
Probabilistic Programming &
Probabilistic Programming Languages

CS 152 Programming Languages

Yizhou Zhang
University of Waterloo

What is a Probabilistic Program?

What is a Probabilistic Program?

Drawing samples

What is a Probabilistic Program?

Drawing samples

Conditioning
specifies samples that are good

What is a Probabilistic Program?

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

specifies samples that are good

X

Z

What is a Probabilistic Program?

p(Z = z |X = x) =
p(Z = z, X = x)

p(X = x)

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

specifies samples that are good

X

Z

What is a Probabilistic Program?

p(Z = z |X = x) =
p(Z = z, X = x)

p(X = x)

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

observedlatent

specifies samples that are good

X

Z

What is a Probabilistic Program?

p(Z = z |X = x) =
p(Z = z, X = x)

p(X = x)

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

Bayes’ Theorem

observedlatent

specifies samples that are good

X

Z

What is a Probabilistic Program?

p(z |x) =
p(z, x)
p(x)

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

Bayes’ Theorem joint

evidence
posterior X

Z

specifies samples that are good

What is a Probabilistic Program?

Bayes’ Theorem

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

likelihood prior

p(z |x) =
p(z, x)
p(x)

=
p(x |z) p(z)

p(x)

joint

evidence
posterior X

Z

specifies samples that are good

What is a Probabilistic Program?

Bayes’ Theorem

Drawing samples

Conditioning

Describes a
distribution

Describes a
conditional distribution}

likelihood prior

p(z |x) =
p(z, x)
p(x)

=
p(x |z) p(z)
∫ p(z, x) dz

joint

evidence
posterior

marginal likelihood
X

Z

specifies samples that are good

Example: Rain-Sprinkler-Grass
https://en.wikipedia.org/wiki/Bayesian_network#Example

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

Example: Rain-Sprinkler-Grass
https://en.wikipedia.org/wiki/Bayesian_network#Example

p(W = 𝖳 |S = 𝖳, R = 𝖥)

p(W |S = 𝖳, R = 𝖥)

p(W |S, R)

Aside on notation:

p(S |R) p(R)

p(W |S, R)
family of distributions

distribution

probability mass

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q1: Given that it rained, how
likely is that the sprinkler was
active?

Example: Rain-Sprinkler-Grass

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q1: Given that it rained, how
likely is that the sprinkler was
active?

Q2: Given that it rained, how
likely is that the grass is wet?

Example: Rain-Sprinkler-Grass

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q1: Given that it rained, how
likely is that the sprinkler was
active?

Q2: Given that it rained, how
likely is that the grass is wet?

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

Example: Rain-Sprinkler-Grass

Q3: Given that grass is wet,
how likely is that it rained?

https://en.wikipedia.org/wiki/Bayesian_network#Example

Example: Rain-Sprinkler-Grass

Q3: Given that grass is wet,
how likely is that it rained?

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

associational

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

associational

Ladder of Causation

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

Q4: If we were to turn on the
sprinkler, how likely would
the grass be wet?

associational

interventional

Ladder of Causation

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

Q4: If we were to turn on the
sprinkler, how likely would
the grass be wet?

Q5: Given that the sprinkler
is active, had we turned off
the sprinkler, how likely
would the grass still be wet?

associational

interventional

counterfactual

Ladder of Causation

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

https://en.wikipedia.org/wiki/Bayesian_network#Example

Q3: Given that grass is wet,
how likely is that it rained?

Example: Rain-Sprinkler-Grass

Q4: If we were to turn on the
sprinkler, how likely would
the grass be wet?

