
Induction
CS 152 (Spring 2021)

Harvard University

Tuesday, February 2, 2021

Today, we learn to

I define an inductive set

I derive the induction principle of an inductive set

I prove properties of programs by induction

I use Coq to check our proofs

I believe in induction!

Expressing Program Properties

Progress

∀e ∈ Exp. ∀σ ∈ Store.

either e ∈ Int or ∃e ′, σ′. < e, σ >−→< e ′, σ′ >

Termination

∀e ∈ Exp. ∀σ0 ∈ Store. ∃σ ∈ Store. ∃n ∈ Int.

< e, σ0 >−→∗< n, σ >

Deterministic Result

∀e ∈ Exp. ∀σ0, σ, σ′ ∈ Store. ∀n, n′ ∈ Int.

if < e, σ0 >−→∗< n, σ > and

< e, σ0 >−→∗< n′, σ′ > then

n = n′ and σ = σ′.

Inductive Sets

Inductive Set: Definition

Axiom:

a ∈ A

Inductive Rule:

a1 ∈ A . . . an ∈ A

a ∈ A

Grammar for Exp

e ::= x | n | e1 + e2 | e1 × e2 | x := e1; e2

Inductive Set Exp

Var
x ∈ Exp

x ∈ Var Int
n ∈ Exp

n ∈ Int

Add
e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp

Mul
e1 ∈ Exp e2 ∈ Exp

e1 × e2 ∈ Exp

Asg
e1 ∈ Exp e2 ∈ Exp

x := e1; e2 ∈ Exp
x ∈ Var

Grammar Equivalent to Inductive Set

e ::= x | n | e1 + e2 | e1 × e2 | x := e1; e2

Var
x ∈ Exp

x ∈ Var Int
n ∈ Exp

n ∈ Int

Add
e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp

Mul
e1 ∈ Exp e2 ∈ Exp

e1 × e2 ∈ Exp

Asg
e1 ∈ Exp e2 ∈ Exp

x := e1; e2 ∈ Exp
x ∈ Var

Inductive Set Exp: Example Derivation

Mul

Add

Var
foo ∈ Exp

Int
3 ∈ Exp

(foo + 3) ∈ Exp
Var

bar ∈ Exp

(foo + 3)× bar ∈ Exp

Inductive Set N (Natural Numbers)

The natural numbers can be inductively defined:

0 ∈ N
n ∈ N

succ(n) ∈ N

where succ(n) is the successor of n.

Inductive Set −→ (Step Relation)

The small-step evaluation relation −→ is an
inductively defined set. The definition of this set is
given by the semantic rules.

Inductive Set −→∗ (Multi-Step Rel.)

< e, σ >−→∗< e, σ >

< e, σ >−→< e ′, σ′ > < e ′, σ′ >−→∗< e ′′, σ′′ >

< e, σ >−→∗< e ′′, σ′′ >

Inductive proofs

Mathematical induction

Mathematical induction

For any property P ,
If

I P(0) holds

I For all natural numbers n, if P(n) holds then
P(n + 1) holds

then for all natural numbers k , P(k) holds.

Mathematical induction

0 ∈ N
n ∈ N

succ(n) ∈ N

For any property P ,
If

I P(0) holds

I For all natural numbers n, if P(n) holds then
P(n + 1) holds

then for all natural numbers k , P(k) holds.

Induction on inductively-defined sets

Induction on inductively-defined sets
For any property P ,
If
I Base cases: For each axiom

a ∈ A ,

P(a) holds.
I Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A

a ∈ A ,

if P(a1) and . . . and P(an) then P(a).

then for all a ∈ A, P(a) holds.

Inductive reasoning principle for set Exp

For any property P ,
If

I For all variables x , P(x) holds.

I For all integers n, P(n) holds.

I For all e1 ∈ Exp and e2 ∈ Exp, if P(e1) and
P(e2) then P(e1 + e2) holds.

I For all e1 ∈ Exp and e2 ∈ Exp, if P(e1) and
P(e2) then P(e1 × e2) holds.

I For all variables x and e1 ∈ Exp and e2 ∈ Exp,
if P(e1) and P(e2) then P(x := e1; e2) holds.

then for all e ∈ Exp, P(e) holds.

Case Int

Int
n ∈ Exp

n ∈ Int

For all integers n,
P(n) holds

Case Add

Add
e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp

For all e1 ∈ Exp and e2 ∈ Exp,
if P(e1) and P(e2)
then P(e1 + e2) holds.

