Lambda Calculus
 CS 152 (Spring 2021)

Harvard University

Tuesday, February 16, 2021

Today, we will learn about

- Lambda calculus
- Full β-reduction
- Call-by-value semantics
- Call-by-name semantics

Lambda calculus: Intuition

A function is a rule for determining a value from an argument. Some examples of functions in mathematics are

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(y)=y^{3}-2 y^{2}+5 y-6
\end{aligned}
$$

Pure vs Applied Lambda Calculus

- The pure λ-calculus contains just function definitions (called abstractions), variables, and function applications.
- If we add additional data types and operations (such as integers and addition), we have an applied λ-calculus.

Pure Lambda Calculus: Syntax

variable
abstraction
application

Abstractions

Abstractions

- An abstraction $\lambda x . e$ is a function
- Variable x is the argument
- Expression e is the body of the function.
- The expression $\lambda y \cdot y \times y$ is a function that takes an argument y and returns square of y.

Applications

- An application $e_{1} e_{2}$ requires that e_{1} is (or evaluates to) a function, and then applies the function to the expression e_{2}.
- For example, $(\lambda y \cdot y \times y) 5$ is 25

Examples

$\lambda x . x$
$\lambda x .(f(g x)))$ another abstraction
$(\lambda x . x) 42$ an application
$\lambda y . \lambda x \cdot x \quad$ an abstraction, ignores its argument and returns the identity function

Lambda expressions extend as far to the

 right as possible$\lambda x . x \lambda y . y$ is the same as $\lambda x .(x(\lambda y . y))$, and is not the same as $(\lambda x . x)(\lambda y . y)$.

Application is left-associative

$e_{1} e_{2} e_{3}$ is the same as $\left(e_{1} e_{2}\right) e_{3}$.

Use parentheses!

In general, use parentheses to make the parsing of a lambda expression clear if you are in doubt.

Variable binding

- An occurrence of a variable x in a term is bound if there is an enclosing λx. e; otherwise, it is free.
- A closed term is one in which all identifiers are bound.

Variable binding: $\lambda x \cdot(x(\lambda y \cdot y a) x) y$

Variable binding: $\lambda x \cdot(x(\lambda y \cdot y a) x) y$

- Both occurrences of x are bound
- The first occurrence of y is bound
- The a is free
- The last y is also free, since it is outside the scope of the λy.

Binding operator

The symbol λ is a binding operator variable x is bound in e in the expression $\lambda x . e$.

α-equivalence

- $\lambda x . x$ is the same function as $\lambda y . y$.
- Expressions e_{1} and e_{2} that differ only in the name of bound variables are called α-equivalent ("alpha equivalent")
- Sometimes written $e_{1}={ }_{\alpha} e_{2}$.

Quiz: α-equivalence

- Are $\lambda x . \lambda y . x y$ and $\lambda y . \lambda x . y x \alpha$-equivalent?

Higher-order functions

- In lambda calculus, functions are values.
- In the pure lambda calculus, every value is a function, and every result is a function!

Higher-order functions

$$
\lambda f . f 42
$$

Higher-order functions

$$
\lambda v . \lambda f .(f v)
$$

Takes an argument v and returns a function that applies its own argument (a function) to v.

Semantics

β-equivalence

- We would like to regard $\left(\lambda x . e_{1}\right) e_{2}$ as equivalent to e_{1} where every (free) occurrence of x is replaced with e_{2}.
- E.g. we would like to regard $(\lambda y . y \times y) 5$ as equivalent to 5×5.

$e_{1}\left\{e_{2} / x\right\}$

- We write $e_{1}\left\{e_{2} / x\right\}$ to mean expression e_{1} with all free occurrences of x replaced with e_{2}.
- We call $\left(\lambda x . e_{1}\right) e_{2}$ and $e_{1}\left\{e_{2} / x\right\} \beta$-equivalent.
- Rewriting $\left(\lambda x . e_{1}\right) e_{2}$ into $e_{1}\left\{e_{2} / x\right\}$ is called a β-reduction.
- This corresponds to executing a lambda calculus expression.

