Pointer Analysis

CS252r Spring 2011
Today: pointer analysis

- What is it? Why? Different dimensions
- Andersen analysis
- Steensgard analysis
- One-level flow
- Pointer analysis for Java
• What memory locations can a pointer expression refer to?

• **Alias analysis:** When do two pointer expressions refer to the same storage location?

• E.g.,

  ```c
  int x;
  p = &x;
  q = p;
  ```

 • *p and *q alias,
 as do x and *p, and x and *q
Aliases

• Aliasing can arise due to
 • Pointers
 • e.g., int *p, i; p = &i;
 • Call-by-reference
 • void m(Object a, Object b) { … }
 m(x,x); // a and b alias in body of m
 m(x,y); // y and b alias in body of m
 • Array indexing
 • int i,j,a[100];
 i = j; // a[i] and a[j] alias
Why do we want to know?

• Pointer analysis tells us what memory locations code uses or modifies
• Useful in many analyses
• E.g., Available expressions
 • \(*p = a + b; \)
 • \(y = a + b; \)
 • If \(*p \) aliases \(a \) or \(b \), then second computation of \(a+b \) is not redundant
• E.g., Constant propagation
 • \(x = 3; \) \(*p = 4; \) \(y = x; \)
 • Is \(y \) constant? If \(*p \) and \(x \) do not alias each other, then yes. If \(*p \) and \(x \) always alias each other, then yes. If \(*p \) and \(x \) sometimes alias each other, then no.
Some dimensions of pointer analysis

- Intraprocedural / interprocedural
- Flow-sensitive / flow-insensitive
- Context-sensitive / context-insensitive
- Definiteness
 - May versus must
- Heap modeling
- Representation
Flow-sensitive vs flow-insensitive

- **Flow-sensitive** pointer analysis computes for each program point what memory locations pointer expressions may refer to.
- **Flow-insensitive** pointer analysis computes what memory locations pointer expressions may refer to, at any time in program execution.
- Flow-sensitive pointer analysis is (traditionally) too expensive to perform for whole program.
 - Flow-insensitive pointer analyses typically used for whole program analyses.
Flow-sensitive pointer analysis is hard

<table>
<thead>
<tr>
<th>Alias Mechanism</th>
<th>Intraprocedural May Alias</th>
<th>Intraprocedural Must Alias</th>
<th>Interprocedural May Alias</th>
<th>Interprocedural Must Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Formals, No Pointers, No Structures</td>
<td>-</td>
<td>-</td>
<td>Polynomial[1, 5]</td>
<td>Polynomial[1, 5]</td>
</tr>
<tr>
<td>Single level pointers, No Reference Formals, No Structures</td>
<td>Polynomial</td>
<td>Polynomial</td>
<td>Polynomial</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Single level pointers, Reference Formals, No Pointer Reference Formals, No Structures</td>
<td>-</td>
<td>-</td>
<td>Polynomial</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Multiple level pointers, No Reference Formals, No Structures</td>
<td>(\mathcal{NP})-hard</td>
<td>Complement is (\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
<td>Complement is (\mathcal{NP})-hard</td>
</tr>
<tr>
<td>Single level pointers, Pointer Reference Formals, No Structures</td>
<td>-</td>
<td>-</td>
<td>(\mathcal{NP})-hard</td>
<td>Complement is (\mathcal{NP})-hard</td>
</tr>
<tr>
<td>Single level pointers, Structures, No Reference Formals</td>
<td>(\mathcal{NP})-hard[14]</td>
<td>Complement is (\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard[14]</td>
<td>Complement is (\mathcal{NP})-hard</td>
</tr>
</tbody>
</table>

Table 1: Alias problem decomposition and classification

Pointer-induced Aliasing: A Problem Classification, Landi and Ryder, POPL 1990
Context sensitivity

• Also difficult, but success in scaling up to hundreds of thousands LOC
 • BDDs see Whaley and Lam PLDI 2004
 • Doop, Bravenboer and Smaragdakis OOPSLA 2009 (see Thurs)
Definiteness

