Lambda Calculus CS 152 (Spring 2021)

Harvard University

Tuesday, February 16, 2021

Today, we will learn about

Lambda calculus

▶ Full β -reduction

Call-by-value semantics

Call-by-name semantics

Lambda calculus: Intuition

A function is a rule for determining a value from an argument. Some examples of functions in mathematics are

$$f(x) = x^3$$

 $g(y) = y^3 - 2y^2 + 5y - 6.$

Pure vs Applied Lambda Calculus

- The pure λ -calculus contains just function definitions (called *abstractions*), variables, and function *applications*.
- If we add additional data types and operations (such as integers and addition), we have an applied λ -calculus.

Pure Lambda Calculus: Syntax

$$e := x$$
 variable $| \lambda x. e |$ abstraction $| e_1 e_2 |$ application

E

Abstractions

Abstractions

- \blacktriangleright An abstraction $\lambda x. e$ is a function
- Variable x is the argument
- Expression e is the body of the function.
- The expression λy . $y \times y$ is a function that takes an argument y and returns square of y.

Applications

- An application e_1 e_2 requires that e_1 is (or evaluates to) a function, and then applies the function to the expression e_2 .
- ► For example, $(\lambda y. y \times y)$ 5 is 25

Examples

$\lambda x. x$	a lambda abstraction called the identity function
$\lambda x. (f (g x)))$	another abstraction
$(\lambda x. x)$ 42	an application
$\lambda y. \lambda x. x$	an abstraction, ignores its argument and returns the identity function

Lambda expressions extend as far to the right as possible

 $\lambda x. x \lambda y. y$ is the same as $\lambda x. (x (\lambda y. y))$, and is not the same as $(\lambda x. x) (\lambda y. y)$.

Application is left-associative

 e_1 e_2 e_3 is the same as $(e_1$ $e_2)$ e_3 .

Use parentheses!

In general, use parentheses to make the parsing of a lambda expression clear if you are in doubt.

Variable binding

An occurrence of a variable x in a term is bound if there is an enclosing λx . e; otherwise, it is *free*.

A closed term is one in which all identifiers are bound. Variable binding: $\lambda x. (x (\lambda y. y a) x) y$

Variable binding: $\lambda x. (x (\lambda y. y a) x) y$

Both occurrences of x are bound

► The first occurrence of *y* is bound

► The *a* is free

The last y is also free, since it is outside the scope of the λy .

Binding operator

The symbol λ is a *binding operator*: variable x is bound in e in the expression λx . e.

α -equivalence

 $\lambda x. x$ is the same function as $\lambda y. y.$

- Expressions e_1 and e_2 that differ only in the name of bound variables are called α -equivalent ("alpha equivalent")
- ▶ Sometimes written $e_1 =_{\alpha} e_2$.

Quiz: α -equivalence

▶ Are λx . λy . x y and λy . λx . y x α -equivalent?

Higher-order functions

In lambda calculus, functions are values.

► In the pure lambda calculus, every value is a function, and every result is a function!

Higher-order functions

 $\lambda f. f. 42$

Higher-order functions

$$\lambda v. \lambda f. (f v)$$

Takes an argument v and returns a function that applies its own argument (a function) to v.

Semantics

β -equivalence

We would like to regard $(\lambda x. e_1) e_2$ as equivalent to e_1 where every (free) occurrence of x is replaced with e_2 .

► E.g. we would like to regard $(\lambda y. y \times y)$ 5 as equivalent to 5×5 .

$$e_1\{e_2/x\}$$

- We write $e_1\{e_2/x\}$ to mean expression e_1 with all free occurrences of x replaced with e_2 .
- We call $(\lambda x. e_1)$ e_2 and $e_1\{e_2/x\}$ β -equivalent.
- ▶ Rewriting $(\lambda x. e_1)$ e_2 into $e_1\{e_2/x\}$ is called a β -reduction.

► This corresponds to executing a lambda calculus expression.

