Algebraic structures

Lecture 18
Tuesday, March 30, 2021

In abstract algebra, algebraic structures are defined by a set of elements and operations on those elements that satisfy certain laws. Some of these algebraic structures have interesting and useful computational interpretations. In this lecture we will consider several algebraic structures (monoids, functors, and monads), and consider the computational patterns that these algebraic structures capture. We will look at Haskell, a functional programming language named after Haskell Curry, which provides support for defining and using such algebraic structures. Indeed, monads are central to practical programming in Haskell. First, however, we consider type constructors, and see two new type constructors.

1 Type constructors

A type constructor allows us to create new types from existing types. We have already seen several different type constructors, including product types, sum types, reference types, and parametric types.

The product type constructor \times takes existing types τ_{1} and τ_{2} and constructs the product type $\tau_{1} \times \tau_{2}$ from them. Similarly, the sum type constructor + takes existing types τ_{1} and τ_{2} and constructs the product type $\tau_{1}+\tau_{2}$ from them.

We will briefly introduce list types and option types as more examples of type constructors.

1.1 Lists

A list type τ list is the type of lists with elements of type τ. We write [] for the empty list, and $v_{1}:: v_{2}$ for the list that contains value v_{1} as the first element, and v_{2} is the rest of the list. We also provide a way to check whether a list is empty (isempty? e) and to get the head and the tail of a list (head e and tail e).

Assume that we have a call-by-value lambda calculus with booleans and a fixpoint operator $\mu x: \tau . e$. We extend the syntax and semantics of this language with lists as follows.

$$
\begin{array}{ll}
\text { Expressions } & e::=\cdots|[]| e_{1}:: e_{2} \mid \text { isempty } ? e \mid \text { head } e \mid \text { tail } e \\
\text { Values } & v::=\cdots|[]| v_{1}:: v_{2} \\
\text { Types } & \tau::=\cdots \mid \tau \text { list } \\
\text { Evaluation contexts } & E::=\cdots|E:: e| v:: E \mid \text { isempty? } E \mid \text { head } E \mid \text { tail } E
\end{array}
$$

$\overline{\text { isempty? [] } \longrightarrow \mathbf{t r u e}} \overline{\text { isempty? } v_{1}:: v_{2} \longrightarrow \text { false }} \overline{\text { head } v_{1}:: v_{2} \longrightarrow v_{1}} \xrightarrow{\text { tail } v_{1}:: v_{2} \longrightarrow v_{2}}$
$\overline{\Gamma \vdash[]: \tau \text { list }} \frac{\Gamma \vdash e_{1}: \tau \quad \Gamma \vdash e_{2}: \tau \text { list }}{\Gamma \vdash e_{1}:: e_{2}: \tau \text { list }} \frac{\Gamma \vdash e: \tau \text { list }}{\Gamma \vdash \text { isempty? } e: \text { bool }} \frac{\Gamma \vdash e: \tau \text { list }}{\Gamma \vdash \text { head } e: \tau} \frac{\Gamma \vdash e: \tau \text { list }}{\Gamma \vdash \text { tail } e: \tau \text { list }}$

For example, we can define a function append that takes two lists and appends one to the other, as follows.
append $\triangleq \mu f: \tau$ list $\rightarrow \tau$ list $\rightarrow \tau$ list. $\lambda a: \tau$ list. $\lambda b: \tau$ list. if isempty? a then b else (head $a)::(f($ tail $a) b)$

1.2 Options

A value of option type τ option is either a value v of type τ (indicated by value some v) or a distinguished value none. Option types are used in practical functional programming languages: in OCaml option types
are written ' a option, and in Haskell the option type is Maybe a. In Java, all class types are essentially option types: a value of class C may be either null or an object of class C.