Inductive reasoning principle for set −→
For any property P , If

I Var: For all variables x , stores σ and integers n such that σ(x) = n, P(< x, σ >−→< n, σ >) holds.

I Add: For all integers n,m, p such that p = n + m, and stores σ, P(< n + m, σ >−→< p, σ >)
holds.

I Mul: For all integers n,m, p such that p = n × m, and stores σ, P(< n × m, σ >−→< p, σ >)
holds.

I Asg: For all variables x , integers n and expressions e ∈ Exp,
P(< x := n; e, σ >−→< e, σ[x 7→ n] >) holds.

I LAdd: For all expressions e1, e2, e
′
1 ∈ Exp and stores σ and σ′, if P(< e1, σ >−→< e′1, σ

′ >)

holds then P(< e1 + e2, σ >−→< e′1 + e2, σ
′ >) holds.

I RAdd: For all integers n, expressions e2, e
′
2 ∈ Exp and stores σ and σ′, if

P(< e2, σ >−→< e′2, σ
′ >) holds then P(< n + e2, σ >−→< n + e′2, σ

′ >) holds.

I LMul: For all expressions e1, e2, e
′
1 ∈ Exp and stores σ and σ′, if P(< e1, σ >−→< e′1, σ

′ >)

holds then P(< e1 × e2, σ >−→< e′1 × e2, σ
′ >) holds.

I RMul: For all integers n, expressions e2, e
′
2 ∈ Exp and stores σ and σ′, if

P(< e2, σ >−→< e′2, σ
′ >) holds then P(< n × e2, σ >−→< n × e′2, σ

′ >) holds.

I Asg1: For all variables x , expressions e1, e2, e
′
1 ∈ Exp and stores σ and σ′, if

P(< e1, σ >−→< e′1, σ
′ >) holds then P(< x := e1; e2, σ >−→< x := e′1; e2, σ

′ >) holds.

then for all < e, σ >−→< e ′, σ′ >,
P(< e, σ >−→< e ′, σ′ >) holds.

Proving progress

Progress (Statement)

Progress: For each store σ and expression e that is
not an integer, there exists a possible transition for
< e, σ >:

∀e ∈ Exp. ∀σ ∈ Store.

either e ∈ Int or ∃e ′, σ′. < e, σ >−→< e ′, σ′ >

Progress (Rephrased)

P(e) = ∀σ. (e ∈ Int)∨(∃e ′, σ′. < e, σ >−→< e ′, σ′ >)

Progress (Rephrased)

∀e ∈ Exp. ∀σ ∈ Store.

either e ∈ Int or ∃e ′, σ′. < e, σ >−→< e ′, σ′ >

P(e) = ∀σ. (e ∈ Int)∨(∃e ′, σ′. < e, σ >−→< e ′, σ′ >)

Example: Proving progress

by “structural induction on the expressions e”

We will prove by structural induction on expressions
Exp that for all expressions e ∈ Exp we have

P(e) = ∀σ. (e ∈ Int)∨(∃e ′, σ′. < e, σ >−→< e ′, σ′ >).

Consider the possible cases for e.

Proving progress: Case e = x

By the Var axiom, we can evaluate < x , σ > in
any state: < x , σ >−→< n, σ >, where n = σ(x).
So e ′ = n is a witness that there exists e ′ such that
< x , σ >−→< e ′, σ >, and P(x) holds.

Proving progress: Case e = x

Var
< x , σ >−→< n, σ >

where n = σ(x)

By the Var axiom, we can evaluate < x , σ > in
any state: < x , σ >−→< n, σ >, where n = σ(x).
So e ′ = n is a witness that there exists e ′ such that
< x , σ >−→< e ′, σ >, and P(x) holds.

Proving progress: Case e = n

Then e ∈ Int, so P(n) trivially holds.

Proving progress: Case e = e1 + e2
This is an inductive step. The inductive hypothesis
is that P holds for subexpressions e1 and e2. We
need to show that P holds for e. In other words, we
want to show that P(e1) and P(e2) implies P(e).
Let’s expand these properties. We know that the
following hold:

P(e1) = ∀σ. (e1 ∈ Int) ∨ (∃e ′, σ′. < e1, σ >−→< e ′, σ′ >)

P(e2) = ∀σ. (e2 ∈ Int) ∨ (∃e ′, σ′. < e2, σ >−→< e ′, σ′ >)

and we want to show:

P(e) = ∀σ. (e ∈ Int)∨(∃e ′, σ′. < e, σ >−→< e ′, σ′ >)

We must inspect several subcases.