- May analysis: aliasing that may occur during execution
 - (cf. must-not alias, although often has different representation)
- Must analysis: aliasing that must occur during execution
- Sometimes both are useful
 - E.g., Consider liveness analysis for *p = *q + 4;
 - If *p must alias x, then x in kill set for statement
 - If *q may alias y, then y in gen set for statement
• Possible representations
 • Points-to pairs: first element points to the second
 • e.g., (p → b), (q → b)
 *p and b alias, as do *q and b, as do *p and *q
 • Pairs that refer to the same memory
 • e.g., (*p,b), (*q,b), (*p,*q), (**r, b)
 • General, may be less concise than points-to pairs
 • Equivalence sets: sets that are aliases
 • e.g., {*p,*q,b}
Modeling memory locations

- We want to describe what memory locations a pointer expression may refer to
- How do we model memory locations?
 - For global variables, no trouble, use a single “node”
 - For local variables, use a single “node” per context
 - i.e., just one node if context insensitive
 - For dynamically allocated memory
 - Problem: Potentially unbounded locations created at runtime
 - Need to model locations with some finite abstraction
Modeling dynamic memory locations

• Common solution:
 • For each allocation statement, use one node per context
 • (Note: could choose context-sensitivity for modeling heap
 locations to be less precise than context-sensitivity for
 modeling procedure invocation)

• Other solutions:
 • One node for entire heap
 • One node for each type
 • Nodes based on analysis of “shape” of heap
 • More on this in later lecture
Problem statement

• Let’s consider flow-insensitive may pointer analysis

• Assume program consists of statements of form
 • \(p = \&a \) (address of, includes allocation statements)
 • \(p = q \)
 • \(*p = q \)
 • \(p = *q \)

• Assume pointers \(p, q \in P \) and address-taken variables \(a, b \in A \) are disjoint
 • Can transform program to make this true
 • For any variable \(v \) for which this isn’t true, add statement \(p_v = \&a_v \), and replace \(v \) with \(*p_v \)

• Want to compute relation \(\text{pts} : P \cup A \rightarrow 2^A \)
 • Essentially points to pairs
Andersen-style pointer analysis

• View pointer assignments as subset constraints
• Use constraints to propagate points-to information

<table>
<thead>
<tr>
<th>Constraint type</th>
<th>Assignment</th>
<th>Constraint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td><code>a = &b</code></td>
<td><code>a ⊇ {b}</code></td>
<td><code>loc(b) ∈ pts(a)</code></td>
</tr>
<tr>
<td>Simple</td>
<td><code>a = b</code></td>
<td><code>a ⊇ b</code></td>
<td><code>pts(a) ⊇ pts(b)</code></td>
</tr>
<tr>
<td>Complex</td>
<td><code>a = *b</code></td>
<td><code>a ⊇ *b</code></td>
<td>∀v∈pts(b). pts(a) ⊇ pts(v)</td>
</tr>
<tr>
<td>Complex</td>
<td><code>*a = b</code></td>
<td><code>*a ⊇ b</code></td>
<td>∀v∈pts(a). pts(v) ⊇ pts(b)</td>
</tr>
</tbody>
</table>
Andersen-style pointer analysis

- Can solve these constraints directly on sets $\text{pts}(p)$

\[
\begin{align*}
 p &= &\& a; & p \supseteq \{a\} \\
 q &= &p; & q \supseteq p \\
 p &= &\& b; & p \supseteq \{b\} \\
 r &= &p; & r \supseteq p
\end{align*}
\]

\[
\begin{align*}
 \text{pts}(p) &= \{a, b\} \\
 \text{pts}(q) &= \{a, b\} \\
 \text{pts}(r) &= \{a, b\} \\
 \text{pts}(a) &= \emptyset \\
 \text{pts}(b) &= \emptyset
\end{align*}
\]
Another example

\[
p = &a \\
q = &b \\
*p = q; \\
r = &c; \\
s = p; \\
t = *p; \\
*s = r;
\]

\[
p \supseteq \{a\} \\
q \supseteq \{b\} \\
*p \supseteq q \\
r \supseteq \{c\} \\
s \supseteq p \\
t \supseteq *p \\
*s \supseteq r
\]

\[
\text{pts}(p) = \{a\} \\
\text{pts}(q) = \{b\} \\
\text{pts}(r) = \{c\} \\
\text{pts}(s) = \emptyset \\
\text{pts}(t) = \{b\} \cup \{c\} \\
\text{pts}(a) = \{b\} \cup \{c\} \\
\text{pts}(b) = \emptyset \\
\text{pts}(c) = \emptyset
\]
How precise?