We will extend the syntax of a call-by-value lambda calculus with option types by adding none and some e as new expressions. We will also provide a construct to use option values: case e_{1} of $e_{2} \mid e_{3}$, where e_{1} should evaluate to an option value, e_{2} and e_{3} are functions, and e_{2} will be applied to the unit value () if e_{1} evaluates to none, and e_{3} will be applied to value v if e_{1} evaluates to some v.

Expressions	$e::=\cdots \mid$ none \mid some $e \mid$ case e_{1} of $e_{2} \mid e_{3}$
Values	$v::=\cdots \mid$ none \mid some v
Types	$\tau::=\cdots \mid \tau$ option
Evaluation contexts	$E::=\cdots \mid$ some $E \mid$ case E of $e_{2} \mid e_{3}$

We can think of type τ option as being syntactic sugar for the sum type unit $+\tau$, and none and some e as being syntactic sugar for inl $\mathbf{u n i t}+\tau()$ and inr unit $+\tau e$ respectively.

2 Algebraic structures

2.1 Monoids

A monoid is a set T with a distinguished element called the unit (which we will denote u) and a single operation multiply : $T \rightarrow T \rightarrow T$ that satisfies the following laws.

$$
\begin{aligned}
\forall x \in T . \text { multiply } x u & =x & \text { Left identity } \\
\forall x \in T . \text { multiply } u x & =x & \text { Right identity } \\
\forall x, y, z \in T . \text { multiply } x \text { (multiply } y z) & =\text { multiply (multiply } x y) z & \text { Associativity }
\end{aligned}
$$

The first two laws indicate that the unit u is the identity (or unity) for multiply. The third law says that the multiply operation is associative. The third law may look more familiar or natural if we use infix notation for the multiply operator, instead of the prefix notation we have been using so far:

$$
\forall x, y, z \in T . x \text { multiply }(y \text { multiply } z)=(x \text { multiply } y) \text { multiply } z
$$

For those familiar with abstract algebra, a monoid is essentially a group without an inverse operator.
If we regard the set of elements T as the set of values of a specific type τ, and the operator multiply as being a function of type $\tau \rightarrow \tau \rightarrow \tau$, then we have several examples of monoids readily at hand.

- Integers with multiplication. Here T is the set of values with type Int (i.e., the integer literals), and the multiply operation is the function λa : Int. λb : Int. $a \times b$ (or, we can just treat \times as an infix function), and unit is the integer 1.
- Integers with addition. Here T is the set of values with type Int, and the multiply operation is the function $\lambda a: \operatorname{Int} . \lambda b: \operatorname{Int} . a+b$, and unit is the integer 0 . Note that the same underlying set can have different operations that satisfy the monoid laws!
- Strings with concatenation. Here T is the set of values with type String, unit is the empty string, and the multiply operation is the function λa : Int. λb : Int. $a++b$, where ++ denotes string concatenation.
- Lists with append. Let τ be some fixed type, and T is the set of values with type τ list, i.e., lists with elements of type τ. The unit value is the empty list [], and the multiply operation is the function that appends two lists, defined above.

2.2 Functors

A functor is an algebraic structure that associates with each set A a set T_{A}. (To foreshadow how we will interpret the computational content of functors, think of T as a type constructor.)

A functor has a single operation map $:(A \rightarrow B) \rightarrow T_{A} \rightarrow T_{B}$ that takes a function from A to B and an element of T_{A} and returns an element of T_{B}. The operation map satisfies the following laws, where ; denotes function composition (i.e., $(f \circ g)(x)=g(f(x)))$.

$$
\begin{array}{rrr}
\forall f \in A \rightarrow B, g \in B \rightarrow C .(\operatorname{map} f) \stackrel{(\operatorname{map} g)}{ }=\operatorname{map}(f ; g) & \text { Distributivity } \\
\operatorname{map}(\lambda a: A \cdot a)=\left(\lambda a: T_{A} \cdot a\right) & \text { Identity }
\end{array}
$$

The first law says that composing map f and map g (and thus getting a function from T_{A} to T_{C}) is equivalent to using map on the composition of f and g. The second law says that map of the identity function $\lambda a: A$. a must be the identify function.