Different semantics for the lambda

 calculus$$
(\lambda x \cdot x+x)((\lambda y \cdot y) 5)
$$

Different semantics for the lambda

 calculus$$
(\lambda x \cdot x+x)((\lambda y \cdot y) 5)
$$

We could use β-reduction to get either $((\lambda y \cdot y) 5)+((\lambda y \cdot y) 5)$ or $(\lambda x \cdot x+x) 5$.

Evaluation strategies: Full β-reduction

Allows $\left(\lambda x . e_{1}\right) e_{2}$ to step to $e_{1}\left\{e_{2} / x\right\}$ at any time.

Full β-reduction: small-step operational semantics

$$
\frac{e_{1} \longrightarrow e_{1}^{\prime}}{e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}}
$$

$$
\begin{gathered}
e \longrightarrow e^{\prime} \\
\lambda x \cdot e \longrightarrow \lambda x \cdot e^{\prime}
\end{gathered}
$$

β-REDUCTION $\xlongequal[\left(\lambda x . e_{1}\right) e_{2} \longrightarrow e_{1}\left\{e_{2} / x\right\}]{ }$

Normal form

A term e is said to be in normal form when there is no e^{\prime} such that $e \longrightarrow e^{\prime}$.

Not every term has a normal form under

 full β-reduction.Consider $\Omega=(\lambda x . x x)(\lambda x . x x)$.
$\Omega=(\lambda x . x x)(\lambda x . x x) \longrightarrow(\lambda x . x x)(\lambda x . x x)=\Omega$
It's an infinite loop!

Well-behaved nondeterminism

$$
(\lambda x . \lambda y . y) \Omega(\lambda z . z)
$$

Well-behaved nondeterminism

$$
(\lambda x . \lambda y . y) \Omega(\lambda z . z)
$$

This term has two redexes in it, the one with abstraction λx, and the one inside Ω.

Well-behaved nondeterminism

- The full β-reduction strategy is non-deterministic.
- When a term has a normal form, however, it never has more than one.

Full β-reduction is confluent

Theorem (Confluence)
If $e \longrightarrow^{*} e_{1}$ and $e \longrightarrow{ }^{*} e_{2}$ then there exists e^{\prime} such that $e_{1} \longrightarrow^{*} e^{\prime}$ and $e_{2} \longrightarrow^{*} e^{\prime}$.

Full β-reduction is confluent

Corollary
If $e \longrightarrow^{*} e_{1}$ and $e \longrightarrow^{*} e_{2}$ and both e_{1} and e_{2} are in normal form, then $e_{1}=e_{2}$.

Proof.
An easy consequence of confluence.

Normal Order Evaluation

- Normal order evaluation uses the full
β-reduction rules, except the left-most redex is always reduced first.
- Will eventually yield the normal form, if one exists.
- Allows reducing redexes inside abstractions

Call-by-value

- Call-by-value only allows an application to reduce after its argument has been reduced to a value and does not allow evaluation under a λ.
- Given an application $\left(\lambda x . e_{1}\right) e_{2}, \mathrm{CBV}$ semantics makes sure that e_{2} is a value before calling the function.
- A value is an expression that can not be reduced/executed/simplified any further.

CBV: Small step operational semantics

$$
\begin{gathered}
e_{1} \longrightarrow e_{1}^{\prime} \\
e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}
\end{gathered}
$$

$$
\frac{e \longrightarrow e^{\prime}}{v e \longrightarrow v e^{\prime}}
$$

β-REDUCTION $\underset{(\lambda x . e) v \longrightarrow e\{v / x\}}{ }$

CBV: Examples

$\begin{aligned}(\lambda x \cdot \lambda y \cdot y x)(5+2) \lambda x \cdot x+1 & \longrightarrow(\lambda x \cdot \lambda y \cdot y x) 7 \lambda x \cdot x+1 \\ & \longrightarrow(\lambda y \cdot y 7) \lambda x \cdot x+1 \\ & \longrightarrow(\lambda x \cdot x+1) 7 \\ & \longrightarrow 7+1 \\ & \longrightarrow 8\end{aligned}$

$$
\begin{aligned}
(\lambda f . f 7)((\lambda x . x x) \lambda y \cdot y) & \longrightarrow(\lambda f . f 7)((\lambda y \cdot y)(\lambda y \cdot y)) \\
& \longrightarrow(\lambda f . f 7)(\lambda y \cdot y) \\
& \longrightarrow(\lambda y \cdot y) 7 \\
& \longrightarrow 7
\end{aligned}
$$

Call-by-name semantics

- More permissive that CBV.
- Less permissive than full β-reduction.
- Applies the function as soon as possible.
- No need to ensure that the expression to which a function is applied is a value.

