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1 Substructural Type Systems

The Curry-Howard isomorphism gives a connection between logic and types. This connection goes both
ways: we can use insights from logic to think about programming languages, and develop new language
features that correspond to logical entities; and we can use insights from programming languages to influ-
ence our study and use of logic.

We consider how substructural logics give rise to substructural type systems.

1.1 Natural deduction and structural inference rules

Natural deduction is a kind of proof calculus that can be used to formalize mathematical logic. It’s called
“natural deduction” because it is meant to correspond to a “natural” way of reasoning about truth. In
natural deduction, we write

A1, . . . , An ` B
to mean that whenever formulas A1 through An are true, then formula B is true. For example, in a propo-
sitional calculus, we may write the judgment

p,¬q ` q ⇒ (p⇒ r),

which intuitively means that if proposition p is true, and formula ¬q is true, then the formula q ⇒ (p ⇒ r)
is true.

Like we do in programming languages, we can write inference rules and axioms for a given natural
deduction calculus, that define which judgments are true. For example, we may have an axiom

φ, ψ ` φ ∧ ψ

That is, if formulas φ and ψ are true, then the conjunction φ ∧ ψ is true.
The inference rules that are concerned with the manipulation of the assumptions (i.e., the formulas on

the left of the turnstile “`”) are known as the structural inference rules. The structural inference rules allow us
to treat the assumptions like a set. That is, there are inference rules to re-order the assumptions, to collapse
identical assumptions, and to remove unneeded assumptions. We use Γ and ∆ to range over (possibly
empty) sequences of formulas.

EXCHANGE
Γ, A,B,∆ ` C
Γ, B,A,∆ ` C

CONTRACTION
Γ, A,A,∆ ` B

Γ, A,∆ ` B
WEAKENING

Γ,∆ ` B
Γ, A,∆ ` B

There are, of course, other inference rules, depending on the logic. Here are some of the inference rules
for a propositional logic. Note that the assumptions in the conclusion of the inference rules are conserved
in the premises, e.g., there is no duplication or dropping of assumptions.

A ` A
Γ, B ` A

Γ ` B ⇒ A

Γ ` B ⇒ A ∆ ` B
Γ,∆ ` A

Γ ` A ∆ ` B
Γ,∆ ` A ∧B

Γ ` A ∧B
Γ ` A

Γ ` A ∧B
Γ ` B

If we drop any of the structural inference rules from the definition of our logic, we have a substructural
logic.

For example, if we allow Exchange but drop Weakening and Contraction we have a linear logic: every
assumption must be used exactly once. If we allow both Exchange and Weakening, but drop Contraction,
we have an affine logic: every assumption may be used at most once.
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1.2 Substructural type systems

So, what new programming language features or designs do substructural logic give us? You may have
noticed the similarity between the natural deduction judgments for logic and the type judgments we use in
programming languages. A type judgment looks like

Γ ` e :τ

where we can think of the type context Γ as being a sequence x1 : τ1, . . . , xn : τn. Inference rules for such a
type system would need to have rules for manipulating the type context.

EXCHANGE
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ
CONTRACTION

Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′

WEAKENING
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x not in Γ,∆

If we drop any of these structural inference rules, we have a substructural type system.

• Linear type systems ensure that every variable is used exactly once. Linear type systems drop Con-
traction and Weakening (but keep Exchange).

• Affine type systems ensure that every variable is used at most once. Affine type systems drop Con-
traction (but keep Weakening and Exchange).

• Relevant type systems ensure that every variable is used at least once. Relevant type systems drop
Weakening (but keep Contraction and Exchange).

• Ordered type systems ensure that every variable is exactly once, in the order in which they are intro-
duced. Ordered type systems drop Weakening, Contraction, and Exchange.

Linear type systems So if we drop Contraction and Weakening, we have a linear type system, by analogy
with a linear logic. So how does dropping Contraction and Weakening affect the set of programs that will
be well typed? Well, variables placed into the typing context must be used exactly once along any control
flow path. The rule Contraction would allow us to use a variable multiple times, and Weakening allows
us to not use a variable at all. This makes linear type systems good for tracking the use of resources. For
example, we can use a linear type system to track open file handles, and ensure that a client must always
close a file (i.e., must use the file handle at least once), and cannot close a file multiple times (i.e., must use
the file handle at most once). In a similar way, we can use a linear type system to track objects allocated on
the heap, and (with some additional language support) ensure that we have always exactly one pointer to
a heap object. This can be useful for reasoning about aliasing: if we maintain an invariant that each heap
object has exactly one pointer, then if a function is given two pointers, it knows they must not alias.

To use linear type systems in practice, it is often necessary to allow both linear types, and non-linear
types (i.e., variables that can contraction and weakening applied to them), and/or to allow linearity to be
weakened locally.