We can think of T_{A} as being a container that contains elements from the set A. Given a function that transforms elements of A to elements of B, the operator map gives us a way to transform containers of A to containers of B.

What examples do we have of functors in the programming language constructs we have seen so far?

- Options. Here T is the type constructor option, and a suitable function for the operation map is the following function.

$$
\lambda f: \tau_{1} \rightarrow \tau_{2} . \lambda a: \tau \text { option. case } a \text { of } \lambda x: \text { unit. none } \mid \lambda v: \tau \text {. some }(f v)
$$

Note that if a is none, then the result of map $f a$ is none. Otherwise, if a is some v, then the result is some ($f v$).
Exercise: check to make sure that the laws are indeed satisfied.

- Lists. Here T is the type constructor list, and as the name suggests, a suitable function for the map operator is the map function that you may be familiar with from OCaml's standard list library.

$$
\operatorname{map} \triangleq \lambda f: \tau_{1} \rightarrow \tau_{2} . \mu m: \tau_{1} \text { list } \rightarrow \tau_{2} \text { list. } \lambda a: \tau_{1} \text { list. if isempty? } a \text { then } a \text { else }(f \text { head } a):: m(\text { tail } a)
$$

Exercise: check to make sure that the laws are indeed satisfied.

2.3 Monads

Like functors, monads associate each set A with a set M_{A} (think of M as a type construtor). The computational intuition behind a monad is that M_{A} represents a computation that, if it terminates, will produce a value of type A, and in addition, the computation may produce some side effects. Side effects may include reading or writing memory, or throwing an exception.

A monad has two operations, called return and bind. Operation return has signature $A \rightarrow M_{A}$ and bind has signature $M_{A} \rightarrow\left(A \rightarrow M_{B}\right) \rightarrow M_{B}$. For the moment, let's ignore the laws that these operators should satisfy and instead focus on the intuition behind these operators.

Operation return takes a value of type A, and returns an element in M_{A} that represents the value. Operation bind can be thought of as doing the opposite: it takes a monadic value of type M_{A}, and a function from A to M_{B}, it "extracts" the underlying value of type A from the monadic value, and passes it to the function, and produces a result of type M_{B}.

It's worth noting that if you flip the arguments of bind and you get something that looks very close to functor. Indeed, every monad is a functor. (Exercise: why? Given a monad with operations return and bind, show how to define the functor operation map.)

Let's look briefly at the monad laws.

$$
\begin{aligned}
\forall x \in A, f \in A \rightarrow M_{B} \text {. bind }(\text { return } x) f & =f x & \text { Left identity } \\
\forall a m \in M_{A} . \text { bind am return } & =\text { am } & \text { Right identity } \\
\forall a m \in M_{A}, f \in A \rightarrow M_{B}, f \in B \rightarrow M_{C} . \text { bind }(\text { bind am } f) g & =\text { bind am }(\lambda a: A . \operatorname{bind}(f a) g) & \text { Associativity }
\end{aligned}
$$

These laws look a lot like the laws for monoid. This isn't a coincidence. For those interested in digging into such things, monads are monoids in the category of endofunctors.

Option monad. Let's consider an example of a monad: the option type. For the purposes of this examples, let's assume that the value none represents a failure, that is, the computation was unable to produce a value of type τ (think of it as a very simple kind of exception, indicating that the computation couldn't produce a value, but terminated abnormally instead). In this setting, failure of the computation is a side effect: something that may happen during the computation that is in addition (or instead of) the final value of type τ.

