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A Glimpse into Formal Semantics

2 Trace-Based Operational Semantics

In the �-calculus, the meaning of a program is given by an operational semantics that evaluates
the program to a value. In the �P-calculus, the meaning of a program is taken to be the posterior
distribution over the values to which the program can possibly be evaluated.

Before defining the distribution semantics, which involves integrating over all possible sequences
of random choices (i.e., traces), we must first define how to deterministically evaluate a program
with respect to any given trace. Deterministic evaluation is given by the operational semantics of
the �P-calculus, which inherits from that of the �-calculus.

First, extend the syntax of values and evaluation contexts:

values v ::= �x . t | r

evaluation contexts K ::= [·] | K t | v K | opn(v1, . . . , vi�1,K, ti+1 . . . , tn) | factor K

Values additionally include real numbers. Evaluation contexts are extended with those for operation
invocations and that for conditioning. The definition shows that arguments to an n-ary operation
are evaluated from left to right.

Some reduction steps have side e↵ects: sample manipulates the trace, and factor changes the
probability density of the current execution. Other reduction steps are pure—they have nothing to
do with traces or densities. The pure part can be defined using rules of form t1 �! t2, just as in
the �-calculus:

t1 �! t2

[ktx]
t1 �! t2

K[t1] �! K[t2]

[beta] (�x . t) v �! t {v/x}

[op]
[[opn]](r1, . . . , rn) = r

opn(r1, . . . , rn) �! r

The only addition is the op rule. The notation [[opn]] represents the n-ary function that is the
mathematical meaning of the predefined n-ary operation opn. For example, GaussianPDF has the
following predefined meaning:

[[GaussianPDF]](µ,�, x)
def
=

1

�
p
2⇡

exp

 
�1

2

✓
x� µ

�

◆2
!

Now we are ready to define reductions that have side e↵ects. A trace ` is a list of reals, with ✏
denoting the empty trace:

trace ` ::= ✏ | r, `

Reductions in general take the form h`1 | t1i �! h`2 | t2i • r. It says that term t1 steps to t2 while
the trace evolves from `1 to `2 and that the reduction step factors r into the probability density of
the current execution.

Intuitively, the notation h` | ti means that random choices made by the evaluation of ` come
from the trace `. More precisely, reductions are defined as follows:

2
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1 Syntax of a Probabilistic Lambda Calculus

The basic syntactic ingredients of a probabilistic programming language include sampling and
conditioning. We extend the syntax of the �-calculus accordingly.

terms t ::= x variable
| �x . t abstraction
| t1 t2 application
| r real number
| opn(t1, . . . , tn) n-ary operation invocation
| sample sampling
| factor t conditioning

We call this probabilistic �-calculus the �P-calculus. Variables, abstractions, and applications are
inherited from the �-calculus. The probabilistic extension consists of real numbers, operations on
real numbers, sampling, and conditioning.

• Metavariable r ranges over real numbers.

• opn ranges over n-nary operations on real numbers. We assume a set of predefined operations.
For example, GaussianPDF is a ternary operation and GaussianPDF(0, 1, 0.2) returns the
probability density of the unit Gaussian distribution at point 0.2.

• sample is the language construct for sampling the uniform distribution on [0, 1].

• factor t is the language construct for conditioning. In �P, conditioning takes the form of
adding a factor to the probability density of the current execution trace, similar to how factor

in Pyro and WebPPL changes the log-probability density. The factor construct subsumes the
usual “sample and observe” method for expressing conditioning. For example, the following
term expresses that a unit-Gaussian sample is observed to take the value 0.2:

factor GaussianPDF(0, 1, 0.2)

Sampling from other distributions. The sample form returns a sample from the uniform
distribution on [0, 1]. It can also be used to encode samples from other common distributions. For
example, Gaussian distributions can be sampled by applying the following �-term:

Gaussian
def
= �µ.��.GaussianCDF�1(µ,�, sample)

Gaussian transforms a uniform sample into a Gaussian sample, by applying the ternary operation
GaussianCDF�1, which is the inverse of the cumulative distribution function of the Gaussian
distribution. This method is called inverse transform sampling.

1

h`1 | t1i �! h`2 | t2i • r

[pure]
t1 �! t2

h` | t1i �! h` | t2i • 1

[sample]
0  r  1

hr, ` | samplei �! h` | ri • 1

[factor]
0 < r

h` | factor ri �! h` | 0i • r

• Rule pure lifts a pure reduction step to the general from of reductions: the reduction changes
neither the trace nor the probability density.

• Rule sample shows that sample consumes a number from the trace and steps to that real
number. The reduction step does not change the probability density, because every sample
from the uniform distribution is equally likely. The sample is required to be in [0, 1], the
support of the uniform distribution.

• Term factor r factors a positive number r into the probability density, while keeping the trace
intact. (Rule factor shows that factor r steps to the term 0; here 0 is just a placeholder
that is not supposed to bear any significance.)

As is in the �-calculus, evaluation is defined as a sequence of reduction steps strung together.
The form h` | ti �!n h✏ | vi • r defines successful evaluation, meaning that term t steps to a value v
in n steps, using up all numbers in the initial trace ` and producing factor r.

h` | t1i �!n h✏ | vi • r

[eval-end] h✏ | vi �!0 h✏ | vi • 1

[eval-step]
h`1 | t1i �! h`2 | t2i • r1 h`2 | t2i �!n h✏ | vi • r2

h`1 | t1i �!n+1 h✏ | vi • r1 · r2

• Rule eval-end is what happens at the end of a successful evaluation: the trace is exhausted
and the term is already a value.

• Rule eval-step first makes one reduction step and recursively evaluates the resulting trace
and term. The final factor is a product of all factors produced during evaluation.

3 Measure Semantics

In measure theory, a probability distribution is a probability measure, a function returning a
probability value in [0, 1] for any measurable set. Hence, the measure semantics of a program t

3

in the �P-calculus is a probability measure that for any measurable set of values V , returns the
probability that a successful evaluation of t leads to a value in V . Our goal is to define this measure
for any term t.

First, the weight that a trace ` carries in the measure is given by the probability factor produced
by evaluating t with respect to that trace:

⇢n(`, t, V )
def
=

(
r h` | ti �!n h✏ | vi • r and v 2 V

0 otherwise

Next, integrating ⇢n(`, t, V ) over all traces gives the unnormalized measure:

µn(t, V )
def
=

Z
⇢n(`, t, V ) d`

The above step requires that traces form a measurable space and that ⇢n(`, t, V ) be a measurable
function; the integration is a Lebesgue integral with respect to a measure over traces. These
measure-theoretic proof obligations are beyond the scope of this lecture. It can also be shown that
µn(t, V ) is monotonically non-decreasing with respect to n.

Now, take the limit of the unnormalized measure:

µ(t, V )
def
= lim

n!1
µn(t, V )

Let Value represent the set of all values. The normalized probability measure induced by a term t
is given by

P (t, V )
def
=

µ(t, V )

µ(t,Value)

where µ(t,Value) is the normalization constant, also known as the evidence of the probabilistic
model t. The probability measure exists only when the evidence is positive and finite.
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Takeaway messages

PPLs are powerful tools for probabilistic modeling and inference

Exciting area of ongoing research
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