
Simply-typed lambda calculus
CS 152 (Spring 2021)

Harvard University

Tuesday, March 2, 2021

1 / 51

Today, we will learn about

I Simply-typed lambda calculus

I Type soundness

I Normalization

2 / 51

Types

I A type is a collection of computational entities
that share some common property.

I For example, the type int represents all
expressions that evaluate to an integer, and the
type int→ int represents all functions from
integers to integers.

I The Pascal subrange type [1..100] represents
all integers between 1 and 100.

3 / 51

Types

Type systems are a lightweight formal method for
reasoning about behavior of a program.

4 / 51

Uses of type systems

I Naming and organizing useful concepts

I Providing information (to the compiler or
programmer) about data manipulated by a
program

I Ensuring that the run-time behavior of
programs meet certain criteria.

5 / 51

Simply-typed lambda calculus

We will consider a type system for the lambda
calculus that ensures that values are used correctly.

For example, that a program never tries to add an
integer to a function.

The resulting language (lambda calculus plus the
type system) is called the simply-typed lambda
calculus.

6 / 51

Simply-typed lambda calculus

In the simply-typed lambda calculus, we explicitly
state what the type of the argument is.

That is, in an abstraction λx :τ. e, the τ is the
expected type of the argument.

7 / 51

Simply-typed lambda calculus: Syntax

We will include integer literals n, addition e1 + e2,
and the unit value (). The unit value is the only
value of type unit.

8 / 51

Simply-typed lambda calculus: Syntax

expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e2 | ()

values v ::= λx :τ. e | n | ()

types τ ::= int | unit | τ1 → τ2

9 / 51

Simply-typed lambda calculus: CBV small
step operational semantics

The operational semantics of the simply-typed
lambda calculus are the same as the untyped
lambda calculus.

10 / 51

Simply-typed lambda calculus: CBV small
step operational semantics

E ::= [·] | E e | v E | E + e | v + E

Context
e −→ e ′

E [e] −→ E [e ′]

β-reduction
(λx . e) v −→ e{v/x}

Add
n1 + n2 −→ n

n = n1 + n2

11 / 51

The typing relation

The presence of types does not alter the evaluation
of an expression at all. So what use are types?

12 / 51

The typing relation

We will use types to restrict what expressions we
will evaluate. Specifically, the type system for the
simply-typed lambda calculus will ensure that any
well-typed program will not get stuck.

13 / 51

The typing relation

A term e is stuck if e is not a value and there is no
term e ′ such that e −→ e ′.

14 / 51

The typing relation

42 + λx . x

15 / 51

The typing relation

() 47

16 / 51

Typing judgment

I We introduce a relation (or judgment) over
typing contexts (or type environments) Γ,
expressions e, and types τ .

I The judgment
Γ ` e :τ

is read as “e has type τ in context Γ”.

17 / 51

I A typing context is a sequence of variables and
their types.

I In the typing judgment Γ ` e :τ , we will ensure
that if x is a free variable of e, then Γ
associates x with a type.

18 / 51

Typing judgment

I We can view a typing context as a partial
function from variables to types.

I We will write Γ, x : τ or Γ[x 7→ τ] to indicate
the typing context that extends Γ by
associating variable x with with type τ .

I We write ` e :τ to mean that the closed term
e has type τ under the empty context.

19 / 51

Well-typed expression

I Given a typing environment Γ and expression e,
if there is some τ such that Γ ` e :τ , we say
that e is well-typed under context Γ

I If Γ is the empty context, we say e is
well-typed.

20 / 51

Inductive definition of Γ ` e :τ

T-Int
Γ ` n : int

T-Add
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

T-Unit
Γ ` () :unit

T-Var
Γ ` x :τ

Γ(x) = τ T-Abs
Γ, x :τ ` e :τ ′

Γ ` λx :τ. e :τ → τ ′

T-App
Γ ` e1 :τ → τ ′ Γ ` e2 :τ

Γ ` e1 e2 :τ ′

21 / 51

Inductive definition of Γ ` e :τ

An integer n always has type int. Expression e1 + e2
has type int if both e1 and e2 have type int. The
unit value () always has type unit.

22 / 51

Inductive definition of Γ ` e :τ

I Variable x has whatever type the context
associates with x .

I The abstraction λx :τ. e has the function type
τ → τ ′ if the function body e has type τ ′

under the assumption that x has type τ .

I An application e1 e2 has type τ ′ provided that
e1 is a function of type τ → τ ′, and e2 is an
argument of type τ .

23 / 51

Type-checking an expression

Consider the program (λx : int. x + 40) 2.

24 / 51

Type-checking an expression

The following is a proof that (λx : int. x + 40) 2 is
well-typed.

25 / 51

Type-checking an expression

T-App

T-Abs

T-Add

T-Var
x : int ` x : int

T-Int
x : int ` 40 : int

x : int ` x + 40 : int

` λx : int. x + 40 : int → int
T-Int

` 2 : int

` (λx : int. x + 40) 2 : int

26 / 51

Theorem (Type soundness)

If ` e :τ and e −→∗ e ′ then either e ′ is a value, or
there exists e ′′ such that e ′ −→ e ′′.

27 / 51

Theorem (Type soundness)

To prove this, we use two lemmas: preservation and
progress.