Proving progress: Case e = e1 + e2,
e1, e2 ∈ Int

First, if both e1 and e2 are integer constants, say
e1 = n1 and e2 = n2, then by rule Add we know
that the transition < n1 + n2, σ >−→< n, σ > is
valid, where n is the sum of n1 and n2. Hence,
P(e) = P(n1 + n2) holds (with witness e ′ = n).

Proving progress: Case e = e1 + e2,
e1 6∈ Int

Second, if e1 is not an integer constant, then by the
inductive hypothesis P(e1) we know that
< e1, σ >−→< e ′, σ′ > for some e ′ and σ′. We can
then use rule LAdd to conclude
< e1 + e2, σ >−→< e ′ + e2, σ

′ >, so
P(e) = P(e1 + e2) holds.

Proving progress: Case e = e1 + e2,
e1 ∈ Int, e2 6∈ Int

Third, if e1 is an integer constant, say e1 = n1, but
e2 is not, then by the inductive hypothesis P(e2) we
know that < e2, σ >−→< e ′, σ′ > for some e ′ and
σ′. We can then use rule Radd to conclude
< n1 + e2, σ >−→< n1 + e ′, σ′ >, so
P(e) = P(n1 + e2) holds.

Proving progress: Remaining cases

Case e = e1 × e2 and case e = x := e1; e2. These
are also inductive cases, and their proofs are similar
to the previous case. [Note that if you were writing
this proof out for a homework, you should write
these cases out in full.]

Incremental update

For all expressions e and stores σ, if
< e, σ >−→< e ′, σ′ > then
either σ = σ′ or
there is some variable x and integer n such that
σ′ = σ[x 7→ n].

Proving incremental update

We proceed by induction on the derivation of
< e, σ >−→< e ′, σ′ >. Suppose we have e, σ, e ′

and σ′ such that < e, σ >−→< e ′, σ′ >. The
property P that we will prove of e, σ, e ′ and σ′,
which we will write as P(< e, σ >−→< e ′, σ′ >), is
that either σ = σ′ or there is some variable x and
integer n such that σ′ = σ[x 7→ n]:

P(< e, σ >−→< e ′, σ′ >) ,

σ = σ′ ∨ (∃x ∈ Var, n ∈ Int. σ′ = σ[x 7→ n]).

Consider the cases for the derivation of
< e, σ >−→< e ′, σ′ >.

Proving incremental update: Case Add

This is an axiom. Here, e ≡ n + m and e ′ = p
where p is the sum of m and n, and σ′ = σ. The
result holds immediately.

Proving incremental update: Case LAdd

This is an inductive case. Here, e ≡ e1 + e2 and
e ′ ≡ e ′1 + e2 and < e1, σ >−→< e ′1, σ

′ >. By the
inductive hypothesis, applied to
< e1, σ >−→< e ′1, σ

′ >, we have that either σ = σ′

or there is some variable x and integer n such that
σ′ = σ[x 7→ n], as required.

Proving incremental update: Case Asg

This is an axiom. Here e ≡ x := n; e2 and e ′ ≡ e2
and σ′ = σ[x 7→ n]. The result holds immediately.

Proving incremental update: remaining
cases

We leave the other cases (Var, RAdd, LMul,
RMul, Mul, and Asg1) as exercises. Seriously,
try them. Make sure you can do them. Go on.

Break

Incremental update:
For all expressions e and stores σ, if
< e, σ >−→< e ′, σ′ > then
either σ = σ′ or
there is some variable x and integer n such that
σ′ = σ[x 7→ n].

Can you prove incremental update by structural
induction on the expression e
instead of by induction on the derivation
< e, σ >−→< e ′, σ′ > (as we just did)?

Interlude: What if induction weren’t true?

Peano Axioms

0 → 1 → 2 → 3 → . . .

1. zero is a number.

2. If a is a number, the successor of a is a number.

3. zero is not the successor of a number.

4. Two numbers of which the successors are equal
are themselves equal.

5. (induction axiom.) If a set S of numbers
contains zero and also the successor of every
number in S , then every number is in S .

Monster Chains

0 → 1 → 2 → 3 → . . .

. . .→ −a1→ a0→ a1→ a2′ → a3′ → . . .

. . .→ −b1→ b0→ b1′ → b2′ → b3′ → . . .