Let's instantiate the signatures of return and bind for the option monad.

$$
\begin{aligned}
& \text { return }: \tau \rightarrow \tau \text { option } \\
& \text { bind: } \tau_{1} \text { option } \rightarrow\left(\tau_{1} \rightarrow \tau_{2} \text { option }\right) \rightarrow \tau_{2} \text { option }
\end{aligned}
$$

The return operation is defined as the function that simply takes a value x of type τ and returns some x.

$$
\text { return } \triangleq \lambda x: \tau \text {. some } x
$$

The bind operation is defined as follows.

$$
\text { bind } \triangleq \lambda a m: \tau_{1} \text { option. } \lambda f: \tau_{1} \rightarrow \tau_{2} \text { option. case } a m \text { of } \lambda x: \text { unit. none } \mid \lambda a: \tau_{1} . f a
$$

Let's consider what bind does. Its first argument, $m a$, is a value of type τ_{1} option, that is, either a value of type τ, or none, indicating failure. Function f takes a value of type τ_{1}, and does some computation using that value; if the computation fails, then f will return none; otherwise, f will return a τ_{2} value. Function bind combines $m a$ and f in the obvious way: if $m a$ is none, then the whole thing evaluates to none, otherwise, it takes the value a of type τ_{1} and runs the computation represented by f.

While the option monad gives an example of what bind and return mean computationally, it isn't yet clear why monads are an interesting and useful computational abstraction. To further understand the benefits of monads, let's consider their use in the Haskell programming language.

3 Algebraic Structures in Haskell

Haskell is a pure functional language. Haskell has a "call by need" evaluation order, also known as lazy evaluation. Like call-by-name evaluation order, function arguments do not need to be evaluated to values before the function is applied, and the argument is only evaluated if it is used in the function body. Unlike call-by-name, call-by-need semantics evaluates an argument at most once (where as call-by-name may evaluate an argument expression multiple times).

3.1 Type classes

Haskell has type classes: a mechanism to enable ad hoc polymorphism (see Lecture 14). A type class declares common functions that all types within that class have.

We can use type classes to express the algebraic structures we defined earlier. For example, here is the declaration of the type class for monoids. The declaration says that every type g that is a member of the Monoid type class has values mempty and mappend, with types g and $g \rightarrow g \rightarrow g$ respectively. These values correspond to the unit value and multiply operation respectively. (Note that the type class does not express the laws that should hold on mempty and mappend.)

```
class Monoid g where
    mempty :: g
    mappend :: g }->\textrm{g}->\textrm{g
```

We can tell Haskell that a given type is a member of a class type by declaring it an instance of the class. The following code says that the types Int and String are monoids, and provides appropriate definitions of mempty and mappend.

```
instance Monoid Int where
    mempty = 0
    mappend x y = x + y
    -- mappend = (+)
```

instance Monoid String where
mempty = "
mappend $=(++)$

We can write code that uses the overloading of functions provided by type classes. The following function mconcat has type $[\mathrm{g}] \rightarrow \mathrm{g}$ (i.e., it is a function from a list of g to a g), provided that type g is an instance of the type class Monoid.

```
mconcat :: (Monoid g) \(\Rightarrow[\mathrm{g}] \rightarrow \mathrm{g}\)
mconcat [] = mempty
mconcat ( \(x: x s\) ) \(=x\) `mappend mconcat \(x s\)
```

When we use mconcat, the Haskell type checker will ensure that the constraint Monoid g is satisfied, and moreover, will use the type-class instance declarations to determine the appropriate values to use for mempty and mappend. Thus Haskell is providing overloading of mempty and mappend.

```
mconcat ["hi", "there"]
mconcat [3,4,35]
```

Similarly, we can declare a type class that expresses the monad operations, and declare types to be in that type class.

$$
\begin{aligned}
& \text { class Monad } \mathrm{m} \text { where } \\
& \text { return }:: \mathrm{a} \rightarrow \mathrm{~m} \text { a } \\
& \quad(\gg=):: \mathrm{m} \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{mb}) \rightarrow \mathrm{mb}
\end{aligned}
$$