\[
p = &a
\]

\[
q = &b
\]

\[
*p = q;
\]

\[
r = &c;
\]

\[
s = p;
\]

\[
t = *p;
\]

\[
*s = r;
\]

pts(p) = \{a\}

pts(q) = \{b\}

pts(r) = \{c\}

pts(s) = \{a\}

pts(t) = \{b,c\}

pts(a) = \{b,c\}

pts(b) = \emptyset

pts(c) = \emptyset
Andersen-style as graph closure

- Can be cast as a graph closure problem
- One node for each pts(p), pts(a)

<table>
<thead>
<tr>
<th>Assgmt.</th>
<th>Constraint</th>
<th>Meaning</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = &b</td>
<td>a ⊇ {b}</td>
<td>b ∈ pts(a)</td>
<td>no edge</td>
</tr>
<tr>
<td>a = b</td>
<td>a ⊇ b</td>
<td>pts(a) ⊇ pts(b)</td>
<td>b → a</td>
</tr>
<tr>
<td>a = *b</td>
<td>a ⊇ *b</td>
<td>∀v∈pts(b). pts(a) ⊇ pts(v)</td>
<td>no edge</td>
</tr>
<tr>
<td>*a = b</td>
<td>*a ⊇ b</td>
<td>∀v∈pts(a). pts(v) ⊇ pts(b)</td>
<td>no edge</td>
</tr>
</tbody>
</table>

- Each node has an associated points-to set
- Compute transitive closure of graph, and add edges according to complex constraints
Workqueue algorithm

• Initialize graph and points to sets using base and simple constraints
• Let $W = \{ v \mid \text{pts}(v) \neq \emptyset \}$ (all nodes with non-empty points to sets)
• While W not empty
 • $v \leftarrow$ select from W
 • for each $a \in \text{pts}(v)$ do
 • for each constraint $p \supseteq *v$
 ▸ add edge $a \rightarrow p$, and add a to W if edge is new
 • for each constraint $*v \supseteq q$
 ▸ add edge $q \rightarrow a$, and add q to W if edge is new
 • for each edge $v \rightarrow q$ do
 • $\text{pts}(q) = \text{pts}(q) \cup \text{pts}(v)$, and add q to W if $\text{pts}(q)$ changed
Same example, as graph

\[p = &a \]
\[q = &b \]
\[*p = q; \]
\[r = &c; \]
\[s = p; \]
\[t = *p; \]
\[*s = r; \]
\[p \supseteq \{a\} \]
\[q \supseteq \{b\} \]
\[*p \supseteq q \]
\[r \supseteq \{c\} \]
\[s \supseteq p \]
\[t \supseteq *p \]
\[*s \supseteq r \]

W: \(p \ q \ r \ s \ a \)
Same example, as graph

\[\begin{align*}
p &= \&a \\
q &= \&b \\
*p &= q; \\
r &= \&c; \\
s &= p; \\
t &= *p; \\
*s &= r;
\end{align*} \]

\[\begin{align*}
p &\subseteq \{a\} \\
q &\subseteq \{b\} \\
*p &\subseteq q \\
r &\subseteq \{c\} \\
s &\subseteq p \\
t &\subseteq *p \\
*s &\subseteq r
\end{align*} \]
Cycle elimination

• Andersen-style pointer analysis is $O(n^3)$, for number of nodes in graph (Actually, quadratic in practice [Sridharan and Fink, SAS 09])
 • Improve scalability by reducing n

• Cycle elimination
 • Important optimization for Andersen-style analysis
 • Detect strongly connected components in points-to graph, collapse to single node
 • Why? All nodes in an SCC will have same points-to relation at end of analysis

• How to detect cycles efficiently?
 • Some reduction can be done statically, some on-the-fly as new edges added

