
Algebraic Structures
CS 152 (Spring 2021)

Harvard University

Tuesday, March 30, 2021

1 / 19

Today, we will learn about

I Type constructors
I Lists, Options

I Alegebraic structures
I Monoids
I Functors
I Monads

I Alegebraic structures in Haskell

2 / 19

Type Constructors

I A type constructor creates new types from
existing types

I E.g., product types, sum types, reference types,
function types, ...

3 / 19

Type Constructors

I A type constructor creates new types from
existing types
I E.g., product types, sum types, reference types,

function types, ...

3 / 19

Lists

I Assume CBV λ-calc with booleans, fixpoint
operator µx :τ. e

Expressions e ::= · · · | []

| e1 :: e2 | isempty? e | head e

| tail e

Values v ::= · · · | [] | v1 :: v2
Types τ ::= · · · | τ list

Eval contexts E ::= · · · | E :: e | v :: E

| isempty? E | head E | tail E

4 / 19

List inference rules

isempty? [] −→ true isempty? v1 :: v2 −→ false

head v1 :: v2 −→ v1 tail v1 :: v2 −→ v2

Γ ` [] :τ list

Γ ` e1 :τ Γ ` e2 :τ list

Γ ` e1 :: e2 :τ list

Γ ` e :τ list

Γ ` isempty? e :bool

Γ ` e :τ list

Γ ` head e :τ

Γ ` e :τ list

Γ ` tail e :τ list

append , µf :τ list→ τ list→ τ list. λa :τ list. λb :τ list.

if isempty? a then b else (head a) :: (f (tail a) b)
5 / 19

Options

Expressions e ::= · · · | none | some e

| case e1 of e2 | e3
Values v ::= · · · | none | some v

Types τ ::= · · · | τ option

Eval contexts E ::= · · · | some E | case E of e2 | e3

6 / 19

Option as syntactic sugar

I the type τ option as syntactic sugar for the
sum type unit + τ

I none as syntactic sugar for inlunit+τ ()

I some e as syntactic sugar for inrunit+τ e

7 / 19

Option as syntactic sugar

I the type τ option as syntactic sugar for the
sum type unit + τ

I none as syntactic sugar for inlunit+τ ()

I some e as syntactic sugar for inrunit+τ e

7 / 19

Option as syntactic sugar

I the type τ option as syntactic sugar for the
sum type unit + τ

I none as syntactic sugar for inlunit+τ ()

I some e as syntactic sugar for inrunit+τ e

7 / 19

Option as syntactic sugar

I the type τ option as syntactic sugar for the
sum type unit + τ

I none as syntactic sugar for inlunit+τ ()

I some e as syntactic sugar for inrunit+τ e

7 / 19

Monoids

8 / 19

Monoids

A monoid is a set T with a distinguished element
called the unit (which we will denote u) and a single
operation multiply : T → T → T that satisfies the
following laws.

∀x ∈ T . multiply x u = x Left id.

∀x ∈ T . multiply u x = x Right id.

∀x , y , z ∈ T . multiply x (multiply y z) =

multiply (multiply x y) z Assoc.

9 / 19

Monoid examples

I Integers with multiplication.

I Integers with addition.

I Strings with concatenation.

I Lists with append.

10 / 19

Functors

11 / 19

Functors

A functor associates with each set A a set TA; has a
single operation map : (A→ B)→ TA → TB that
takes a function from A to B and an element of TA

and returns an element of TB

∀f ∈ A→ B , g ∈ B → C .

(map f); (map g) = map (f ; g) Distributivity

map (λa :A. a) = (λa :TA. a) Identity

12 / 19

Functor examples

I Options.

I Lists.

13 / 19

Monads

14 / 19

Monads

A monad associate each set A with a set MA. Two
operations:

I return : A→ MA

I bind : MA → (A→ MB)→ MB

15 / 19

Monad laws

∀x ∈ A, f ∈ A→ MB .

bind (return x) f = f x Left id.

∀am ∈ MA. bind am return = am Right id.

∀am ∈ MA, f ∈ A→ MB , f ∈ B → MC .

bind (bind am f) g =

bind am (λa :A. bind (f a) g) Assoc.

16 / 19

Option monad

return :τ → τ option

bind:τ1 option→ (τ1 → τ2 option)→ τ2 option

17 / 19

Algebraic structures in Haskell

I https://www.haskell.org/

I Pure functional language

I Call-by-need evaluation (aka lazy evaluation)
I Type classes: mechanism for ad hoc

polymorphism
I Declares common functions that all types within

class have
I We will use to express algebraic structures in

Haskell

18 / 19

Why Monads?

I Monads are very useful in Haskell

I Haskell is pure: no side effects

I But side effects useful!

I Monadic types cleanly and clearly express
side effects computation may have

I Monads force computation into sequence
I Monads as type classes capture underlying

structure of computation
I Reusable readable code that works for any monad

19 / 19