Ordered type systems Think about a type system where we drop all three structural rules (Exchange,
Contraction, and Weakening). This is known as an ordered type system. Every variable is used exactly once,
in the order it was introduced. In the same way that we can use a linear type system to help us reason
about heap-allocated memory, we can use an ordered type system to help us reason about stack-allocated
memory: not only must we use (i.e., deallocate) every piece of memory exactly once, but we must do so in
stack order: i.e., the most recently allocated memory on the stack must be deallocated first.
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1.3 Linear lambda calculus

Let’s consider a calculus that uses a linear type system to track use of objects.1 The motivation for this
calculus is that by ensuring that objects are used exactly once, after an object has been used, we can safely
deallocate the object (i.e., reclaim the physical resources, such as memory, that are associated with the
object).

The syntax for our calculus is as follows. We will consider booleans, pairs, and functions.

q ::= lin | un
e ::= x | q b | q (e1, e2) | q λx :τ. e | e1 e2 | if e1 then e2 else e3 | split e1 asx, y in e2
b ∈ {true, false}

Note that all values have a qualifier q, indicating whether the value is to be treated linearly (meaning
that the value can be used exactly once, and the resources used to represent the resource can be reclaimed
after the single use), or whether use is unrestricted. The other unusual construct is split e1 asx, y in e2, which
evaluates e1 to a pair value, and then binds variable x to the first element of the pair, and binds variable y to
the second element of the pair, and proceeds with evaluation of e2 (which can use variables x and y). This
allows us to extract the elements of a pair value with just a single use of the pair. If we had the projection
operations—#1 e and #2 e—then we would need to use a pair value twice in order to extract both of its
constituent values.

We will present the operational semantics for this language after presenting the type system.

1.3.1 Type system

The syntax for the types are presented below. A pretype π is either a product type, a function type, or the
type for Booleans. A type τ = q π is a pretype and a qualifier (either lin or un). A value of type lin π
should be treated linearly (i.e., used exactly once) whereas a value of type un π can be used as many times
as desired. We treat type contexts as a (possibly empty) sequence of pairs x :τ .

π ::= bool | τ1 × τ2 | τ1 → τ2

τ ::= q π

Γ ::= ∅ | Γ, x :τ

The inference rules for the typing judgment maintains two invariants: (1) linear variables are used
exactly once on each control flow path; and (2) unrestricted data structures may not contain linear data
structures.

Linear variables will be substituted with linear values at run time, and thus the first invariant ensures
that those linear values are used exactly once. The second invariant ensures, for example, that we cannot
have a value such as un (lin true, lin true). The pair value is marked as unrestricted, meaning we can use it
as many times as we would like, whereas the contents of the pair data structure are marked as linear. If we
could in fact use the pair value many times, then we could repeatedly extract the contents of the pair and
use them. Thus, we prevent unrestricted data structures (such as pairs or functions) from containing linear
values.

Before we present the typing rules, we first introduce a relation that allows us to split a context Γ into
two pieces Γ1 and Γ2 (written Γ = Γ1 ◦ Γ2), such that each variable with linear type in Γ appears in exactly
one of Γ1 and Γ2, and unrestricted variables in Γ appear in both Γ1 and Γ2. This relation will help us ensure
that each linear variable in Γ is used exactly once.

1This calculus is from the chapter “Substructural Type Systems,” by David Walker, in Advanced Topics in Types and Programming
Languages, editor Benjamin C. Pierce, MIT Press, 2002.
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∅ = ∅ ◦ ∅
Γ = Γ1 ◦ Γ2

Γ, x :un π = (Γ1, x :un π) ◦ (Γ2, x :un π)

Γ = Γ1 ◦ Γ2

Γ, x : lin π = (Γ1, x : lin π) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin π = Γ1 ◦ (Γ2, x : lin π)

We also define predicates on types and contexts, to help us identify whether a type τ is a linear type
(lin(τ)) or an unrestricted type (un(τ)), and whether a type context Γ consists entirely of linear types (lin(Γ))
or entirely of unrestricted types (un(Γ)). More formally:

• un(τ) if and only if τ = un π.

• lin(τ) if and only if τ = un π or τ = lin π.

• q(Γ) if and only if for all (x :τ) ∈ Γ, we have q(τ).

The typing judgment has the form Γ ` e :τ , and the inference rules for the judgment are as follows.

