Control flow graph

A control flow graph is a representation of a program that makes certain analyses (including dataflow analyses) easier.

A directed graph where:
- Each node represents a statement
- Edges represent control flow

Statements may be:
- Assignments: $x := y$ or $x := y \text{ op } z$ or $x := \text{ op } y$
- Branches: goto L or if b then goto L
- etc.
Control-flow graph example

\[
x := a + b;
y := a \times b;
\text{while } (y > a) \{
 a := a + 1;
 x := a + b
\}
\]
Variations on CFGs

- Usually don’t include declarations (e.g., int x;) in the CFG
 - But there’s usually something in the implementation
- May want a unique entry and exit node
 - Won’t matter for the examples we give
- May group statements into **basic blocks**
 - A sequence of instructions with no branches into or out of the block
Control-flow graph with basic blocks

\[
x := a + b;
\]

\[
y := a \times b;
\]

\[
\text{while } (y > a) \{ \\
 \quad a := a + 1; \\
 \quad x := a + b \\
\}
\]

- Can lead to more efficient implementations
- More complicated to explain, so for the meantime we’ll use single statement blocks
Graph example with entry and exit

\[
x := a + b; \\
y := a \times b; \\
\text{while } (y > a) \{ \\
 \quad a := a + 1; \\
 \quad x := a + b \\
\}
\]

- All nodes without a normal predecessor should be pointed to by entry.
- All nodes with a successor should point to exit.
CFG vs AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions
- But AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program
- ASTs are
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unpars to produce readable code
Dataflow analysis

• A framework for proving facts about programs
• Reasons about lots of little facts
• Little or no interaction between facts
 • Works best on properties about how program computes
• Based on all paths through program
 • Including infeasible paths

• Let’s consider some dataflow analyses
Available expressions

• An expression e is **available** at program point p if
 • e is computed on every path to p, and
 • the value of e has not changed since the last time e was computed on the paths to p

• Available expressions can be used to optimize code
 • If an expression is available, don’t need to recompute it (provided it is stored in a register somewhere)
Data flow facts

• Is expression e available?

• Facts
 • “a + b is available”
 • “a * b is available”
 • “a + 1 is available”

• For each program point, we will compute which facts hold.

```
x := a + b;
y := a * b;
y > a
a := a + 1;
x := a + b
```

entry

```y > a```

```a := a + 1;```

```x := a + b```

exit
• What is the effect of each statement on the facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a + b</td>
<td></td>
</tr>
<tr>
<td>y := a * b</td>
<td>a * b</td>
<td></td>
</tr>
<tr>
<td>y &gt; a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a + 1</td>
<td>a + b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a * b</td>
</tr>
</tbody>
</table>
Computing available expressions