The bind operator is written $\gg=$, and used infix.

```
instance Monad Maybe where
    return = Just
    ( \(\gg=\) ) e f \(=\)
                    case e of
                        Nothing \(\rightarrow\) Nothing
                            Just \(\mathrm{x} \rightarrow \mathrm{fx}\)
```


3.2 Using monads

Let's see how we can use monads in computation. Let's consider a simple example where we have a list of pairs of Strings and Integers, representing a map from names to ages. Given two names (which may or may not be in the map), we want to compute the difference in ages. Let's first see how we could write this function without using monads. (We don't define the function lookup, but it has type $a \rightarrow[(a, b)] \rightarrow$ Maybe b, and returns Nothing if the name isn't found in the list that represents the map.)

```
ageDiff \(::\) String \(\rightarrow\) String \(\rightarrow[(\) String, Integer \()] \rightarrow\) Maybe Integer
ageDiff n1 n2 ages =
    case lookup n 1 ages of
        Nothing \(\rightarrow\) Nothing
        Just a1 \(\rightarrow\)
            case lookup n 2 ages of
                Nothing \(\rightarrow\) Nothing
                Just n2 \(\rightarrow\)
                    Just (abs (a1 - a2))
```

This code is quite verbose. Each time we look up the age from a name, we have to handle the case where the name wasn't present in the map. Let's use the fact that Maybe is a monad, and take advantage of the bind operation.

```
ageDiff' :: String \(\rightarrow\) String \(\rightarrow\) [(String, Integer) \(] \rightarrow\) Maybe Integer
ageDiff' n1 n2 ages =
    lookup n1 ages
    \(\gg=\)
        \(\backslash\) a1 \(\rightarrow\) lookup n2 ages
    \(\gg=\)
        \(\backslash \mathrm{a} 2 \rightarrow\) return (abs (a1-a2))
```

Here, the bind operation took care of chaining together the computations, and only executed the next computation if the previous one did not fail.

Haskell provides convenient syntax for using monads. We will cover this syntax a bit more in section, but it allows us to write the example as

```
ageDiff" :: String -> String }->\mathrm{ [(String, Integer)] }->\mathrm{ Maybe Integer
ageDiff" n1 n2 ages = do {
    a1 \leftarrow lookup n1 ages;
    a2 }\leftarrow\mathrm{ lookup n2 ages;
    return (abs (a1 - a2))
}
```


3.3 Why are monads so useful in Haskell?

Monads are central to practical programming in Haskell. There are several reasons why monads are so useful in Haskell.

1. Haskell is a pure language: programs can not have arbitrary side effects. This can be very useful. Consider an OCaml function (OCaml is not a pure language); when you execute this function, you have no idea whether the function will print something out to the screen, whether it may write to a file, whether it may throw an exception, etc. The type signature of the OCaml function does not describe what the function does, simply the value that it may return. By contrast, in Haskell, a function from, say, integers to integers, is guaranteed to have no side effects when you execute it. In Haskell, an expression with type Integer \rightarrow Integer is not allowed to have any side effects.
But side effects are useful! We may want to write a function that performs input and output, or that may raise an exception, or that may fail and return Nothing. Haskell's type system allows side effects through the use of monads. In Haskell, monadic types cleanly and clearly express the side effects that a computation may have.
2. Monads force computation into sequence. To use the return and bind operations of a monad requires choosing a sequence for computation. In the ageDiff examples above, using the monad requires us to specify that lookup n 1 ages happens before lookup n 2 ages.
In general, forcing the programmer to specify a sequence for computation is great when the computations may have side effects (e.g., failure, writing to disk, etc.), as it ensures that there is a clearly de-
fined order that the side effects should happen in. In the ageDiff examples, the computation lookup n2 ages happens only if lookup $n 1$ ages does not fail.
3. Type classes enable us to capture the underlying structure of the computational pattern used in monads, and Haskell provides convenient syntax to generically exploit this structure. There are many monads and language features in Haskell allow us to capture the essence of monadic computation, and write reusable, readable code for monads.