T-VAR
un(Γ1,Γ2)

Γ1, x :τ,Γ2 ` x :τ
T-BOOL

un(Γ)

Γ ` q b :q bool

T-IF
Γ1 ` e1 :q bool Γ2 ` e2 :τ Γ2 ` e3 :τ

Γ ` if e1 then e2 else e3 :τ
Γ = Γ1 ◦ Γ2

T-PAIR
Γ1 ` e1 :τ1 Γ2 ` e2 :τ2 q(τ1) q(τ2)

Γ ` q (e1, e2) :q (τ1, τ2)
Γ = Γ1 ◦ Γ2

T-SPLIT
Γ1 ` e1 :q (τ1 × τ2) Γ2, x :τ1, y :τ2 ` e2 :τ

Γ ` split e1 asx, y in e2 :τ
Γ = Γ1 ◦ Γ2

T-ABS
q(Γ) Γ, x :τ ` e :τ ′

Γ ` q λx :τ. e :q τ → τ ′
T-APP

Γ1 ` e1 :q τ → τ ′ Γ2 ` e2 :τ

Γ ` e1 e2 :τ ′
Γ = Γ1 ◦ Γ2

For inference rules for expressions that have subexpressions (e.g., application e1 e2 which has sub-
expressions e1 and e2) we need to split the type context in order to type check the sub-expressions. This
ensures that a linear variable is used by exactly one sub-expression. However, in the rule T-IF, we split the
context into Γ1 (which is used to type check the conditional expression e1), but use Γ2 to type check both
branches e2 and e3. This is because execution will either e2 or e3. That is, no matter which branch is taken,
the linear variables in Γ2 will be used.

Note that in rules T-VAR and T-BOOL, we check in the premises that the remaining variables in the
context are all unrestricted. That is because those remaining variables are not used, which would be a
problem if any of the variables had linear type.

In rule T-PAIR, the premises q(τ1) and q(τ2) ensure that an unrestricted pair can not contain any linear
values, enforcing invariant (2) above. Similarly, in rule T-ABS, premise un(Γ) ensures that if the function
value is unrestricted (q = un), then there are no linear variables closed over in the body of the function.

Consider the following example code, that attempts to discard a linear value (i.e., the linear variable x
will not used when the expression is applied).

lin λx : lin bool. (lin λf :un (un bool→ lin bool). lin true) (un λy :un bool. x)
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This program is not well-typed. In particular, the premise q(Γ) of T-ABS fails to hold.
The following example is also not well-typed: it tries to duplicate linear values, i.e., the linear variable

x will be used twice when the expression is applied.

lin λx : lin bool. (lin λf :un (un bool→ lin bool). lin (f (un true), f (un true))) (un λy :un bool. x)

Finally, note that rule T-VAR allows the variable being used, x, to appear anywhere in the type context.
Because of this, we do not explicitly need an inference rule corresponding to EXCHANGE. We could, how-
ever replace rule T-VAR with the following two rules, T-EXCHANGE and T-VAR2, and have an equivalent
type system.

T-EXCHANGE
Γ1, y :τ ′, x :τ,Γ2 ` e :τ

Γ1, x :τ, y :τ ′,Γ2 ` e :τ
T-VAR2

un(Γ1)

Γ, x :τ ` x :τ

1.3.2 Operational semantics

We use a store-based semantics. That is, to emphasize the usefulness of the linear type system, we store
values in the heap. (This makes sense for data structures, but for simplicity we inefficiently store all values,
including boolean primitives, in the heap.)

A prevalue p is either a boolean constant, a function, or a pair of values. A value v = q p is a qualified
prevalue. We use a call-by-value evaluation order.

p ::= b | λx :τ. e | (`1, `2)

v ::= q p

E ::= [·] | if E then e2 else e3 | q (E, e) | q (`, E) | splitE asx, y in e | E e | ` E

CONTEXT
〈e, σ〉 −→ 〈e′, σ′〉

〈E[e], σ〉 −→ 〈E[e′], σ′〉
VAL

〈v, σ〉 −→ 〈`, σ[` 7→ v]〉
` 6∈ dom(σ)

IF-TRUE

σ(`) = q true σ′ =

{
σ if q = un
σ \ ` if q = lin

〈if ` then e1 else e2, σ〉 −→ 〈e1, σ′〉
IF-FALSE

σ(`) = q false σ′ =

{
σ if q = un
σ \ ` if q = lin

〈if ` then e1 else e2, σ〉 −→ 〈e2, σ′〉

SPLIT

σ(`) = q (`1, `2) σ′ =

{
σ if q = un
σ \ ` if q = lin

〈split `asx, y in e, σ〉 −→ 〈e{`1/x}{`2/y}, σ′〉
APP

σ(`1) = q λx :τ. e σ′ =

{
σ if q = un
σ \ `1 if q = lin

〈`1 `2, σ〉 −→ 〈e{`2/x}, σ′〉

Rule VAL ensures that once we have evaluated an expression to a value, we allocate a new location `,
and put the value in the location. All the rules that use a linear value immediately free the location that
they used (expressed as σ′ = σ \ `, meaning that store σ′ is the same as σ except that location ` has been
removed). Otherwise, the semantics are standard.