Q5: Given that the sprinkler
is active, had we turned off
the sprinkler, how likely
would the grass still be wet?

associational

interventional

counterfactual

Ladder of Causation

p(S |R) p(R)

p(W |S, R)

https://en.wikipedia.org/wiki/Bayesian_network#Example

Probabilistic ProgrammingProgramming

X

Z

X

Z
p(z |x) =

p(x |z) p(z)
p(x)

Bucket

Input

Program

OutputBall rarely falls
into bucket

Bumper
positions

Example: Bouncing Balls

Bucket

Input

Program

OutputBall often falls
into bucket

Bumper
positions

https://bit.ly/2Q8s88r

Example: Bouncing Balls into Bucket

Input

Program

Output Input-output
examples

Program
source code

Agent’s
policy/plan

Agent’s
reward

Captcha
letters

Captcha
images

p(z |x) =
p(x |z) p(z)

p(x)

Applications of Probabilistic Programming

p(z |x)

p(z, x)

x

X

Z

Input

Program

Output Input-output
examples

Program
source code

Agent’s
policy/plan

Agent’s
reward

Captcha
letters

Captcha
images

p(z |x) =
p(x |z) p(z)

p(x)

Applications of Probabilistic Programming

p(z |x)

p(z, x)

x

X

Z

Input

Program

Output Input-output
examples

Program
source code

Agent’s
policy/plan

Agent’s
reward

Captcha
letters

Captcha
images

p(z |x) =
p(x |z) p(z)

p(x)

Applications of Probabilistic Programming

p(z |x)

p(z, x)

x

X

Z

Input

Program

Output Input-output
examples

Program
source code

Agent’s
policy/plan

Agent’s
reward

Captcha
letters

Captcha
images

p(z |x) =
p(x |z) p(z)

p(x)

Applications of Probabilistic Programming

p(z |x)

p(z, x)

x

X

Z

Programs

Interpreter / Compiler

PL as an Abstraction Layer

PL

Programs

Interpreter / Compiler

PL as an Abstraction Layer

PL

expression

solving

PPL as an Abstraction Layer

Probabilistic Programs

Probabilistic Inference

PPL

expression

solving

PPL as an Abstraction Layer

Probabilistic Programs

Probabilistic Inference

PPL
X

Z
expression

solving

latent RVs

observed RVs

PPL as an Abstraction Layer

Probabilistic Programs

Probabilistic Inference

PPL

data-generation process
generative model

stochastic simulation
decoders

inductive bias X

Z
expression

solving

latent RVs

observed RVs

PPL as an Abstraction Layer

Probabilistic Programs

Probabilistic Inference

PPL
X

Z

p(z |x) =
p(x |z) p(z)

p(x)

expression

solving

latent RVs

observed RVs

data-generation process
generative model

stochastic simulation
decoders

inductive bias

Interpreters & Compilers

What is hard about Bayesian inference?

p(z |x) =
p(z, x)
p(x)

=
p(x |z) p(z)
∫ p(z, x) dz

Bayes’ Theorem likelihood priorjoint

evidence
posterior

marginal likelihood
X

Z

Integration of joint over all execution traces
 Enumerating all traces is unrealistic

What is hard about Bayesian inference?

p(z |x) =
p(z, x)
p(x)

=
p(x |z) p(z)
∫ p(z, x) dz

Bayes’ Theorem likelihood priorjoint

evidence
posterior

marginal likelihood
X

Z

Integration of joint over all execution traces

Joint is defined by a program

Enumerating all traces is unrealistic

Integration rarely has analytical solutions

Bayes’ Theorem likelihood priorjoint

X

Z

Have to Approximate or Limit Expressivity

p(z |x) =
p(z, x)
p(x)

=
p(x |z) p(z)
∫ p(z, x) dz

evidence
posterior

marginal likelihood

Integration of joint over all execution traces

Joint is defined by a program Integration rarely has analytical solutions

Enumerating all traces is unrealistic

Approximate

Rejection Sampling

Likelihood Weighting

Importance Sampling

Sequential Monte Carlo (SMC)

Markov Chain Monte Carlo (MCMC)

Variational Inference

Have to Approximate or Limit Expressivity

Approximate Limit Expressivity

Reduced expressive power

 Improved run-time efficiency

Most common restriction to impose:

Ban recursion/unbounded loops

(think of finite graphical models)

