline H \text{ ; skip; } s \to H \text{ ; s}} & \overset{\text{SEQ2}}{\hline H \text{ ; } s_1 \to H' \text{ ; } s_1'} \\ \overset{\text{IF1}}{\hline H \text{ ; } e \Downarrow c c > 0} \\ \overset{\text{IF2}}{\hline H \text{ ; } \text{ if } e s_1 s_2 \to H \text{ ; } s_1} & \overset{\text{IF2}}{\hline H \text{ ; } e \Downarrow c c \leq 0} \\ \overset{\text{IF2}}{\hline H \text{ ; } \text{ if } e s_1 s_2 \to H \text{ ; } s_1} \end{array} $	
Dan Grossman CS152 Spring 2011, Lecture 3 15	Dan Grossman CS152 Spring 2011, Lecture 3 16
Program semantics Defined H ; $s \rightarrow H'$; s' , but what does " s " mean/do? Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \dots$, with each step justified by a complete derivation using our single-step statement semantics Let H_1 ; $s_1 \rightarrow^n H_2$; s_2 mean "becomes after n steps" Let H_1 ; $s_1 \rightarrow^* H_2$; s_2 mean "becomes after 0 or more steps" Pick a special "answer" variable ans The program s produces c if \cdot ; $s \rightarrow^* H$; skip and $H(ans) = c$ Does every s produce a c ?	Example program execution x := 3; (y := 1; while x (y := y * x; x := x-1)) Let's write some of the state sequence. You can justify each step with a full derivation. Let $s = (y := y * x; x := x-1)$. $\cdot; x := 3; y := 1; while x s$ $\rightarrow \cdot, x \mapsto 3; skip; y := 1; while x s$ $\rightarrow \cdot, x \mapsto 3; y := 1; while x s$ $\rightarrow \cdot, x \mapsto 3; y \mapsto 1; while x s$ $\rightarrow \cdot, x \mapsto 3, y \mapsto 1; if x (s; while x s) skip$
Dan Grossman CS152 Spring 2011, Lecture 3 17	$ ightarrow \cdot, {\tt x} \mapsto 3, {\tt y} \mapsto 1; {\tt y} := {\tt y} * {\tt x}; {\tt x} := {\tt x} - 1;$ while ${\tt x}$ s

Continued	Where we are
$ ightarrow^2$, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x-1; while x s	Defined $H \ ; e \Downarrow c$ and $H \ ; s ightarrow H' \ ; s'$ and extended the latter to give s a meaning
$ ightarrow^2 \ \ \cdot, {\tt x} \mapsto {\tt 3}, {\tt y} \mapsto {\tt 1}, {\tt y} \mapsto {\tt 3}, {\tt x} \mapsto {\tt 2};$ while ${\tt x} \ s$	 The way we did expressions is "large-step operational semantics"
\rightarrow , y \mapsto 3, x \mapsto 2; if x (s; while x s) skip	 The way we did statements is "small-step operational semantics"
	So now you have seen both
$ ightarrow \ \ldots, ext{y} \mapsto 6, ext{x} \mapsto 0;$ skip	Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means Interpreter represents a (very) abstract machine that runs code
	Large-step does not distinguish errors and divergence
	 But we defined IMP to have no errors
	 And expressions never diverge
Establishing Properties We can prove a property of a terminating program by "running" it. Example: Our last program terminates with x holding 0. We can prove a program diverges, i.e., for all H and n , \cdot ; $s \rightarrow^{n} H$; skip cannot be derived. Example: while 1 skip By induction on n , but requires a <i>stronger induction hypothesis</i> .	$\begin{array}{l} \mbox{More General Proofs}\\ \mbox{We can prove properties of executing all programs (satisfying another property)}\\ \mbox{Example: If H and s have no negative constants and H ; s $\rightarrow *$ H' ; s', then H' and s' have no negative constants.\\ \mbox{Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know H;($s_1; s_2) terminates.} \end{array}$