Interprocedural Analysis

CS252r Spring 2011
Procedures

• So far looked at **intraprocedural** analysis: analyzing a single procedure

• **Interprocedural analysis** uses calling relationships among procedures
 • Enables more precise analysis information
Call graph

• First problem: how do we know what procedures are called from where?
 • Especially difficult in higher-order languages, languages where functions are values
 • We’ll ignore this for now, and return to it later in course…

• Let’s assume we have a (static) call graph
 • Indicates which procedures can call which other procedures, and from which program points.
Call graph example

```c
f() {
    1:  g();
    2:  g();
    3:  h();
}

g() {
    4:  h();
}

h() {
    5:  f();
    6:  i();
}

i() { ... }
```
Interprocedural dataflow analysis

• How do we deal with procedure calls?
• Obvious idea: make one big CFG

main() {
 x := 7;
 r := p(x);
 x := r;
 z := p(x + 10);
}

p(int a) {
 if (a < 9)
 y := 0;
 else
 y := 1;
 return a;
}
Interprocedural CFG

- CFG may have additional nodes to handle call and returns
 - Treat arguments, return values as assignments
- Note: a local program variable represents multiple locations

```
Set up environment for calling p
a := x, ...
 Enter p
a < 9
 y := 0
 y := 1
return a;
 Exit p
```

```
Enter main
x := 7
 Call p(x)
 r:=Return p(x)
 x := r
 Call p(x + 10)
 z:=Return p(x+10)
 Exit main

Exit main
```

Restore calling environment
z := a
Example

```
x := 7
Call p(x)
r := Return p(x)
x := r
Call p(x + 10)
z := Return p(x + 10)
```

```
a < 9
y := 0
return a;
```

```
y := 1
```

```
Exit main
```
Invalid paths

• Problem: dataflow facts from one call site “tainting” results at other call site
 • p analyzed with merge of dataflow facts from all call sites
• How to address?
Inlining

• Inlining
 • Use a new copy of a procedure’s CFG at each call site

• Problems? Concerns?
 • May be expensive! Exponential increase in size of CFG
 • p() { q(); q(); } q() { r(); r() }
 r() { … }
 • What about recursive procedures?
 • p(int n) { … p(n-1); … }
 • More generally, cycles in the call graph
Context sensitivity

• Solution: make a **finite** number of copies
• Use **context information** to determine when to share a copy
 • Results in a **context-sensitive** analysis
• Choice of what to use for context will produce different tradeoffs between precision and scalability
• Common choice: approximation of call stack
main() {
 1: p();
 2: p();
}

p() {
 3: q();
 ...
}

q() {
...
}

Context sensitivity example
main() {
 1: p();
 2: p();
}
p() {
 3: q();
 ...
}

Context sensitivity example

main() {
 1: p();
 2: p();
}
p() {
 3: q();
}
q() {
 ...
}
main() {
 1: fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x := y+z;
 return x;
}
Fibonacci: context sensitive, stack depth 1

```c
main() {
    1: fib(7);
}

fib(int n) {
    if n <= 1
        x := 0
    else
        2: y := fib(n-1);
        3: z := fib(n-2);
        4: x := y + z;
    return x;
}
```
Fibonacci: context sensitive, stack depth 2

```c
main() {
    1: fib(7);
}

fib(int n) {
    if n <= 1
        x := 0
    else
        2: y := fib(n-1);
        3: z := fib(n-2);
        x:= y+z;
    return x;
}
```
Other contexts

- Context sensitivity distinguishes between different calls of the same procedure
 - Choice of contexts determines which calls are differentiated
- Other choices of context are possible
 - Caller stack
 - Less precise than call-site stack
 - E.g., context “2::2” and “2::3” would both be “fib::fib”
 - Object sensitivity: which object is the target of the method call?
 - For OO languages.
 - Maintains precision for some common OO patterns
 - Requires pointer analysis to determine which objects are possible targets
 - Can use a stack (i.e., target of methods on call stack)
Other contexts

• More choices
 • Assumption sets
 • What state (i.e., dataflow facts) hold at the call site?
 • Used in ESP paper
 • Combinations of contexts, e.g., Assumption set and object
Procedure summaries