Examples: Stan, Infer.NET, Dice, …

Have to Approximate or Limit Expressivity

Rejection Sampling

Likelihood Weighting

Importance Sampling

Sequential Monte Carlo (SMC)

Markov Chain Monte Carlo (MCMC)

Variational Inference

Approximate Limit Expressivity

Reduced expressive power

 Improved run-time efficiency

Most common restriction to impose:

Ban recursion/unbounded loops

(think of finite graphical models)

Examples: Stan, Infer.NET, …

Have to Approximate or Limit Expressivity

Rejection Sampling

Likelihood Weighting

Importance Sampling

Sequential Monte Carlo (SMC)

Markov Chain Monte Carlo (MCMC)

Variational Inference

PPL as an Abstraction Layer

Probabilistic Programs

Probabilistic Inference

PPL

expression

solving

Example: Reinforcement Learning
X

Zagent trajectory

high reward

Example: Reinforcement Learning
X

Zagent trajectory

high reward
reward

states

actions

def MDP(state): // recursive MDP description

def reward(state) // immediate reward
def transition(state, action) // step the environment

Agent

Environment

Example: Reinforcement Learning
X

Zagent trajectory

high reward
reward

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Agent

Environment

Example: Reinforcement Learning
X

Zagent trajectory

high reward
reward

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Goal of inference:
a policy function

Agent

Environment

π : State → Action

Example: Reinforcement Learning
X

Zagent trajectory

optimalityoptimality
variables

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Goal of inference:
a policy function

Agent

Environment

π : State → Action

p(Ot = 1 |st) = ?def

Example: Reinforcement Learning
X

Zagent trajectory

optimalityoptimality
variables

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Goal of inference:
a policy function

Agent

Environment

π : State → Action

p(Ot = 1 |st) = exp(r(st))
def

Example: Reinforcement Learning
X

Zagent trajectory

optimalityoptimality
variables

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Goal of inference:
a policy function

Agent

Environment

π : State → Action

p(Ot = 1 |st) = exp(r(st))
def

Example: Reinforcement Learning
X

Zagent trajectory

optimalityoptimality
variables

states

actions

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

Agent

Environment

π : State → Action
Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

p(Ot = 1 |st) = exp(r(st))
def

Example: Reinforcement Learning
X

Zagent trajectory

optimality

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

optimality
variables

states

actions Agent

Environment

π : State → Dist[Action]

p(Ot = 1 |st) = exp(r(st))
def

Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

Example: Reinforcement Learning
X

Zagent trajectory

optimality

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

def reward(state) // immediate reward
def transition(state, action) // step the environment

π(s) = q(a |s; ϕ)
optimality
variables

states

actions Agent

Environment

π : State → Dist[Action]

p(Ot = 1 |st) = exp(r(st))
def

Example: Reinforcement Learning
X

Zagent trajectory

optimality

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

optimality
variables

states

actions Agent

π : State → Dist[Action]

p(st+1 |st, at)
p(at)

p(Ot = 1 |st) = exp(r(st))
def

Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

π(s) = q(a |s; ϕ)

def reward(state) // immediate reward
def transition(state, action) // step the environment

Environment

Example: Reinforcement Learning
X

Zagent trajectory

optimality

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

optimality
variables

states

actions Agent

p(st+1 |st, at)
p(at)

p(Ot = 1 |st) = exp(r(st))
def

π : State → Dist[Action]
Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

π(s) = q(a |s; ϕ)

p(s1, a1, . . . |𝗈𝗉𝗍𝗂𝗆𝖺𝗅𝗂𝗍𝗒) ∝ p(s1)∏
t

p(at) p(st+1 |st, at) p(Ot = 1 |st)