```
x := a + b;
y := a * b;
y > a
a := a + 1;
x := a + b
```

Diagram:
```
entry
∅
∅
∅
∅
∅
∅
∅
∅
{a+b}
{a+b}
{a+b, a*b}
{a+b, a*b}
{a+b, a*b}
{a+b, a*b}
{a+b}
{a+b}
{a+b}
{a+b}
{a+b, a*b}
{a+b, a*b}
{a+b}
{a+b}
{a+b}
{a+b}
{a+b}
{a+b}
{a+b}
{a+b}
```
Terminology

• A join point is a program point where two or more branches meet

• Available expressions is a forward must analysis
  • Forward = Data flow from in to out
  • Must = At join points, only keep facts that hold on all paths that are joined
Data flow equations

• Let $s$ be a statement
  • $\text{succs}(s) = \{ \text{immediate successor stmts of } s \}$
  • $\text{preds}(s) = \{ \text{immediate predecessor stmts of } s \}$
  • $\text{In}(s) = \text{program point just before executing } s$
  • $\text{Out}(s) = \text{program point just after executing } s$

• $\text{In}(s) = \bigcap_{s' \in \text{preds}(s)} \text{Out}(s')$

• $\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(S) - \text{Kill}(s))$
Liveness analysis

• A variable $v$ is **live** at program point $p$ if
  • $v$ will be used on some execution path originating from $p$ before $v$ is overwritten

• Optimization
  • If a variable is not live, no need to keep it in a register
  • If variable is dead at assignment, can eliminate assignment
Data flow equations

• Available expressions is a forward must analysis
  • Propagate facts in same direction as control flow
  • Expression is available only if available on all paths

• Liveness is a **backwards may** analysis
  • To know if a variable is live, we need to look at the future uses of it. We propagate facts backwards, from Out to In
  • Variable is live if it is used on some path

• $\text{Out}(s) = \bigcup_{s' \in \text{succs}(s)} \text{In}(s')$

• $\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(S) - \text{Kill}(s))$
What is the effect of each statement on the facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y &gt; a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

(entry) -> x := a + b; -> y := a * b; -> y > a; -> a := a + 1; -> x := a + b (exit)
Computing live variables

\[
x := a + b; \\
y := a \times b; \\
y > a \\
a := a + 1; \\
x := a + b
\]
Very busy expressions

• An expression $e$ is **very busy** at point $p$ if
  • On every path from $p$, expression $e$ is evaluated before the value of $e$ is changed

• Optimization
  • Can hoist very busy expression computation

• What kind of problem?
  • Forward or backward?
  • May or must?
Reaching definitions

• A definition of a variable v is an assignment to v

• A definition of variable v reaches point p if
  • There is no intervening assignment to v
  • Also called def-use information

• What kind of problem?
  • Forward or backward?
  • May or must?
Space of data flow analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Forward</strong></td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td><strong>Backward</strong></td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most dataflow analyses can be categorized in this way
  - A few don’t fit, need bidirectional flow
- Lots of literature on data flow analyses
Data flow facts and lattices

- Typically, data flow facts form lattices
- E.g., available expressions

\[
\begin{array}{c}
\top \quad \text{“top”} \\
\text{a+b, a\times b, a+1} \\
\text{a\times b, a+1} \\
\text{a+b, a+1} \\
\text{a\times b} \\
\text{a+1} \\
\varnothing \\
\text{a+b} \\
\bot \quad \text{“bottom”}
\end{array}
\]
Partial orders and lattices

- **A partial order** is a pair \((P, \leq)\) such that
  - \(\leq\) is a relation over \(P\) \((\leq \subseteq P \times P)\)
  - \(\leq\) is reflexive, anti-symmetric, and transitive

- **A partial order** is a **lattice** if every two elements of \(P\) have a unique least upper bound and greatest lower bound.
  - \(\sqcap\) is the meet operator: \(x \sqcap y\) is the greatest lower bound of \(x\) and \(y\)
    - \(x \sqcap y \leq x\) and \(x \sqcap y \leq y\)
    - if \(z \leq x\) and \(z \leq y\) then \(z \leq x \sqcap y\)
  - \(\sqcup\) is the join operator: \(x \sqcup y\) is the least upper bound of \(x\) and \(y\)
    - \(x \leq x \sqcup y\) and \(y \leq x \sqcup y\)
    - if \(x \leq z\) and \(y \leq z\) then \(x \sqcup y \leq z\)

- A join semi-lattice (meet semi-lattice) has only the join (meet) operator defined
Complete lattices

- A partially ordered set is a **complete lattice** if meet and join are defined for all subsets (i.e., not just for all pairs)
- A complete lattice always has a bottom element and a top element
- A finite lattice always has a bottom element and a top element
Useful lattices

- \((2^S, \subseteq)\) forms a lattice for any set \(S\)
  - \(2^S\) is powerset of \(S\), the set of all subsets of \(S\).
- If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
  - i.e., can “flip” the lattice

- Lattice for constant propagation