28 / 51

Theorem (Type soundness)

Intuitively, preservation says that if an expression e
is well-typed, and e can take a step to e ′, then e ′ is
well-typed. That is, evaluation preserves
well-typedness.

29 / 51

Theorem (Type soundness)

Progress says that if an expression e is well-typed,
then either e is a value, or there is an e ′ such that e
can take a step to e ′. That is, well-typedness means
that the expression cannot get stuck.

30 / 51

Together, these two lemmas suffice to prove type
soundness.

31 / 51

Lemma (Preservation)

If ` e :τ and e −→ e ′ then ` e ′ :τ .

32 / 51

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ

To prove this, we proceed by induction on e −→ e ′.
That is, we will prove for all e and e ′ such that
e −→ e ′, that P(e −→ e ′) holds, where

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ.

33 / 51

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ

Consider each of the inference rules for the small
step relation.

34 / 51

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ

Add
Assume ` e :τ .
Here e ≡ n1 + n2, and e ′ = n where n = n1 + n2,
and τ = int. By the typing rule T-Int, we have
` e ′ : int as required.

35 / 51

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ

β-reduction
Assume ` e :τ .
Here, e ≡ (λx :τ ′. e1) v and e ′ ≡ e1{v/x}. Since e
is well-typed, we have derivations showing
` λx :τ ′. e1 :τ ′ → τ and ` v :τ ′. There is only one
typing rule for abstractions, T-Abs, from which we
know x :τ ` e1 :τ . By the substitution lemma (see
below), we have ` e1{v/x} :τ as required.

36 / 51

P(e −→ e ′) = ∀τ. if ` e :τ then ` e ′ :τ

Context
Assume ` e :τ .
Here, we have some context E such that e = E [e1]
and e ′ = E [e2] for some e1 and e2 such that
e1 −→ e2. The inductive hypothesis is that
P(e1 −→ e2).
Since e is well-typed, we can show by induction on
the structure of E that ` e1 :τ1 for some τ1. By the
inductive hypothesis, we thus have ` e2 :τ1. By the
context lemma (see below) we have ` E [e ′] :τ as
required.

37 / 51

If ` e :τ and e −→ e ′ then ` e ′ :τ

This proves the lemma.

38 / 51

Additional lemmas we used in the proof above.

Lemma (Substitution)
If x :τ ′ ` e :τ and ` v :τ ′ then ` e{v/x} :τ .

Lemma (Context)
If ` E [e0] :τ and ` e0 :τ ′ and ` e1 :τ ′ then
` E [e1] :τ .

39 / 51

Lemma (Progress)

If ` e :τ then either e is a value or there exists an e ′

such that e −→ e ′.

40 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

We proceed by induction on the derivation of
` e :τ . That is, we will show for all e and τ such
that ` e :τ , we have P(` e :τ), where

P(` e :τ) = either e is a value or ∃e ′ such that e −→ e ′.

41 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

T-Var This case is impossible, since a variable is
not well-typed in the empty environment.

42 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

T-Unit, T-Int, T-Abs
Trivial, since e must be a value.

43 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

T-Add
Here e ≡ e1 + e2 and ` ei : int for i ∈ {1, 2}. By the
inductive hypothesis, for i ∈ {1, 2}, either ei is a
value or there is an e ′i such that ei −→ e ′i .
If e1 is not a value, then by Context,
e1 + e2 −→ e ′1 + e2. If e1 is a value and e2 is not a
value, then by Context, e1 + e2 −→ e1 + e ′2. If e1
and e2 are values, then, it must be the case that
they are both integer literals, and so, by Add, we
have e1 + e2 −→ n where n equals e1 plus e2.

44 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

T-App
Here e ≡ e1 e2 and ` e1 :τ ′ → τ and ` e2 :τ ′. By
the inductive hypothesis, for i ∈ {1, 2}, either ei is a
value or there is an e ′i such that ei −→ e ′i .
If e1 is not a value, then by Context,
e1 e2 −→ e ′1 e2. If e1 is a value and e2 is not a
value, then by Context, e1 e2 −→ e1 e

′
2. If e1 and

e2 are values, then, it must be the case that e1 is an
abstraction λx :τ ′. e ′, and so, by β-reduction, we
have e1 e2 −→ e ′{e2/x}.

45 / 51

If ` e :τ then either e is a value or there
exists an e ′ such that e −→ e ′.

This proves the Progress lemma.

46 / 51

Expressive power of the simply-typed
lambda calculus

Are there programs that do not get stuck that are
not well-typed?

47 / 51

Expressive power of the simply-typed
lambda calculus

Unfortunately, the answer is yes.
Consider the identity function λx . x .
We must provide a type for the argument. If we
specify λx : int. x , then the program (λx : int. x) ()
is not well-typed, even though it does not get stuck.

48 / 51

Expressive power of the simply-typed
lambda calculus: Recursion

We can no longer write recursive functions.
Consider Ω = (λx . x x) (λx . x x). Let’s suppose
that the type of λx . x x is τ → τ ′. Then τ must be
equal to τ → τ ′. There is no such type for which
this equality holds.

49 / 51

Theorem (Normalization)
If ` e :τ then there exists a value v such that
e −→∗ v .

50 / 51

This is known as normalization since it means that
given any well-typed expression, we can reduce it to
a normal form, which, in our case, is a value.

51 / 51