Example: Reinforcement Learning
X

Zagent trajectory

optimality

def MDP(state): // recursive MDP description
 if (terminal(state))
 return
 action = sample(…) // sample action from prior
 nextState = transition(state, action)
 factor(reward(nextState)) // condition on optimality
 MDP(nextState) // recurse

optimality
variables

states

actions Agent

p(st+1 |st, at)
p(at)

p(Ot = 1 |st) = exp(r(st))
def

π : State → Dist[Action]
Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

π(s) = q(a |s; ϕ)

p(s1, a1, . . . |𝗈𝗉𝗍𝗂𝗆𝖺𝗅𝗂𝗍𝗒) ∝ p(s1)∏
t

p(at) p(st+1 |st, at) p(Ot = 1 |st)
q(s1, a1, . . . , st, at; ϕ) = p(s1)∏

t

q(at |st; ϕ) p(st+1 |st, at)q(at |st; ϕ)ϕ

Example: Reinforcement Learning
X

Zagent trajectory

optimalityoptimality
variables

states

actions

π : State → Dist[Action]
Goal of inference:
a policy function leading to
optimal trajectory, rather than a trajectory per se

π(s) = q(a |s; ϕ)

p(s1, a1, . . . |𝗈𝗉𝗍𝗂𝗆𝖺𝗅𝗂𝗍𝗒) ∝ p(s1)∏
t

p(at) p(st+1 |st, at) p(Ot = 1 |st)
q(s1, a1, . . . , st, at; ϕ) = p(s1)∏

t

q(at |st; ϕ) p(st+1 |st, at)q(at |st; ϕ)ϕ

min
ϕ

DKL (q(s1, a1, . . . , st, at; ϕ) | |p(s1, a1, . . . |𝗈𝗉𝗍𝗂𝗆𝖺𝗅𝗂𝗍𝗒))ϕ
ϕ

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Inference inside inference => Thinking about thinking

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Amortizing nested inference

Example: Two-Player Game

https://agentmodels.org/chapters/7-multi-agent.html
Stuhlmüller and Goodman. Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. CogSci. 2014.

Amortizing nested inference

A Glimpse into Formal Semantics

2 Trace-Based Operational Semantics

In the �-calculus, the meaning of a program is given by an operational semantics that evaluates
the program to a value. In the �P-calculus, the meaning of a program is taken to be the posterior
distribution over the values to which the program can possibly be evaluated.

Before defining the distribution semantics, which involves integrating over all possible sequences
of random choices (i.e., traces), we must first define how to deterministically evaluate a program
with respect to any given trace. Deterministic evaluation is given by the operational semantics of
the �P-calculus, which inherits from that of the �-calculus.

First, extend the syntax of values and evaluation contexts:

values v ::= �x . t | r

evaluation contexts K ::= [·] | K t | v K | opn(v1, . . . , vi�1,K, ti+1 . . . , tn) | factor K

Values additionally include real numbers. Evaluation contexts are extended with those for operation
invocations and that for conditioning. The definition shows that arguments to an n-ary operation
are evaluated from left to right.

Some reduction steps have side e↵ects: sample manipulates the trace, and factor changes the
probability density of the current execution. Other reduction steps are pure—they have nothing to
do with traces or densities. The pure part can be defined using rules of form t1 �! t2, just as in
the �-calculus:

t1 �! t2

[ktx]
t1 �! t2

K[t1] �! K[t2]

[beta] (�x . t) v �! t {v/x}

[op]
[[opn]](r1, . . . , rn) = r

opn(r1, . . . , rn) �! r

The only addition is the op rule. The notation [[opn]] represents the n-ary function that is the
mathematical meaning of the predefined n-ary operation opn. For example, GaussianPDF has the
following predefined meaning:

[[GaussianPDF]](µ,�, x)
def
=

1

�
p
2⇡

exp

�1

2

✓
x� µ

�

◆2
!

Now we are ready to define reductions that have side e↵ects. A trace ` is a list of reals, with ✏
denoting the empty trace:

trace ` ::= ✏ | r, `

Reductions in general take the form h`1 | t1i �! h`2 | t2i • r. It says that term t1 steps to t2 while
the trace evolves from `1 to `2 and that the reduction step factors r into the probability density of
the current execution.

