Type Inference
 CS 152 (Spring 2021)

Harvard University

Tuesday, March 23, 2021

Today, we will learn about

- Type inference
- Type-checking vs type-inference
- Constraint-based typing
- Unification

Type annotations

Type inference

- Infer (or reconstruct) the types of a program
- Example: $\lambda a . \lambda b$. λc. if $a(b+1)$ then b else c

Constraint-based Type Inference

- Type variables X, Y, Z, \ldots : placeholders for types.
- Judgment「トe: $\tau \triangleright C$
- Expression e has type τ provided every constraint in set C is satisfied
- Constraints are of the form $\tau_{1} \equiv \tau_{2}$

Language

$$
\begin{aligned}
& e::=x|\lambda x: \tau . e| e_{1} e_{2}|n| e_{1}+e_{2} \\
& \tau::=\text { int }|X| \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

Inference rules

$$
\begin{aligned}
& \text { CT-VAR } \frac{\Gamma \vdash x: \tau \triangleright \emptyset}{} x: \tau \in \Gamma \\
& \text { CT-INT } \frac{\Gamma \vdash n: \text { int } \triangleright \emptyset}{\Gamma \vdash}
\end{aligned}
$$

$$
\mathrm{CT}-\mathrm{ADD} \frac{\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \quad \Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2}}{\Gamma \vdash e_{1}+e_{2}: \mathbf{i n t} \triangleright C_{1} \cup C_{2} \cup\left\{\tau_{1} \equiv \mathbf{i n t}, \tau_{2} \equiv \mathbf{i n t}\right\}}
$$

Inference rules, ctd.

$$
\begin{gathered}
\text { CT-ABS } \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \triangleright C}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2} \triangleright C} \\
\Gamma \vdash e_{1}: \tau_{1} \triangleright C_{1} \\
\Gamma \vdash e_{2}: \tau_{2} \triangleright C_{2} \\
\text { CT-App } \frac{C^{\prime}=C_{1} \cup C_{2} \cup\left\{\tau_{1} \equiv \tau_{2} \rightarrow X\right\}}{\Gamma \vdash e_{1} e_{2}: X \triangleright C^{\prime}} X \text { is fresh }
\end{gathered}
$$

Example

Unification

- What does it mean for a set of constraints to be satisfied?
- How do we find a solution to a set of constraints (i.e., infer the types)?
- To answer these questions: we define type substitutions and unification

Type subsitutions (aka substitutions)

- Map from type variables to types
- Substitution of type variables, formally:

$$
\begin{aligned}
\sigma(X) & = \begin{cases}\tau & \text { if } X \mapsto \tau \in \sigma \\
X & \text { if } X \text { not in the domain of } \sigma\end{cases} \\
\sigma(\text { int }) & =\text { int } \\
\sigma\left(\tau \rightarrow \tau^{\prime}\right) & =\sigma(\tau) \rightarrow \sigma\left(\tau^{\prime}\right)
\end{aligned}
$$

Substitution in constraints

- Extended to substitution of constraints, and set of constrains:

$$
\begin{aligned}
\sigma\left(\tau_{1} \equiv \tau_{2}\right) & =\sigma\left(\tau_{1}\right) \equiv \sigma\left(\tau_{2}\right) \\
\sigma(C) & =\{\sigma(c) \mid c \in C\}
\end{aligned}
$$

Unification

- Constraints are of form $\tau_{1} \equiv \tau_{2}$
- Substitution σ unifies $\tau_{1} \equiv \tau_{2}$ if $\sigma\left(\tau_{1}\right)$ is the same as $\sigma\left(\tau_{2}\right)$
- Substitution σ unifies (or satisfies) set of constraints C if it unifies every constraint in C
- So given $\vdash e: \tau \triangleright C$, want substitution σ that unifies C
- Moreover, type of e is $\sigma(\tau)$

Unification algorithm

$$
\operatorname{unify}(C)=\sigma
$$

[]

$\operatorname{unify}\left(\left\{\tau \equiv \tau^{\prime}\right\} \cup C\right)$

if $\tau=\tau^{\prime}$ then
unify (C)
else if $\tau=X$ and X not a free variable of τ^{\prime} then

$$
\text { let } \sigma=\left[X \mapsto \tau^{\prime}\right] \text { in }
$$

$$
\operatorname{unify}(\sigma(C)) \circ \sigma
$$

else if $\tau^{\prime}=X$ and X not a free variable of τ then

$$
\text { let } \sigma=[X \mapsto \tau] \text { in }
$$

$$
\operatorname{unify}(\sigma(C)) \circ \sigma
$$

else if $\tau=\tau_{o} \rightarrow \tau_{1}$ and $\tau^{\prime}=\tau_{o}^{\prime} \rightarrow \tau_{1}^{\prime}$ then

$$
\operatorname{unify}\left(C \cup\left\{\tau_{0} \equiv \tau_{0}^{\prime}, \tau_{1} \equiv \tau_{1}^{\prime}\right\}\right)
$$

else fail

