Induction CS 152 (Spring 2021)

Harvard University

Tuesday, February 2, 2021

Today, we learn to

- define an inductive set
- derive the induction principle of an inductive set
- prove properties of programs by induction
- use Coq to check our proofs
- believe in induction!

Expressing Program Properties

$\forall e \in \mathsf{Exp}. \ \forall \sigma \in \mathsf{Store}.$ either $e \in \mathsf{Int}$ or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

Termination

$\forall e \in \mathsf{Exp.} \ \forall \sigma_0 \in \mathsf{Store.} \ \exists \sigma \in \mathsf{Store.} \ \exists n \in \mathsf{Int.} \\ < e, \sigma_0 > \longrightarrow^* < n, \sigma >$

Deterministic Result

$$\forall e \in \mathsf{Exp.} \ \forall \sigma_0, \sigma, \sigma' \in \mathsf{Store.} \ \forall n, n' \in \mathsf{Int.}$$

if $\langle e, \sigma_0 \rangle \longrightarrow^* \langle n, \sigma \rangle$ and
 $\langle e, \sigma_0 \rangle \longrightarrow^* \langle n', \sigma' \rangle$ then
 $n = n' \text{ and } \sigma = \sigma'.$

Inductive Sets

Inductive Set: Definition

Axiom:

$$a \in A$$

Inductive Rule:

$$\begin{array}{ccc} a_1 \in A & \dots & a_n \in A \\ \hline & a \in A \end{array}$$

Grammar for Exp

$e ::= x | n | e_1 + e_2 | e_1 \times e_2 | x := e_1; e_2$

Inductive Set Exp

VAR - $x \in Exp$ $x \in Var$ INT - $n \in Exp$ $n \in Int$ ADD $\frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 + e_2 \in \mathsf{Exp}}$ $MUL \frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 \times e_2 \in \mathsf{Exp}}$ Asg $\frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{x := e_1; e_2 \in \mathsf{Exp}} x \in \mathsf{Var}$

Grammar Equivalent to Inductive Set

$$e ::= x \mid n \mid e_1 + e_2 \mid e_1 \times e_2 \mid x := e_1; e_2$$

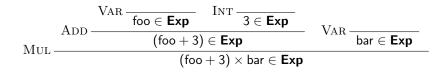
VAR
$$- x \in Exp$$
 $x \in Var$ INT $- n \in Exp$ $n \in Int$

ADD
$$\frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 + e_2 \in \mathsf{Exp}}$$

$$MUL \underbrace{\begin{array}{c} e_1 \in \mathsf{Exp} & e_2 \in \mathsf{Exp} \\ \hline e_1 \times e_2 \in \mathsf{Exp} \end{array}}_{e_1 \times e_2 \in \mathsf{Exp}}$$

Asg
$$\frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{x := e_1; e_2 \in \mathsf{Exp}} x \in \mathsf{Var}$$

Inductive Set **Exp**: Example Derivation



Inductive Set ℕ (Natural Numbers)

The natural numbers can be inductively defined:

$$\begin{array}{c} n \in \mathbb{N} \\ \hline 0 \in \mathbb{N} \end{array} \qquad \begin{array}{c} succ(n) \in \mathbb{N} \end{array}$$

where succ(n) is the successor of n.

Inductive Set \longrightarrow (Step Relation)

The small-step evaluation relation \longrightarrow is an inductively defined set. The definition of this set is given by the semantic rules.

Inductive Set \longrightarrow^* (Multi-Step Rel.)

 $\langle e, \sigma \rangle \longrightarrow^* \langle e, \sigma \rangle$

 $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle \langle e', \sigma' \rangle \longrightarrow^* \langle e'', \sigma'' \rangle$ $\langle e, \sigma \rangle \longrightarrow^* \langle e'', \sigma'' \rangle$

Inductive proofs

Mathematical induction

Mathematical induction

- For any property *P*, **If**
 - P(0) holds
 - For all natural numbers n, if P(n) holds then P(n+1) holds

then for all natural numbers k, P(k) holds.