Intuitively, the notation h` | ti means that random choices made by the evaluation of ` come
from the trace `. More precisely, reductions are defined as follows:

2

CS 842 Probabilistic Programming Languages

Lecture 7 Semantics of a Probabilistic Lambda Calculus

2021-02-04 Yizhou Zhang

1 Syntax of a Probabilistic Lambda Calculus

The basic syntactic ingredients of a probabilistic programming language include sampling and
conditioning. We extend the syntax of the �-calculus accordingly.

terms t ::= x variable
| �x . t abstraction
| t1 t2 application
| r real number
| opn(t1, . . . , tn) n-ary operation invocation
| sample sampling
| factor t conditioning

We call this probabilistic �-calculus the �P-calculus. Variables, abstractions, and applications are
inherited from the �-calculus. The probabilistic extension consists of real numbers, operations on
real numbers, sampling, and conditioning.

• Metavariable r ranges over real numbers.

• opn ranges over n-nary operations on real numbers. We assume a set of predefined operations.
For example, GaussianPDF is a ternary operation and GaussianPDF(0, 1, 0.2) returns the
probability density of the unit Gaussian distribution at point 0.2.

• sample is the language construct for sampling the uniform distribution on [0, 1].

• factor t is the language construct for conditioning. In �P, conditioning takes the form of
adding a factor to the probability density of the current execution trace, similar to how factor

in Pyro and WebPPL changes the log-probability density. The factor construct subsumes the
usual “sample and observe” method for expressing conditioning. For example, the following
term expresses that a unit-Gaussian sample is observed to take the value 0.2:

factor GaussianPDF(0, 1, 0.2)

Sampling from other distributions. The sample form returns a sample from the uniform
distribution on [0, 1]. It can also be used to encode samples from other common distributions. For
example, Gaussian distributions can be sampled by applying the following �-term:

Gaussian
def
= �µ.��.GaussianCDF�1(µ,�, sample)

Gaussian transforms a uniform sample into a Gaussian sample, by applying the ternary operation
GaussianCDF�1, which is the inverse of the cumulative distribution function of the Gaussian
distribution. This method is called inverse transform sampling.

1

h`1 | t1i �! h`2 | t2i • r

[pure]
t1 �! t2

h` | t1i �! h` | t2i • 1

[sample]
0 r 1

hr, ` | samplei �! h` | ri • 1

[factor]
0 < r

h` | factor ri �! h` | 0i • r

• Rule pure lifts a pure reduction step to the general from of reductions: the reduction changes
neither the trace nor the probability density.

• Rule sample shows that sample consumes a number from the trace and steps to that real
number. The reduction step does not change the probability density, because every sample
from the uniform distribution is equally likely. The sample is required to be in [0, 1], the
support of the uniform distribution.

• Term factor r factors a positive number r into the probability density, while keeping the trace
intact. (Rule factor shows that factor r steps to the term 0; here 0 is just a placeholder
that is not supposed to bear any significance.)

As is in the �-calculus, evaluation is defined as a sequence of reduction steps strung together.
The form h` | ti �!n h✏ | vi • r defines successful evaluation, meaning that term t steps to a value v
in n steps, using up all numbers in the initial trace ` and producing factor r.

h` | t1i �!n h✏ | vi • r

[eval-end] h✏ | vi �!0 h✏ | vi • 1

[eval-step]
h`1 | t1i �! h`2 | t2i • r1 h`2 | t2i �!n h✏ | vi • r2

h`1 | t1i �!n+1 h✏ | vi • r1 · r2

• Rule eval-end is what happens at the end of a successful evaluation: the trace is exhausted
and the term is already a value.

• Rule eval-step first makes one reduction step and recursively evaluates the resulting trace
and term. The final factor is a product of all factors produced during evaluation.

3 Measure Semantics

In measure theory, a probability distribution is a probability measure, a function returning a
probability value in [0, 1] for any measurable set. Hence, the measure semantics of a program t

3

in the �P-calculus is a probability measure that for any measurable set of values V , returns the
probability that a successful evaluation of t leads to a value in V . Our goal is to define this measure
for any term t.