Different semantics for the lambda calculus

$$(\lambda x. x + x) ((\lambda y. y) 5)$$

Different semantics for the lambda calculus

$$(\lambda x. x + x) ((\lambda y. y) 5)$$

We could use β -reduction to get either $((\lambda y. y) 5) + ((\lambda y. y) 5)$ or $(\lambda x. x + x) 5$.

Evaluation strategies: Full β -reduction

Allows $(\lambda x. e_1)$ e_2 to step to $e_1\{e_2/x\}$ at any time.

Full β -reduction: small-step operational semantics

$$egin{array}{c} e_1 \longrightarrow e_1' & e_2 \longrightarrow e_2' \ \hline e_1 \ e_2 \longrightarrow e_1' \ e_2 & e_1 \ e_2 \longrightarrow e_1 \ e_2' \ \hline \hline \lambda x. \ e \longrightarrow \lambda x. \ e' \end{array}$$

$$\beta$$
-REDUCTION $(\lambda x. e_1) e_2 \longrightarrow e_1\{e_2/x\}$

Normal form

A term e is said to be in *normal form* when there is no e' such that $e \longrightarrow e'$.

Not every term has a normal form under full β -reduction.

Consider
$$\Omega = (\lambda x. x x) (\lambda x. x x)$$
.

$$\Omega = (\lambda x. x x) (\lambda x. x x) \longrightarrow (\lambda x. x x) (\lambda x. x x) = \Omega$$

It's an infinite loop!

Well-behaved nondeterminism

$$(\lambda x. \lambda y. y) \Omega (\lambda z. z)$$

Well-behaved nondeterminism

$$(\lambda x. \lambda y. y) \Omega (\lambda z. z)$$

This term has two redexes in it, the one with abstraction λx , and the one inside Ω .

Well-behaved nondeterminism

► The full β -reduction strategy is non-deterministic.

▶ When a term has a normal form, however, it never has more than one.

Full β -reduction is confluent

Theorem (Confluence)

If $e \longrightarrow^* e_1$ and $e \longrightarrow^* e_2$ then there exists e' such that $e_1 \longrightarrow^* e'$ and $e_2 \longrightarrow^* e'$.

Full β -reduction is confluent

Corollary

If $e \longrightarrow^* e_1$ and $e \longrightarrow^* e_2$ and both e_1 and e_2 are in normal form, then $e_1 = e_2$.

Proof.

An easy consequence of confluence.

Normal Order Evaluation

Normal order evaluation uses the full β -reduction rules, except the left-most redex is always reduced first.

Will eventually yield the normal form, if one exists.

Allows reducing redexes inside abstractions

Call-by-value

► Call-by-value only allows an application to reduce after its argument has been reduced to a value and does not allow evaluation under a λ .

- ▶ Given an application $(\lambda x. e_1) e_2$, CBV semantics makes sure that e_2 is a value before calling the function.
- A value is an expression that can not be reduced/executed/simplified any further.

CBV: Small step operational semantics

$$egin{array}{cccc} e_1 & \longrightarrow e_1' \ \hline e_1 & e_2 & \longrightarrow e_1' & e_2 \ \hline \end{array} \qquad \qquad egin{array}{cccc} e & \longrightarrow e' \ \hline v & e & \longrightarrow v & e' \ \end{array}$$

$$\beta$$
-REDUCTION $(\lambda x. e) \ v \longrightarrow e\{v/x\}$

CBV: Examples

$$(\lambda x. \lambda y. y x) (5+2) \lambda x. x + 1 \longrightarrow (\lambda x. \lambda y. y x) 7 \lambda x. x + 1$$
$$\longrightarrow (\lambda y. y 7) \lambda x. x + 1$$
$$\longrightarrow (\lambda x. x + 1) 7$$
$$\longrightarrow 7 + 1$$
$$\longrightarrow 8$$

$$(\lambda f. f 7) ((\lambda x. x x) \lambda y. y) \longrightarrow (\lambda f. f 7) ((\lambda y. y) (\lambda y. y))$$
$$\longrightarrow (\lambda f. f 7) (\lambda y. y)$$
$$\longrightarrow (\lambda y. y) 7$$
$$\longrightarrow 7$$

Call-by-name semantics

More permissive that CBV.