Mathematical induction

$$\begin{array}{c} n \in \mathbb{N} \\ \hline 0 \in \mathbb{N} \end{array} \qquad \begin{array}{c} n \in \mathbb{N} \\ \hline succ(n) \in \mathbb{N} \end{array}$$

For all natural numbers n, if P(n) holds then P(n+1) holds

then for all natural numbers k, P(k) holds.

Induction on inductively-defined sets

Induction on inductively-defined sets For any property *P*, If

Base cases: For each axiom

$$a \in A$$
,

P(a) holds. ► Inductive cases: For each inference rule $\frac{a_1 \in A \quad \dots \quad a_n \in A}{a \in A},$ if P(a₁) and ... and P(a_n) then P(a).

then for all $a \in A$, P(a) holds.

Inductive reasoning principle for set Exp

For any property *P*, **If**

- For all variables x, P(x) holds.
- For all integers n, P(n) holds.
- For all $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(e_1 + e_2)$ holds.
- For all $e_1 \in \mathbf{Exp}$ and $e_2 \in \mathbf{Exp}$, if $P(e_1)$ and $P(e_2)$ then $P(e_1 \times e_2)$ holds.
- For all variables x and e₁ ∈ Exp and e₂ ∈ Exp, if P(e₁) and P(e₂) then P(x := e₁; e₂) holds.
 then for all e ∈ Exp, P(e) holds.

$\mathsf{Case}~\mathsf{INT}$

INT $n \in \mathsf{Exp}$ $n \in \mathsf{Int}$

For all integers n, P(n) holds

$\mathsf{Case}\ \mathrm{Add}$

$ADD \frac{e_1 \in \mathsf{Exp} \quad e_2 \in \mathsf{Exp}}{e_1 + e_2 \in \mathsf{Exp}}$

For all
$$e_1 \in \mathbf{Exp}$$
 and $e_2 \in \mathbf{Exp}$,
if $P(e_1)$ and $P(e_2)$
then $P(e_1 + e_2)$ holds.

Inductive reasoning principle for set \longrightarrow

For any property P, If

- VAR: For all variables x, stores σ and integers n such that $\sigma(x) = n$, $P(\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle)$ holds.
- ADD: For all integers n, m, p such that p = n + m, and stores σ, P(< n + m, σ >→< p, σ >) holds.
- MUL: For all integers n, m, p such that $p = n \times m$, and stores $\sigma, P(\langle n \times m, \sigma \rangle \longrightarrow \langle p, \sigma \rangle)$ holds.
- Asg: For all variables x, integers n and expressions e ∈ Exp, P(< x := n; e, σ >→< e, σ[x ↦ n] >) holds.
- ▶ LADD: For all expressions $e_1, e_2, e'_1 \in \mathbf{Exp}$ and stores σ and σ' , if $P(\langle e_1, \sigma \rangle \longrightarrow \langle e'_1, \sigma' \rangle)$ holds then $P(\langle e_1 + e_2, \sigma \rangle \longrightarrow \langle e'_1 + e_2, \sigma' \rangle)$ holds.
- ▶ RADD: For all integers n, expressions $e_2, e'_2 \in Exp$ and stores σ and σ' , if $P(< e_2, \sigma > \longrightarrow < e'_2, \sigma' >)$ holds then $P(< n + e_2, \sigma > \longrightarrow < n + e'_2, \sigma' >)$ holds.
- ▶ LMUL: For all expressions $e_1, e_2, e'_1 \in \mathbf{Exp}$ and stores σ and σ' , if $P(\langle e_1, \sigma \rangle \longrightarrow \langle e'_1, \sigma' \rangle)$ holds then $P(\langle e_1 \times e_2, \sigma \rangle \longrightarrow \langle e'_1 \times e_2, \sigma' \rangle)$ holds.
- RMUL: For all integers n, expressions e₂, e'₂ ∈ Exp and stores σ and σ', if P(< e₂, σ >→< e'₂, σ' >) holds then P(< n × e₂, σ >→< n × e'₂, σ' >) holds.
- Asg1: For all variables x, expressions $e_1, e_2, e'_1 \in \mathbf{Exp}$ and stores σ and σ' , if $P(\langle e_1, \sigma \rangle \longrightarrow \langle e'_1, \sigma' \rangle)$ holds then $P(\langle x := e_1; e_2, \sigma \rangle \longrightarrow \langle x := e'_1; e_2, \sigma' \rangle)$ holds.