© 2010 Stephen Chong, Harvard University
Steensgaard-style analysis

- Also a constraint-based analysis
- Uses **equality constraints** instead of subset constraints
 - Originally phrased as a type-inference problem
- Less precise than Andersen-style, thus more scalable

<table>
<thead>
<tr>
<th>Constraint type</th>
<th>Assignment</th>
<th>Constraint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>a = &b</td>
<td>a ⊇ {b}</td>
<td>loc(b) ∈ pts(a)</td>
</tr>
<tr>
<td>Simple</td>
<td>a = b</td>
<td>a = b</td>
<td>pts(a) = pts(b)</td>
</tr>
<tr>
<td>Complex</td>
<td>a = *b</td>
<td>a = *b</td>
<td>∀v ∈ pts(b). pts(a) = pts(v)</td>
</tr>
<tr>
<td>Complex</td>
<td>*a = b</td>
<td>*a = b</td>
<td>∀v ∈ pts(a). pts(v) = pts(b)</td>
</tr>
</tbody>
</table>
Implementing Steensgaard-style analysis

• Can be efficiently implemented using Union-Find algorithm
 • Nearly linear time: $O(n\alpha(n))$
 • Each statement needs to be processed just once
One-level flow

- Observation: common use of pointers in C programs is to pass the address of composite objects or updateable arguments; multi-level use of pointers not as common
- Uses unification (like Steensgaard) but avoids unification of top-level pointers (pointers that are not themselves pointed to by other pointers)
 - i.e., Use Andersen’s rules at top level, Steensgaard’s elsewhere
One-level flow

```
foo(&s1);
foo(&s2);
bar(&s3);
```

```
foo(struct s *p) { *p.a = 3; bar(p); }
bar(struct s *q) { *q.b = 4; }
```

(a)

```
p = &s1;
p = &s2;
q = &s3;
q = p;
*p.a = 3;
*q.b = 4;
```

(b)

Figure 1: Two programs that illustrate the difference between the algorithms of Steensgaard and Andersen. The program in (a) above represents the common case in C programs, while the program in (b) above is a variant of the program without procedure calls. Figures (c), (d) and (e) above show the points-to graphs computed by Steensgaard’s algorithm, Andersen’s algorithm, and our one level flow algorithm, respectively, for the program in (b) above. The edge labeled with * is a flow edge.

- Precision close to Andersen’s, scalability close to Steensgaard’s
 - At least, for programs where observation holds.
- Doesn’t hold in Java, C++, ...
Pointer analysis in Java

- Different languages use pointers differently
- *Scaling Java Points-To Analysis Using SPARK* Lhotak & Hendren CC 2003
 - Most C programs have many more occurrences of the address-of (&) operator than dynamic allocation
 - & creates stack-directed pointers; malloc creates heap-directed pointers
 - Java allows no stack-directed pointers, many more dynamic allocation sites than similar-sized C programs
 - Java strongly typed, limits set of objects a pointer can point to
 - Can improve precision
 - Call graph in Java depends on pointer analysis, and vice-versa (in context sensitive pointer analysis)
 - Dereference in Java only through field store and load
 - And more…
 - Larger libraries in Java, more entry points in Java, can’t alias fields in Java, ...
Object-sensitive pointer analysis

 - Context-sensitive interprocedural pointer analysis
 - For context, use stack of receiver objects
 - (More next week?)

- Lhotak and Hendren. *Context-sensitive points-to analysis: is it worth it?* CC 06
 - Object-sensitive pointer analysis more precise than call-stack contexts for Java
 - Likely to scale better
Closing remarks

• Pointer analysis: important, challenging, active area
 • Many clients, including call-graph construction, live-variable analysis, constant propagation, ...
 • Inclusion-based analyses (aka Andersen-style)
 • Equality-based analyses (aka Steensgaard-style)

• Requires a tradeoff between precision and efficiency
 • Ultimately an empirical question. Which clients, which code bases?

• Recent results promising
 • Scalable flow-sensitivity (see Thurs, and Hardekopf and Lin, POPL 09)
 • Context-sensitive Andersen-style analyses seem scalable (See Thurs)

• Other issues/questions (see Hind, PASTE’01)
 • How to measure/compare pointer analyses? Different clients have different needs
 • Demand-driven analyses? May be more precise/scalable…