```
1 2 3 4 ...
```

\(\top\) \(\perp\)
Forward must data flow algorithm

Out(s) = ⊤ for all statements s
W := { all statements } (worklist)
repeat {
  Take s from W
  In(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')
  \text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))
  \text{if} (\text{temp} \neq \text{Out}(s)) \{ 
    \text{Out}(s) := \text{temp}
    W := W \cup \text{succ}(s)
  \}
} until W = ∅
Monotonicity

• A function \( f \) on a partial order is **monotonic** if
  • if \( x \leq y \) then \( f(x) \leq f(y) \)

• Functions for computing \( \text{In}(s) \) and \( \text{Out}(s) \) are monotonic
  • \( \text{In}(s) := \cap_{s' \in \text{pred}(s)} \text{Out}(s') \)
  • \( \text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)  
    A function \( f_s \) of \( \text{In}(s) \)

• Putting them together: \( \text{temp} := f_s(\cap_{s' \in \text{pred}(s)} \text{Out}(s')) \)
Termination

- We know the algorithm terminates
- In each iteration, either \( W \) gets smaller, or \( \text{Out}(s) \) decreases for some \( s \)
  - Since function is monotonic
- Lattice has only finite height, so for each \( s \), \( \text{Out}(s) \) can decrease only finitely often

\[
\text{Out}(s) = \top \text{ for all statements } s
\]
\[
W := \{ \text{all statements} \}
\]
\[
\text{repeat } \{
\begin{align*}
& \text{Take } s \text{ from } W \\
& \text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \\
& \text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \\
& \text{if (temp} \neq \text{Out}(s)) \{ \\
& \quad \text{Out}(s) := \text{temp} \\
& \quad W := W \cup \text{succ}(s)
\}
\end{align*}
\]
\[
\text{until } W = \emptyset
\]
Termination

- A **descending chain** in a lattice is a sequence \( x_0 < x_1 < \ldots \)
- The **height of a lattice** is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in \( O(nk) \) time
  - \( n = \# \) of statements in program
  - \( k = \) height of lattice
  - Assumes meet operation and transfer function takes \( O(1) \) time
Fixpoints

• Dataflow tradition: Start with Top, use meet
  • To do this, we need a meet semilattice with top
    • complete meet semilattice = meets defined for any set
    • finite height ensures termination
  • Computes greatest fixpoint

• Denotational semantics tradition: Start with Bottom, use join
  • Computes least fixpoint
Forward must data flow algorithm

Out(s) = \top for all statements s
W := \{ all statements \} \quad \text{(worklist)}
repeat 
  Take s from W
  In(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')
  temp := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))
  if (temp \neq \text{Out}(s)) {
    Out(s) := temp
    W := W \cup \text{succ}(s)
  }
} until W = \emptyset
Forward data flow again

\[ \text{Out}(s) = \top \text{ for all statements } s \]

\[ W := \{ \text{all statements} \} \]

repeat {
    Take s from W

    temp := \( f_s(\prod_{s' \in \text{pred}(s)} \text{Out}(s')) \)

    if (temp != Out(s)) {
        Out(s) := temp
        W := W \cup \text{succ}(s)
    }
}

} until W = \emptyset
Which lattice to use?

- **Available expressions**
  - $P = \text{sets of expressions}$
  - Meet operation $\cap$ is set intersection $\cap$
  - $\top$ is set of all expressions

- **Reaching definitions**
  - $P = \text{sets of definitions (assignment statements)}$
  - Meet operation $\cap$ is set union $\cup$
  - $\emptyset$ is empty set

- **Monotonic transfer function** $f_s$ is defined based on gen and kill sets.
Distributive data flow problems

- If $f$ is monotonic, then we have
  $$f(x \cap y) \leq f(x) \cap f(y)$$

- If $f$ is **distributive** then we have
  $$f(x \cap y) = f(x) \cap f(y)$$
Benefit of distributivity

• Joins lose no information

• $k(h(f(\top) \cap g(\top)))$
  $= k(h(f(\top)) \cap h(g(\top)))$
  $= k(h(f(\top))) \cap k(h(g(\top)))$
Accuracy of data flow analysis

• Ideally we would like to compute the meet over all paths (MOP) solution:
  • Let $f_s$ be the transfer function for statement $s$
  • If $p$ is a path $s_1, \ldots, s_n$, let $f_p = f_{s_n} \ldots f_{s_1}$
  • Let $\text{paths}(s)$ be the set of paths from the entry to $s$

• $MOP(s) = \prod_{p \in \text{paths}(s)} f_p(\top)$

• If the transfer functions are distributive, then solving using the data flow equations in the standard way produces the MOP solution
What problems are distributive?

• Analyses of *how* the program computes
  • E.g.,
    • Live variables
    • Available expressions
    • Reaching definitions
    • Very busy expressions

• All Gen/Kill problems are distributive
Non-distributive example

- Constant propagation

- In general, analysis of what the program computes is not distributive

- Thm: MOP for In(s) will always be $\subseteq$ iterative dataflow solution
Practical implementation

- Data flow facts are assertions that are true or false at a program point
- Can represent set of facts as bit vector
  - Fact i represented by bit i
  - Intersection=bitwise and, union=bitwise or, etc
- “Only” a constant factor speedup
  - But very useful in practice
Basic blocks

- A **basic block** is a sequence of statements such that
  - No branches to any statement except the first
  - No statement in the block branches except the last

- In practical data flow implementations
  - Compute Gen/Kill for each basic block
    - Compose transfer functions
  - Store only In/Out for each basic block
  - Typical basic block is about 5 statements
Order is important

• Assume forward data flow problem
  • Let $G=(V,E)$ be the CFG
  • Let $k$ be the height of the lattice

• If $G$ acyclic, visit in topological order
  • Visit head before tail of edge

• Running time $O(|E|)$
  • No matter what size the lattice
Order is important

- If G has cycles, visit in reverse postorder
  - Order from depth-first search
- Let Q = max # back edges on cycle-free path
  - Nesting depth
  - Back edge is from node to ancestor on DFS tree
- Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
  - Running time is $O((Q + 1)|E|)$
Flow sensitivity

• Data flow analysis is **flow sensitive**
  • The order of statements is taken into account
    • I.e., we keep track of facts per program point

• Alternative: **Flow-insensitive** analysis
  • Analysis the same regardless of statement order
  • Standard example: types describe facts that are true at all program points
    • /*x:int*/ x:=… /*x:int*/
A problem...

• Consider following program