• In practice, often don’t construct single CFG and perform dataflow
• Instead, store **procedure summaries** and use those
• When call p is encountered in context C, with input D, check if procedure summary for p in context C exists.
 • If not, process p in context C with input D
 • If yes, with input D' and output E'
 • if $D' \sqsubseteq D$, then use E'
 • if $D' \not\sqsubseteq D$, then process p in context C with input $D' \cap D$
• If output of p in context C changes then may need to reprocess anything that called it
• Need to take care with recursive calls
Flow-sensitivity

- Recall: in a flow insensitive analysis, order of statements is not important
 - e.g., analysis of $c_1;c_2$ will be the same as $c_2;c_1$
- Flow insensitive analyses typically cheaper than flow sensitive analyses
- Can have both flow-sensitive interprocedural analyses and flow-insensitive interprocedural analyses
 - Flow-insensitivity can reduce the cost of interprocedural analyses
Infeasible paths

• Context sensitivity increases precision by analyzing the same procedure in possibly many contexts
• But still have problem of infeasible paths
 • Paths in control flow graph that do not correspond to actual executions
main() {
 1: p(7);
 2: x := p(42);
}

p(int n) {
 3: q(n);
}

q(int k) {
 return k;
}

Context: -

Enter main

1: Call p(7)

Enter main

1: Return p(7)

Exit main

Context: 1

Enter p

3: Call q(n)

3: Return q(n)

Exit p

Context: 2

Enter p

2: Call p(42)

Enter p

2: Return p(42)

Exit p

Context: 3

Enter q

return k

Exit p

Exit p

Exit p

Exit main
Realizable paths

• Idea: restrict attention to **realizable paths**: paths that have proper nesting of procedure calls and exits

• For each call site \(i\), let's label the call edge “(\(i\)” and the return edge “\(i\)”

• Define a grammar that represents balanced paren strings

\[
\text{matched ::= } \in \begin{array}{l}
\varepsilon \\
| e \\
| \text{matched matched} \\
| (i \text{ matched })_i
\end{array}
\]

• Corresponds to matching procedure returns with procedure calls

• Define grammar of partially balanced parens (calls that have not yet returned)

\[
\text{realizable ::= } \in \begin{array}{l}
\varepsilon \\
| (i \text{ realizable} \\
| \text{matched realizable}
\end{array}
\]
main() {
 1: p(7);
 2: x:=p(42);
}

p(int n) {
 3: q(n);
}

q(int k) {
 return k;
}

Example
Meet over Realizable Paths

• Previously we wanted to calculate the dataflow facts that hold at a node in the CFG by taking the **meet over all paths** (MOP)

• But this may include infeasible paths

• **Meet over all realizable paths** (MRP) is more precise
 • For a given node n, we want the meet of all realizable paths from the start of the CFG to n
 • May have paths that don’t correspond to any execution, but every execution will correspond to a realizable path
 • Realizable paths are a subset of all paths
 • \Rightarrow MRP sound but more precise: $\text{MRP} \sqsubseteq \text{MOP}$
Program analysis as CFL reachability

- Can phrase many program analyses as context-free language reachability problems in directed graphs
 - “Program Analysis via Graph Reachability” by Thomas Reps, 1998
 - Summarizes a sequence of papers developing this idea
CFL Reachability

- Let L be a context-free language over alphabet Σ
- Let G be graph with edges labeled from Σ
- Each path in G defines word over Σ
- A path in G is an L-path if its word is in L
- CFL reachability problems:
 - All-pairs L-path problem: all pairs of nodes n_1, n_2 such that there is an L-path from n_1 to n_2
 - Single-source L-path problem: all nodes n_2 such that there is an L-path from given node n_1 to n_2
 - Single-target L-path problem: all nodes n_1 such that there is an L-path from n_1 to given node n_2
 - Single-source single-target L-path problem: is there an L-path from given node n_1 to given node n_2
Why bother?