then for all $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$, $P(\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle)$ holds.

Proving progress

Progress (Statement)

Progress: For each store σ and expression e that is not an integer, there exists a possible transition for $< e, \sigma >$:

 $\forall e \in \mathsf{Exp.} \ \forall \sigma \in \mathsf{Store.}$ either $e \in \mathsf{Int}$ or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

Progress (Rephrased)

$P(e) = \forall \sigma. \ (e \in \mathsf{Int}) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$

Progress (Rephrased)

$\forall e \in \mathsf{Exp.} \ \forall \sigma \in \mathsf{Store.}$ either $e \in \mathsf{Int}$ or $\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >$

$$P(e) = orall \sigma. \ (e \in \mathsf{Int}) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$$

Example: Proving progress

by "structural induction on the expressions e"

We will prove by structural induction on expressions **Exp** that for all expressions $e \in Exp$ we have

$$P(e) = orall \sigma. \ (e \in \mathsf{Int}) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >).$$

Consider the possible cases for *e*.

By the VAR axiom, we can evaluate $\langle x, \sigma \rangle$ in any state: $\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle$, where $n = \sigma(x)$. So e' = n is a witness that there exists e' such that $\langle x, \sigma \rangle \longrightarrow \langle e', \sigma \rangle$, and P(x) holds. Proving progress: Case e = x

VAR
$$- < x, \sigma > \rightarrow < n, \sigma >$$
 where $n = \sigma(x)$

By the VAR axiom, we can evaluate $\langle x, \sigma \rangle$ in any state: $\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle$, where $n = \sigma(x)$. So e' = n is a witness that there exists e' such that $\langle x, \sigma \rangle \longrightarrow \langle e', \sigma \rangle$, and P(x) holds. Proving progress: Case e = n

Then $e \in \mathbf{Int}$, so P(n) trivially holds.

Proving progress: Case $e = e_1 + e_2$

This is an inductive step. The inductive hypothesis is that P holds for subexpressions e_1 and e_2 . We need to show that P holds for e. In other words, we want to show that $P(e_1)$ and $P(e_2)$ implies P(e). Let's expand these properties. We know that the following hold:

$$P(e_1) = \forall \sigma. \ (e_1 \in \mathsf{Int}) \lor (\exists e', \sigma'. < e_1, \sigma > \longrightarrow < e', \sigma' >)$$

$$P(e_2) = \forall \sigma. \ (e_2 \in \mathsf{Int}) \lor (\exists e', \sigma'. < e_2, \sigma > \longrightarrow < e', \sigma' >)$$

and we want to show:

$$P(e) = \forall \sigma. \ (e \in Int) \lor (\exists e', \sigma'. < e, \sigma > \longrightarrow < e', \sigma' >)$$

We must inspect several subcases.

Proving progress: Case $e = e_1 + e_2$, $e_1, e_2 \in Int$

First, if both e_1 and e_2 are integer constants, say $e_1 = n_1$ and $e_2 = n_2$, then by rule ADD we know that the transition $\langle n_1 + n_2, \sigma \rangle \longrightarrow \langle n, \sigma \rangle$ is valid, where *n* is the sum of n_1 and n_2 . Hence, $P(e) = P(n_1 + n_2)$ holds (with witness e' = n).