```c
FILE *pFile = NULL;
if (debug) {
 pFile = fopen(“debuglog.txt”, “a”)
}
...
if (debug) {
 fputs(“foo”, pFile);
}
```

• Can pFile be NULL when used for fputs?
• What dataflow analysis could we use to determine if it is?
Path sensitivity

```
pFile = ...
...
fputs(pFile)
```

```
depth
pFile ≠ NULL
∅

∅
∅
depth
fputs(pFile)
```

© 2010 Stephen Chong, Harvard University
Path sensitivity

- A **path-sensitive** analysis tracks data flow facts depending on the path taken
  - Path often represented by which branches of conditionals taken

- Can reason more accurately about **correlated conditionals** (or **dependent conditionals**) such as in previous example

- How can we make a path sensitive analysis
  - Could do a dataflow analysis where we track facts for each possible path
  - But exponentially many paths make it difficult to scale

- Some research on scalable path sensitive analyses. We will discuss one next week
Terminology review

• Must vs. May
  • (Not always followed in literature)

• Forwards vs. Backwards

• Flow-sensitive vs. Flow-insensitive

• Path-sensitive vs Path-insensitive

• Distributive vs. Non-distributive
Dataflow analysis and the heap

• Data Flow is good at analyzing local variables
  • But what about values stored in the heap?
  • Not modeled in traditional data flow
• In practice: *x := e
  • Assume all data flow facts killed (!)
  • Or, assume write through x may affect any variable whose address has been taken
• In general, hard to analyze pointers