• All CFL-reachability problems can be solved in time cubic in nodes of the graph
• Automatically get a faster, approximate solution: graph reachability
• On demand analysis algorithm for free
• Gives insight into program analysis complexity issues
Encoding 1: IFDS problems

- Interprocedural finite distributive subset problems (IFDS problems)
 - Interprocedural dataflow analysis with
 - Finite set of data flow facts
 - Distributive dataflow functions (\(f(a \sqcap b) = f(a) \sqcap f(b) \))

- Can convert any IFDS problem as a CFL-graph reachability problem, and find the MRP solution with no loss of precision
 - May be some loss of precision phrasing problem as IFDS
Encoding distributive functions

- Key insight: distributive function $f:2^D \rightarrow 2^D$ can be encoded as graph with $2D+2$ nodes
- W.L.O.G. assume $\cap \equiv \cup$
- E.g., suppose $D = \{x, g\}$
 - Edge $\Lambda \rightarrow d$ means $d \in f(S)$ for all S
 - Edge $d_1 \rightarrow d_2$ means $d_2 \notin f(\emptyset)$ and $d_2 \in f(S)$ if $d_1 \in S$
 - Edge $\Lambda \rightarrow \Lambda$ always in graph (allows composition)

![Diagram](image)
Encoding distributive functions

- $\lambda S. \{x, g\}$

- $\lambda S. S\{-x\}$
Encoding distributive functions

\(\lambda S. S\{x\} \circ \lambda S. \{x,g\} \)
• Let G^* be supergraph (i.e., interprocedural CFP)
• For each node $n \in G^*$, there is node $\langle n, \Lambda \rangle \in G^#$
• For each node $n \in G^*$, and $d \in D$ there is node $\langle n, d \rangle \in G^#$
• For function f associated with edge $a \rightarrow b \in G^*$
 • Edge $\langle a, \Lambda \rangle \rightarrow \langle b, d \rangle$ for every $d \in f(\emptyset)$
 • Edge $\langle a, d_1 \rangle \rightarrow \langle b, d_2 \rangle$ for every $d_2 \in f(\{d_2\}) - f(\emptyset)$
 • Edge $\langle a, \Lambda \rangle \rightarrow \langle b, \Lambda \rangle$
Possibly uninitialized variable example

declare g: int

procedure main
begin
 declare x: int
 read(x)
 call P(x)
end

procedure P(value a : int)
begin
 if (a > 0) then
 read(g)
 a := a - g
 call P(a)
 print(a, g)
 fi
end

• Closed circles represent nodes reachable along realizable paths from
 \langle \text{start}_{\text{main}}, \Lambda \rangle

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998
Encoding 2: IDE problems

• Interprocedural Distributive Environment problems (IDE problems)
 • Interprocedural dataflow analysis with
 • Dataflow info at program point represented as a finite environment (i.e., mapping from variables/locations to finite height domain of values)
 • Transfer function distributive “environment transformer”
 • E.g., copy constant propagation
 • interprets assignment statements such as $x=7$ and $y=x$
 • E.g. linear constant propagation
 • also interprets assignment statements such as $y = 5*z + 9$
Encoding distributive environment-transformers

- Similar trick to encoding distributive functions in IFDS
- Represent environment-transformer function as graph with each edge labeled with micro-function

\[
\begin{align*}
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.v \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.7 \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.v \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.v \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.\text{env} \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.\text{env} \\
\lambda.v.v & \xrightarrow{L} x \xrightarrow{y} \lambda.v.-2*\text{env}(x)+5
\end{align*}
\]

- \(\lambda.env.env \)
- \(\lambda.env.env [x \mapsto 7] \)
- \(\lambda.env.env [y \mapsto \text{env}(x)] \)
- \(\lambda.env.env [y \mapsto -2*\text{env}(x)+5] \)
Solving

• Requirements for class F of micro functions
 • Must be closed under meet and composition
 • F must have finite height (under pointwise ordering)
 • \(f(l) \) can be computed in constant time
 • Representation of \(f \) is of bounded size
 • Given representation of \(f_1, f_2 \in F \)
 • can compute representation of \(f_1 \circ f_2 \in F \) in constant time
 • can compute representation of \(f_1 \sqcap f_2 \in F \) in constant time
 • can compute \(f_1 = f_2 \) in constant time
Solving

• First pass computes **jump functions** and **summary functions**
 • Summaries of paths within a procedure and of procedure calls, respectively
• Second pass uses these functions to compute environments at program points
• More details in “Precise Interprocedural Dataflow Analysis with Applications to Constant Propagation” by Sagiv, Reps, and Horwitz, 1996.