Note that the use of the linear type system ensures that a location is never accessed after it is freed.

1.4 The Rust programming language

Rust is a programming language (developed by Mozilla Research) that aims to be a memory-safe, concur-
rent, and practical systems programming language. In order to ensure memory safety, Rust uses a sophis-
ticated type system to reason about the lifetime of data. This ensures that memory can be efficiently freed
as soon as it is no longer needed (without the need for a garbage collector), also that pointers to data are
handled correctly, including not dereferencing freed memory (no use-after-free) and pointers are not used
to free memory multiple times (no double-free).
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Rust does not use a linear type system. However, some of the concepts involved in reasoning about the
number of references to data objects are similar to the sub-structural type systems we have considered. We
summarize these concepts here.

In Rust, we can create memory objects (which are allocated on the stack when possible, or in the heap
otherwise), and then create references (which are similar to pointers) to objects. An immutable reference can
not be used to change the state of an object. That is, with only an immutable reference to an object, we
can only read (but not update) the object. A mutable reference allows us to both read and update an object.
References are immutable by default.

For example, in the following code, think of v, w, and z as (stack allocated) 32-bit integers, a is an
immutable reference to v, and b is a mutable reference to w.

let v : i32 = 13;
let mut w : i32 = 14;
let z : i32 = 15;

let a : &i32 = &v;
let b : &mut i32 = &mut w;

println!("The answer is {}", *a + *b + z);

*b = 7; // Modify the contents of w

*a = 5; // ERROR: a is not a mutable reference.
// (Indeed, v is not a mutable i32!)

Rust allows many of type annotations to be elided (it will infer them), and also can automatically coerce
references. We could write the above code equivalently as follows.

let v = 13;
let mut w = 14;
let z = 15;

let a = &v;
let b = &mut w;

println!("The answer is {}", *a + *b + z);

*b = 7;

*a = 5; // ERROR: ...

Here’s a more interesting example, where we use vector objects instead of integers.

let v : Vec<i32> = vec![11,12,13];
let mut w : Vec<i32> = vec![13,14,15];
let z : Vec<i32> = vec![15,16,17];

let a : &Vec<i32> = &v;
let b : &mut Vec<i32> = &mut w;

println!("The answer is {}", a[2] + b[1] + z[0]);

b.push(4); // Modify the contents of vector w
a.push(5); // ERROR: a is not a mutable reference.

// (Indeed, v is not a mutable Vector!)

In Rust, there is a notion of ownership of an object. When a variable is bound to a newly allocated
memory object, the variable owns the object. For example, in the code above, z initially owns the memory
object it is bound to. Note that once variable z goes out of scope, we could free the memory that z is bound
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to. This is good! It means that we can automatically and efficiently recover the memory resources, without
the programmer needing to worry about explicitly freeing memory.

Ownership can move from one variable to another, permanently or temporarily. If ownership is moved
temporarily, it is called borrowing. In the following example, ownership of the vector object is transferred
from v to w, and, once a goes out of scope, it is transferred back to v.

let mut v = vec![20,21,22];
{

let a = &mut v;
a.push(23);
println!("The answer is {}", a[3]);

}
// ownership is now back with v
v.push(24);

The Rust type system enforces two invariants:

1. A reference cannot outlive its referent

2. A mutable reference cannot be aliased

To see why the first invariant is important, consider the following code snippet, where the lifetime of
reference a is longer than the lifetime of the object bound to v. (Note: we mark a as mutable so that we can
assign to it a reference to v.)

let mut a = &mut vec![0];
{

let mut v = vec![20,21,22];
let a = &mut v;
a.push(23);

} // vector object is deallocated here

println!("The answer is {}", a[3]); // ERROR: use after free,
// since a outlives v

The second invariant in primarily useful to ensure safety in concurrent settings (and we will consider
concurrency in later lectures). However, note that it is completely fine to have multiple immutable refer-
ences to the same object! In the following example, one mutable reference to the object is borrowed by
multiple immutable references.

fn main() {
let mut v = vec![20,21,22];
{

let a = &v; // immutable reference to v
let b = &v; // immutable reference to v

// ownership of v is now shared between a and b
// v.push(22) // ERROR
println!("The answer is {}", a[0] + b[2]);
// ownership can be back with v
// v.push(22) // OK

}
// ownership is now back with v
v.push(24);

}
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Rust includes many more features beyond those we’ve had space to discuss here. More information
about Rust is available at https://www.rust-lang.org/. Extensive pointers to resources for learn-
ing Rust are at https://github.com/ctjhoa/rust-learning. For the material covered in this lec-
ture, the Chapter 4 (Ownership and Lifetimes) of The Rustonomicon is most relevant (see https://doc.
rust-lang.org/nomicon/ownership.html).
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