Name:

CSE 505, Fall 2006, Midterm Examination
2 November 2006

Please do not turn the page until everyone is ready.

Rules:

e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

Please stop promptly at 11:50.

e You can rip apart the pages, but please write your name on each page.

There are 100 points total, distributed unevenly among 4 questions (which have multiple parts).

Advice:
e Read questions carefully. Understand a question before you start writing.

e Write down thoughts and intermediate steps so you can get partial credit.

The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you
get to all the problems.

If you have questions, ask.

Relax. You are here to learn.

Name:

For your reference:

s u= skip|z:=e|s;s|ifess|whilees
e == claz|etelexe
(c € {..,-2,-1,0,1,2,...})
(J? (S {Xl,Xg,...,y17y27...,21,22,...,...})
H;e | ¢
CONST VAR ADD ML
Hie | a H;e | e Hi;e | a H;er | e
H;cl c H;z || Hx) H;ei+e | c1+c H; epxey | c1%co
’Hl§51 —>H2;82‘
ASSIGN 5ol SEQ2
H;el c SEQ H; s, — H ;s
H;x:=e — Hxw—c; skip H ; skipjs — H ; s H; si1382 — H'; 8589
F1l IF2
H:;e | c c>0 H;e | c c<0 WHILE

H:ifes so — H; s H:ifes so — H; s H ; whilees — H ; if e (s;while e s) skip

e = Ar.e|lxzlee]c
v o= Az.elc
T o= int|T—7T
e— ¢
er — €] es — €
(\z. €) v — e[v/x] e1 ea — €} ea vey — v e

ele’/x] =€"

ele/z] =€ yFx y¢gFV(e)

xle/z] =e (\y. e1)[e/x] = N\y. €]
y#w e1le/z] =€} eale/z] = e
yle/x] =y (e1 ea)le/x] = €] ¢
Nrx:mbe:mn ke :m—m I'keg:m
T'tc:int Ptz T'(x) T'tXz.e:mp — 1 I'keley:m

elf -Fe:7ande—¢€, then -Fe':T.
e If - e: 7, then e is a value or there exists an €’ such that e — €’.

e IfT o7’ Fe:7and 'k e : 7/, then I'F efe’/x] : 7.

Name:

1. (IMP with booleans)
In this problem we extend the IMP expression language with booleans: true, false, negation, and
inclusive-or. (Variables hold integers or booleans, but that is not directly relevant to the questions
below.) The new syntax forms are:

e u= ...|true|false|—e|eVe

The result of evaluating an expression can be an integer (not relevant below), true, or false. That is,
we have H ; e |} v where v ::= ¢ true | false.

Negation and inclusive-or can be “stuck” if a subexpression does not evaluate to a boolean.

(a) (10 points) Add rules to our large-step operational semantics to support the new syntax forms.
For ey V ey, use short-circuiting left-to-right evaluation (like || in many languages). If your rules
all contain explicit uses of false and true, then you should expect to write 7 rules.

(b) (12 points) Theorem: If e always evaluates to a boolean, then e and —~—e are equivalent.

e Restate this theorem formally.

e Prove this theorem formally.

(c¢) (10 points) Add implication (e = e) to the language. Recall “a implies b if a is false or b is
true.”

e Give large-step operational semantics rules that support this extension “directly,” using short-
circuiting left-to-right evaluation. If your rules all contain explicit uses of false and true, then
you should expect to write 3 rules.

e Give 1 rule that works just as well as your 3 rules by treating implication as a derived form.
Remember this should be a large-step rule. Use v in this rule.

Name:

(This page intentionally blank.)

Name:

. (18 points) (IMP with large-step semantics)

We can give IMP statements a large-step semantics with a judgment of the form H;s || H'. The
rules below do so, but there are errors. (The rules match neither our informal understanding nor our
small-step semantics.) Find three errors (two of which are the same conceptual error), explain the
problem, why it is a problem, and how to change the rules to solve the problem.

ASSIGN SEQ
SKIP Hi;el c H;s | Hy H;sy |} Hy

H;skip || H Hz=c|Hzxz—c H; (s1;82) | Ha

F1l
H;e | c H;s1 | Hy H;so | Ho c>0

H;if e s1 s9 | Hy

IF2 WHILE
H;e | c H;s1 | Hy H;so || Ho c<0 H;if e (s;while e s) skip |} H'

H;if e s1 52| Ho H;whilee s || H'

Name:

. (15 points) (Caml and functional programming)

Consider this Caml code, which type-checks and runs correctly.

type dumbTree = Empty | Node of dumbTree * dumbTree

let rec s f t =
match t with
Empty -> £ t
| Node(x,y) > ft+sfx+sfy

let c1 t
let c2 t

s (fun x > 1) t
s (fun x -> match x with Node(1,Empty) -> 1 | _ -> 0) t

(a) What are the types of s, c1, and ¢27
(b) What do c1 and c¢2 compute? (Hint: The answers are straightforward.)

(¢) Rewrite the last two lines of the code so they are shorter and equivalent.

Name:

4. (Coin-flipping in Lambda-Calculus)

In this problem we take the simply-typed lambda-calculus with conditionals (true, false, if e1 eq e3, and
the type bool) and add a “coin-flip” expression, flip. This expression is not a value. Our call-by-value
left-to-right small-step semantics has two new semantic rules:

(a)

flip — true flip — false

(5 points) In lambda-calculus with conditionals, write a (curried) function that returns the
exclusive-or of its arguments. Do not use the constant true and use the constant false only once.
(This does not require flip.)

(5 points) Argue that for all e, (Az. e) true and e[true/z] are equivalent under call-by-value.

(8 points) Argue that depending on e, (Az. e) flip and elflip/z] may or may not be equivalent
under call-by-value.
(5 points) Give a typing rule for flip.

(12 points) Assuming we have proofs of progress, preservation, and substitution for lambda-
calculus with conditionals, explain how to extend the proofs for programs containing flip. Be clear
about the induction hypothesis and what cases you are adding.

Name:

(This page intentionally blank.)