Proving progress: Case $e = e_1 + e_2$, $e_1 \notin \mathbf{Int}$

Second, if e_1 is not an integer constant, then by the inductive hypothesis $P(e_1)$ we know that

 $< e_1, \sigma > \longrightarrow < e', \sigma' >$ for some e' and σ' . We can then use rule LADD to conclude

 $< e_1 + e_2, \sigma > \longrightarrow < e' + e_2, \sigma' >$, so $P(e) = P(e_1 + e_2)$ holds.

Proving progress: Case $e = e_1 + e_2$, $e_1 \in Int$, $e_2 \notin Int$

Third, if e_1 is an integer constant, say $e_1 = n_1$, but e_2 is not, then by the inductive hypothesis $P(e_2)$ we know that $\langle e_2, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ for some e' and σ' . We can then use rule RADD to conclude $\langle n_1 + e_2, \sigma \rangle \longrightarrow \langle n_1 + e', \sigma' \rangle$, so $P(e) = P(n_1 + e_2)$ holds.

Proving progress: Remaining cases

Case $e = e_1 \times e_2$ and case $e = x := e_1$; e_2 . These are also inductive cases, and their proofs are similar to the previous case. [Note that if you were writing this proof out for a homework, you should write these cases out in full.]

Incremental update

For all expressions e and stores σ , if $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ then either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$.

Proving incremental update

We proceed by induction on the derivation of $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$. Suppose we have e, σ, e' and σ' such that $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$. The property P that we will prove of e, σ, e' and σ' , which we will write as $P(\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle)$, is that either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$:

$$P(\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle) \triangleq \\ \sigma = \sigma' \lor (\exists x \in \operatorname{Var}, n \in \operatorname{Int.} \sigma' = \sigma[x \mapsto n]).$$

Consider the cases for the derivation of $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$.

Proving incremental update: Case ADD

This is an axiom. Here, $e \equiv n + m$ and e' = pwhere p is the sum of m and n, and $\sigma' = \sigma$. The result holds immediately.

Proving incremental update: Case LADD

This is an inductive case. Here, $e \equiv e_1 + e_2$ and $e' \equiv e'_1 + e_2$ and $< e_1, \sigma > \longrightarrow < e'_1, \sigma' >$. By the inductive hypothesis, applied to $< e_1, \sigma > \longrightarrow < e'_1, \sigma' >$, we have that either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n]$, as required.

Proving incremental update: Case Asg

This is an axiom. Here $e \equiv x := n$; e_2 and $e' \equiv e_2$ and $\sigma' = \sigma[x \mapsto n]$. The result holds immediately. Proving incremental update: remaining cases

We leave the other cases (VAR, RADD, LMUL, RMUL, MUL, and ASG1) as exercises. Seriously, try them. Make sure you can do them. Go on.

Break

Incremental update: For all expressions e and stores σ , if $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ then either $\sigma = \sigma'$ or there is some variable x and integer n such that $\sigma' = \sigma[x \mapsto n].$

Can you prove incremental update by structural induction on the expression e instead of by induction on the derivation $< e, \sigma > \longrightarrow < e', \sigma' >$ (as we just did)?

Interlude: What if induction weren't true?

Peano Axioms

$0 \ \rightarrow 1 \ \rightarrow 2 \ \rightarrow 3 \ \rightarrow \ldots$

- 1. zero is a number.
- 2. If *a* is a number, the successor of *a* is a number.
- 3. zero is not the successor of a number.
- 4. Two numbers of which the successors are equal are themselves equal.
- 5. (induction axiom.) If a set *S* of numbers contains zero and also the successor of every number in *S*, then every number is in *S*.

Monster Chains

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \dots$ $\dots \rightarrow -a1 \rightarrow a0 \rightarrow a1 \rightarrow a2' \rightarrow a3' \rightarrow \dots$ $\dots \rightarrow -b1 \rightarrow b0 \rightarrow b1' \rightarrow b2' \rightarrow b3' \rightarrow \dots$