Encodings
 CS 152 (Spring 2021)

Harvard University

Thursday, February 18, 2021

Today, we will learn about

- Lambda calculus encodings
- Church numerals
- Recursion and fixed point-combinators

Lambda calculus encodings

- The pure lambda calculus contains only functions as values.
- It is not exactly easy to write large or interesting programs in the pure lambda calculus.
- We can however encode objects, such as booleans, and integers.

Booleans

Booleans

We want to define functions TRUE, FALSE, AND, IF , and other operators such that the expected behavior holds, for example:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =F A L S E \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF } F A L S E ~ & e_{1} e_{2}
\end{aligned}=e_{2}
$$

TRUE and FALSE

$T R U E \triangleq \lambda x \cdot \lambda y \cdot x$
$F A L S E \triangleq \lambda x \cdot \lambda y \cdot y$

The function IF should behave like

$$
\lambda b . \lambda t . \lambda f . \text { if } b=T R U E \text { then } t \text { else } f \text {. }
$$

The definitions for TRUE and FALSE make this very easy.

$$
I F \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

NOT, AND, OR

$N O T \triangleq \lambda b . b$ FALSE TRUE $A N D \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} b_{2}$ FALSE
 $O R \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1}$ TRUE b_{2}

Church numerals

Church numerals encode the natural number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
\overline{0} & \triangleq \lambda f \cdot \lambda x \cdot x \\
\overline{1} & =\lambda f \cdot \lambda x \cdot f x \\
\overline{2} & =\lambda f \cdot \lambda x \cdot f(f x) \\
\text { SUCC } & \triangleq \lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)
\end{aligned}
$$

Addition

Let us define addition now. Intuitively, the natural number $n_{1}+n_{2}$ is the result of apply the successor function n_{1} times to n_{2}.

$$
A D D \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \operatorname{SUCC} n_{2}
$$

Recursion and the fixed-point combinators

Recursion and the fixed-point combinators

We would like to define a function that computes factorials.
$F A C T \triangleq \lambda n$. if $n=0$ then 1 else $n \times F A C T(n-1)$

Recursion and the fixed-point combinators

$F A C T \triangleq \lambda n . I F(I S Z E R O n) 1($ TIMES $n(F A C T(P R E D n)))$

Recursion and the fixed-point combinators

Note that this is not a definition, it's a recursive equation.

Recursion Removal Trick

- We can perform a "trick" to define a function $F A C T$ that satisfies the recursive equation above.
- First, let's define a new function $F A C T^{\prime}$ that looks like $F A C T$, but takes an additional argument f.
- We assume that the function f will be instantiated with an actual parameter of... $F A C T^{\prime}$.
$F A C T^{\prime} \triangleq \lambda f . \lambda n$. if $n=0$ then 1 else $n \times(f f(n-1))$

Now we can define the factorial function $F A C T$ in terms of $F A C T^{\prime}$.
$F A C T \triangleq F A C T^{\prime} F A C T^{\prime}$

Let's try evaluating FACT $3=m$.

```
m=(FACT' FACT') 3
    =((\lambdaf.\lambdan.if n=0 then 1 else n\times(ff(n-1))) FACT') 3
    \longrightarrow ( \lambda n \text { . if } n = 0 \text { then 1 else } n \times ( F A C T ^ { \prime } F A C T ^ { \prime } ( n - 1 ) ) ) 3
    \longrightarrow \mp@code { i f ~ 3 = 0 ~ t h e n ~ 1 ~ e l s e ~ 3 ~ < ~ ( F A C T ' ~ F A C T ' ~ ( 3 - 1 ) ) }
    \longrightarrow 3 \times ( F A C T ' ~ F A C T ' ~ ( 3 - 1 ) )
    \longrightarrow 3 \times 2 \times 1 \times 1
    \longrightarrow * ~ 6 ~
```

So we now have a technique for writing a recursive function f : write a function f^{\prime} that explicitly takes a copy of itself as an argument, and then define

$$
f \triangleq f^{\prime} f^{\prime}
$$

Fixed point combinators

Alternatively, we can express a recursive function as the fixed point of some other, higher-order function, and then find that fixed point.

Fixed point combinator

Thus FACT is a fixed point of the following function.
$G \triangleq \lambda f . \lambda n$. if $n=0$ then 1 else $n \times(f(n-1))$

Fixed point combinator

Recall that if g if a fixed point of G, then we have
$G g=g$.

Fixed point combinator

- A combinator is simply a closed lambda term
- Our functions SUCC and $A D D$ are examples of combinators.
- It is possible to define programs using only combinators, thus avoiding the use of variables completely.

The Y combinator

The Y combinator is defined as

$$
Y \triangleq \lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

It was discovered by Haskell Curry, and is one of the simplest fixed-point combinators.

The fixed point of the higher order function G is equal to $G(G(G(G(G \ldots))))$. Intuitively, the Y combinator unrolls this equality, as needed.

Let's see it in action, on our function G, where

$$
G=\lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times(f(n-1))
$$

and the factorial function is the fixed point of G.
(We will use CBN semantics.)
$F A C T=Y G$

$$
=(\lambda f .(\lambda x \cdot f(x x))(\lambda x . f(x x))) G
$$

$$
\longrightarrow(\lambda x \cdot G(x x))(\lambda x \cdot G(x x))
$$

$$
\longrightarrow G((\lambda x \cdot G(x x))(\lambda x \cdot G(x x)))
$$

$$
={ }_{\beta} G(F A C T)
$$

$=(\lambda f . \lambda n$. if $n=0$ then 1 else $n \times(f(n-1))) F A C T$
$\longrightarrow \lambda n$. if $n=0$ then 1 else $n \times(F A C T(n-1))$

Note that the Y combinator works under CBN semantics, but not CBV. (What happens when we evaluate $Y G$ under CBV?)

There is a variant of the Y combinator, Z, that works under CBV semantics. It is defined as

$$
Z \triangleq \lambda f .(\lambda x . f(\lambda y . x x y))(\lambda x . f(\lambda y . x x y))
$$

The Turing fixed-point combinator

The Turing fixed-point combinator, denoted Θ, was discovered by Alan Turing.

The Turing fixed-point combinator

Suppose we have a higher order function f, and want the fixed point of f. We know that Θf is a fixed point of f, so we have

$$
\Theta f=f(\Theta f)
$$

This means, that we can write the following recursive equation for Θ.

$$
\Theta=\lambda f . f(\Theta f)
$$

Now we can use the recursion removal trick we described earlier! Let's define $\Theta^{\prime}=\lambda t . \lambda f . f(t t f)$, and define

$$
\begin{aligned}
\Theta & \triangleq \Theta^{\prime} \Theta^{\prime} \\
& =(\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))
\end{aligned}
$$

Let's try out the Turing combinator on our higher order function G that we used to define FACT. Again, we will use CBN semantics.

$$
\begin{aligned}
F A C T & =\Theta G \\
& =((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G \\
& \longrightarrow(\lambda f . f((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) f)) G \\
& \longrightarrow G((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) G) \\
& =G(\Theta G) \\
& =(\lambda f . \lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times(f(n-1)))(\Theta G) \\
& \longrightarrow \lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times((\Theta G)(n-1)) \\
& =\lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times(F A C T(n-1))
\end{aligned}
$$

