Algebraic Structures CS 152 (Spring 2021)

Harvard University

Tuesday, March 30, 2021

Today, we will learn about

- Type constructors
- Lists, Options
- Alegebraic structures
- Monoids
- Functors
- Monads
- Alegebraic structures in Haskell

Type Constructors

- A type constructor creates new types from existing types

Type Constructors

- A type constructor creates new types from existing types
- E.g., product types, sum types, reference types, function types, ...

Lists

- Assume CBV λ-calc with booleans, fixpoint operator $\mu x: \tau$. e

Expressions $\quad e::=\cdots \mid[]$
$\left|e_{1}:: e_{2}\right|$ isempty? e| head e tail e
Values

$$
v::=\cdots|[]| v_{1}:: v_{2}
$$

Types $\tau::=\cdots \mid \tau$ list
Eval contexts $E::=\cdots \mid E::$ e|v:: E
\mid isempty? $E \mid$ head $E \mid$ tail E

List inference rules

$\overline{\text { isempty? [] } \longrightarrow \text { true }} \xrightarrow[\text { isempty? } v_{1}:: v_{2} \longrightarrow \text { false }]{ }$

| head $v_{1}:: v_{2} \longrightarrow v_{1}$ |
| :---: | | tail $v_{1}:: v_{2} \longrightarrow v_{2}$ |
| :---: |
| $\Gamma \vdash[]: \tau$ list |
| $\frac{\Gamma \vdash e_{1}: \tau \quad \Gamma \vdash e_{2}: \tau \text { list }}{\Gamma \vdash e_{1}::} e_{2}: \tau$ list |
| $\Gamma \vdash$ isempty? $e:$ bool |$\frac{\Gamma \vdash e: \tau \text { list }}{\Gamma \vdash \text { head } e: \tau} \frac{\Gamma \vdash e: \tau \text { list }}{\Gamma \vdash \text { tail } e: \tau \text { list }}$

append $\triangleq \mu f: \tau$ list $\rightarrow \tau$ list $\rightarrow \tau$ list. $\lambda a: \tau$ list. $\lambda b: \tau$ list. if isempty? a then b else (head $a)::(f($ tail $a) b)$

Options

Expressions $\quad e::=\cdots \mid$ none \mid some e
case e_{1} of $e_{2} \mid e_{3}$
Values
Types
$v::=\cdots \mid$ none \mid some v
$\tau::=\cdots \mid \tau$ option
Eval contexts $E::=\cdots \mid$ some $E \mid$ case E of $e_{2} \mid e_{3}$

Option as syntactic sugar

Option as syntactic sugar

the type τ option as syntactic sugar for the sum type unit $+\tau$

Option as syntactic sugar

- the type τ option as syntactic sugar for the sum type unit $+\tau$
- none as syntactic sugar for inl unit $+\tau()$

Option as syntactic sugar

- the type τ option as syntactic sugar for the sum type unit $+\tau$
- none as syntactic sugar for inl unit $+\tau()$
- some e as syntactic sugar for $\operatorname{inr}_{\text {unit }+\tau} e$

Monoids

Monoids

A monoid is a set T with a distinguished element called the unit (which we will denote u) and a single operation multiply : $T \rightarrow T \rightarrow T$ that satisfies the following laws.
$\forall x \in T$. multiply $x u=x \quad$ Left id.
$\forall x \in T$. multiply $u x=x \quad$ Right id.
$\forall x, y, z \in T$. multiply x (multiply $y z)=$
multiply (multiply x y) $z \quad$ Assoc.

Monoid examples

- Integers with multiplication.
- Integers with addition.
- Strings with concatenation.
- Lists with append.

Functors

Functors

A functor associates with each set A a set T_{A}; has a single operation map: $(A \rightarrow B) \rightarrow T_{A} \rightarrow T_{B}$ that takes a function from A to B and an element of T_{A} and returns an element of T_{B}
$\forall f \in A \rightarrow B, g \in B \rightarrow C$.

$$
\begin{array}{rlr}
(\operatorname{map} f) ;(\operatorname{map} g) & =\operatorname{map}(f ; g) & \text { Distributivity } \\
\operatorname{map}(\lambda a: A \cdot a) & =\left(\lambda a: T_{A} \cdot a\right) & \text { Identity }
\end{array}
$$

Functor examples

- Options.
- Lists.

Monads

Monads

A monad associate each set A with a set M_{A}. Two operations:

- return : $A \rightarrow M_{A}$
\rightarrow bind: $M_{A} \rightarrow\left(A \rightarrow M_{B}\right) \rightarrow M_{B}$

Monad laws

$$
\forall x \in A, f \in A \rightarrow M_{B}
$$

$$
\text { bind }(\text { return } x) f=f x \quad \text { Left id. }
$$

$\forall a m \in M_{A}$. bind am return $=a m$ Right id.
$\forall a m \in M_{A}, f \in A \rightarrow M_{B}, f \in B \rightarrow M_{C}$.
bind (bind amf) $g=$
bind am $(\lambda a: A$. bind $(f a) g)$
Assoc.

Option monad

return : $\tau \rightarrow \tau$ option
bind: τ_{1} option $\rightarrow\left(\tau_{1} \rightarrow \tau_{2}\right.$ option $) \rightarrow \tau_{2}$ option

Algebraic structures in Haskell

- https://www.haskell.org/
- Pure functional language
- Call-by-need evaluation (aka lazy evaluation)
- Type classes: mechanism for ad hoc polymorphism
- Declares common functions that all types within class have
- We will use to express algebraic structures in Haskell

Why Monads?

- Monads are very useful in Haskell
- Haskell is pure: no side effects
- But side effects useful!
- Monadic types cleanly and clearly express side effects computation may have
- Monads force computation into sequence
- Monads as type classes capture underlying structure of computation
- Reusable readable code that works for any monad