First, the weight that a trace ` carries in the measure is given by the probability factor produced
by evaluating t with respect to that trace:

⇢n(`, t, V)
def
=

(
r h` | ti �!n h✏ | vi • r and v 2 V

0 otherwise

Next, integrating ⇢n(`, t, V) over all traces gives the unnormalized measure:

µn(t, V)
def
=

Z
⇢n(`, t, V) d`

The above step requires that traces form a measurable space and that ⇢n(`, t, V) be a measurable
function; the integration is a Lebesgue integral with respect to a measure over traces. These
measure-theoretic proof obligations are beyond the scope of this lecture. It can also be shown that
µn(t, V) is monotonically non-decreasing with respect to n.

Now, take the limit of the unnormalized measure:

µ(t, V)
def
= lim

n!1
µn(t, V)

Let Value represent the set of all values. The normalized probability measure induced by a term t
is given by

P (t, V)
def
=

µ(t, V)

µ(t,Value)

where µ(t,Value) is the normalization constant, also known as the evidence of the probabilistic
model t. The probability measure exists only when the evidence is positive and finite.

4

in the �P-calculus is a probability measure that for any measurable set of values V , returns the
probability that a successful evaluation of t leads to a value in V . Our goal is to define this measure
for any term t.

First, the weight that a trace ` carries in the measure is given by the probability factor produced
by evaluating t with respect to that trace:

⇢n(`, t, V)
def
=

(
r h` | ti �!n h✏ | vi • r and v 2 V

0 otherwise

Next, integrating ⇢n(`, t, V) over all traces gives the unnormalized measure:

µn(t, V)
def
=

Z
⇢n(`, t, V) d`

The above step requires that traces form a measurable space and that ⇢n(`, t, V) be a measurable
function; the integration is a Lebesgue integral with respect to a measure over traces. These
measure-theoretic proof obligations are beyond the scope of this lecture. It can also be shown that
µn(t, V) is monotonically non-decreasing with respect to n.

Now, take the limit of the unnormalized measure:

µ(t, V)
def
= lim

n!1
µn(t, V)

Let Value represent the set of all values. The normalized probability measure induced by a term t
is given by

P (t, V)
def
=

µ(t, V)

µ(t,Value)

where µ(t,Value) is the normalization constant, also known as the evidence of the probabilistic
model t. The probability measure exists only when the evidence is positive and finite.

4

in the �P-calculus is a probability measure that for any measurable set of values V , returns the
probability that a successful evaluation of t leads to a value in V . Our goal is to define this measure
for any term t.

First, the weight that a trace ` carries in the measure is given by the probability factor produced
by evaluating t with respect to that trace:

⇢n(`, t, V)
def
=

(
r h` | ti �!n h✏ | vi • r and v 2 V

0 otherwise

Next, integrating ⇢n(`, t, V) over all traces gives the unnormalized measure:

µn(t, V)
def
=

Z
⇢n(`, t, V) d`

The above step requires that traces form a measurable space and that ⇢n(`, t, V) be a measurable
function; the integration is a Lebesgue integral with respect to a measure over traces. These
measure-theoretic proof obligations are beyond the scope of this lecture. It can also be shown that
µn(t, V) is monotonically non-decreasing with respect to n.

Now, take the limit of the unnormalized measure:

µ(t, V)
def
= lim

n!1
µn(t, V)

Let Value represent the set of all values. The normalized probability measure induced by a term t
is given by

P (t, V)
def
=

µ(t, V)

µ(t,Value)

where µ(t,Value) is the normalization constant, also known as the evidence of the probabilistic
model t. The probability measure exists only when the evidence is positive and finite.

4

Takeaway messages

PPLs are powerful tools for probabilistic modeling and inference

Exciting area of ongoing research

PPLsPL ML/AI/Stats
language design

compilers
formal semantics

Probabilistic Programming &
Probabilistic Programming Languages

CS 152 Programming Languages

Yizhou Zhang
University of Waterloo