Call-by-name semantics

$$
\begin{gathered}
e_{1} \longrightarrow e_{1}^{\prime} \\
e_{1} e_{2} \longrightarrow e_{1}^{\prime} e_{2}
\end{gathered}
$$

β-REDUCTION

$$
\left(\lambda x . e_{1}\right) e_{2} \longrightarrow e_{1}\left\{e_{2} / x\right\}
$$

Call-by-name semantics: example

$$
\begin{aligned}
(\lambda x \cdot \lambda y \cdot y x)(5+2) \lambda x \cdot x+1 & \longrightarrow(\lambda y \cdot y(5+2)) \lambda x \cdot x+1 \\
& \longrightarrow(\lambda x \cdot x+1)(5+2) \\
& \longrightarrow(5+2)+1 \\
& \longrightarrow 7+1 \\
& \longrightarrow 8
\end{aligned}
$$

compare to CBV:
$(\lambda x \cdot \lambda y \cdot y x)(5+2) \lambda x \cdot x+1 \longrightarrow(\lambda x . \lambda y \cdot y x) 7 \lambda x \cdot x+1$
$\longrightarrow(\lambda y . y 7) \lambda x \cdot x+1$
$\longrightarrow(\lambda x \cdot x+1) 7$
$\longrightarrow 7+1$
$\longrightarrow 8$

Call-by-name semantics: example

$$
\begin{aligned}
(\lambda f . f 7)((\lambda x \cdot x x) \lambda y \cdot y) & \longrightarrow((\lambda x \cdot x x) \lambda y \cdot y) 7 \\
& \longrightarrow((\lambda y \cdot y)(\lambda y \cdot y)) 7 \\
& \longrightarrow(\lambda y \cdot y) 7 \\
& \longrightarrow 7
\end{aligned}
$$

compare to CBV:

$$
\begin{aligned}
(\lambda f . f 7)((\lambda x . x x) \lambda y . y) & \longrightarrow(\lambda f . f 7)((\lambda y . y)(\lambda y . y)) \\
& \longrightarrow(\lambda f . f 7)(\lambda y . y) \\
& \longrightarrow(\lambda y . y) 7 \\
& \longrightarrow 7
\end{aligned}
$$

CBV vs CBN

One way in which CBV and CBN differ is when arguments to functions have no normal forms.

$$
(\lambda x .(\lambda y . y)) \Omega
$$

Under CBV semantics, this term does not have a normal form. If we use CBN semantics, then we have

$$
(\lambda x .(\lambda y \cdot y)) \Omega \longrightarrow \text { CBN } \lambda y \cdot y
$$

CBV and CBN

- CBV and CBN are common evaluation orders
- Many programming languages use CBV semantics
- "Lazy" languages, such as Haskell, typically use CBN semantics, a more efficient semantics similar to CBN in that it does not evaluate actual arguments unless necessary
- However, Call-by-value semantics ensures that arguments are evaluated at most once.

Break

- If possible, give a program that cannot reduce in CBN and CBV, but reduces in full β-reduction.
- If possible, give a program that steps to the same expression in CBN and CBV.
- Formulate the rules of CBV in big-step style.
- How would you create a let-binding in lambda calculus?
- How do we define $e_{1}\left\{e_{2} / x\right\}$ formally?

Scratchpad

CBV in big-step

$$
\lambda x . e \Downarrow \lambda x . e
$$

$e_{1} \Downarrow \lambda x . e_{12} \quad e_{2} \Downarrow v_{2} \quad e_{12}\left\{v_{2} / x\right\} \Downarrow e^{\prime}$
$e_{1} e_{2} \Downarrow e^{\prime}$

$e_{1}\left\{e_{2} / x\right\}$ formally

$$
\begin{aligned}
x\{e / x\} & =e & & \\
y\{e / x\} & =y & & \text { if } y \neq x \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot(e 1\{e / x\}) & & \text { if } y \neq x \text { and } y \notin F V(e) \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) & &
\end{aligned}
$$