Less permissive than full β -reduction.

Applies the function as soon as possible.

No need to ensure that the expression to which a function is applied is a value.

Call-by-name semantics

$$rac{e_1 \longrightarrow e_1'}{e_1 \; e_2 \longrightarrow e_1' \; e_2}$$

$$\beta$$
-REDUCTION $(\lambda x. e_1) e_2 \longrightarrow e_1\{e_2/x\}$

Call-by-name semantics: example

$$(\lambda x. \lambda y. y x) (5+2) \lambda x. x + 1 \longrightarrow (\lambda y. y (5+2)) \lambda x. x + 1$$

$$\longrightarrow (\lambda x. x + 1) (5+2)$$

$$\longrightarrow (5+2) + 1$$

$$\longrightarrow 7 + 1$$

$$\longrightarrow 8$$

compare to CBV:

$$(\lambda x. \lambda y. y x) (5+2) \lambda x. x + 1 \longrightarrow (\lambda x. \lambda y. y x) 7 \lambda x. x + 1$$
$$\longrightarrow (\lambda y. y 7) \lambda x. x + 1$$
$$\longrightarrow (\lambda x. x + 1) 7$$
$$\longrightarrow 7 + 1$$
$$\longrightarrow 8$$

Call-by-name semantics: example

$$(\lambda f. f 7) ((\lambda x. x x) \lambda y. y) \longrightarrow ((\lambda x. x x) \lambda y. y) 7$$

$$\longrightarrow ((\lambda y. y) (\lambda y. y)) 7$$

$$\longrightarrow (\lambda y. y) 7$$

$$\longrightarrow 7$$

compare to CBV:

$$(\lambda f. f 7) ((\lambda x. x x) \lambda y. y) \longrightarrow (\lambda f. f 7) ((\lambda y. y) (\lambda y. y))$$
$$\longrightarrow (\lambda f. f 7) (\lambda y. y)$$
$$\longrightarrow (\lambda y. y) 7$$
$$\longrightarrow 7$$

CBV vs CBN

One way in which CBV and CBN differ is when arguments to functions have no normal forms.

$$(\lambda x.(\lambda y.y)) \Omega$$

Under CBV semantics, this term does not have a normal form. If we use CBN semantics, then we have

$$(\lambda x.(\lambda y.y)) \Omega \longrightarrow_{\mathsf{CBN}} \lambda y.y$$

CBV and CBN

- ► CBV and CBN are common evaluation orders
- Many programming languages use CBV semantics
- "Lazy" languages, such as Haskell, typically use CBN semantics, a more efficient semantics similar to CBN in that it does not evaluate actual arguments unless necessary
- However, Call-by-value semantics ensures that arguments are evaluated at most once.

Break

- ▶ If possible, give a program that cannot reduce in CBN and CBV, but reduces in full β -reduction.
- ► If possible, give a program that steps to the same expression in CBN and CBV.
- Formulate the rules of CBV in big-step style.
- How would you create a let-binding in lambda calculus?
- ▶ How do we define $e_1\{e_2/x\}$ formally?

Scratchpad

CBV in big-step

$$\lambda x. e \Downarrow \lambda x. e$$

$e_1\{e_2/x\}$ formally

$$x\{e/x\} = e$$

 $y\{e/x\} = y$ if $y \neq x$
 $(\lambda y. e_1)\{e/x\} = \lambda y. (e1\{e/x\})$ if $y \neq x$ and $y \notin FV(e)$
 $(e_1 e_2)\{e/x\} = (e_1\{e/x\}) (e_2\{e/x\})$