The need for fix-points

• Let L be complete lattice

• Suppose $f: L \rightarrow L$ is program analysis for some program construct p
 • i.e. $p \vdash l_1 \triangleright l_2$ where $f(l_1) = l_2$

• monotonic function

• If p is recursive or iterative program construct, want to find least fixed point (lfp) of f.
 • Most precise lattice element representing analysis of executing p unbounded number of times
Fixed points

Let $f : L \to L$ be a *monotone function* on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

Tarski's Theorem ensures that $\text{lfp } f = \text{Fix } f = \text{Red } f \in \text{Fix } f \subseteq \text{Red } f$.
Fixed points

Let $f : L \to L$ be a monotone function on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$.

- l is a **fixed point** iff $f(l) = l$,
 \[\text{Fix}(f) = \{ l \mid f(l) = l \} \]
- f is **reductive** at l iff $f(l) \sqsubseteq l$,
 \[\text{Red}(f) = \{ l \mid f(l) \sqsubseteq l \} \]
- f is **extensive** at l iff $f(l) \sqsupseteq l$,
 \[\text{Ext}(f) = \{ l \mid f(l) \sqsupseteq l \} \]

Tarski’s Theorem ensures that

\[
\text{lfp}(f) = \bigcap \text{Fix}(f) = \bigcap \text{Red}(f) \subseteq \text{Fix}(f) \subseteq \text{Red}(f)
\]
\[
\text{gfp}(f) = \bigcup \text{Fix}(f) = \bigcup \text{Ext}(f) \subseteq \text{Fix}(f) \subseteq \text{Ext}(f)
\]}
Fixed points of f
Need for approximation

• How do we find lfp(f)?
• Ideally use iterative sequence
 • $(f^n(⊥))_n = ⊥, f(⊥), f(f(⊥)), \ldots$
• But:
 • may not stabilize
 • if L doesn’t meet ascending chain condition
 • least upper bound of $(f^n(⊥))_n$ may not equal lfp(f)
 • Why?
 • No guarantee f is continuous, and so Kleene’s fixed-point theorem doesn’t apply
• Need to approximate...
One possibility

• Start with \top and repeatedly apply f
 • i.e., $(f^n(\top))_n = \top, f(\top), f(f(\top)), \ldots$

• Even if it doesn’t stabilize, will always be a sound approximation
 • for all i we have $\text{lfp}(f) \subseteq f^n(\top)$
 • Means that can stop when we run out of patience, and have sound approximation

• But in practice, too imprecise.
Widening operators

• Key idea: replace \((f^n(\bot))_n\) with sequence \((f\nabla^n)_n\) such that
 • \((f\nabla^n)_n\) guaranteed to stabilize with safe (upper) approximation of \(\text{lfp}(f)\)

• \(\nabla\) is a widening operator
 • An upper bound operator satisfying a finiteness condition
Upper bound operators

\(\triangleright : L \times L \rightarrow L \) is an upper bound operator iff

\[l_1 \sqsubseteq l_1 \triangleright l_2 \sqsubseteq l_2 \]

for all \(l_1, l_2 \in L \).
Upper bound operators

\(\sqcup : L \times L \rightarrow L \) is an upper bound operator iff

\[l_1 \sqsubseteq l_1 \sqcup l_2 \sqsupseteq l_2 \]

for all \(l_1, l_2 \in L \).

Let \((l_n)_n\) be a sequence of elements of \(L \). Define the sequence \((\sqcup l_n)_n\) by:

\[l_n = \begin{cases}
 l_n & \text{if } n = 0 \\
 l_{n-1} \sqcup l_n & \text{if } n > 0
\end{cases} \]

Fact: If \((l_n)_n\) is a sequence and \(\sqcup \) is an upper bound operator then \((\sqcup l_n)_n\) is an ascending chain; furthermore \(l_n \sqsupseteq \sqcup \{l_0, l_1, \ldots, l_n\} \) for all \(n \).
Let \textit{int} be an arbitrary but fixed element of Interval.

An upper bound operator:

$$
\text{int}_1 \uparrow^{\text{int}} \text{int}_2 = \begin{cases}
\text{int}_1 \sqcup \text{int}_2 & \text{if } \text{int}_1 \sqsubseteq \text{int} \lor \text{int}_2 \sqsubseteq \text{int}_1 \\
[-\infty, \infty] & \text{otherwise}
\end{cases}
$$
Let \(int \) be an arbitrary but fixed element of \textit{Interval}.

An upper bound operator:

\[
\text{int}_1 \uparrow^{\text{int}} \text{int}_2 = \begin{cases} \text{int}_1 \sqcup \text{int}_2 & \text{if int}_1 \subseteq \text{int} \lor \text{int}_2 \subseteq \text{int}_1 \\ [-\infty, \infty] & \text{otherwise} \end{cases}
\]

Example: \([1, 2] \uparrow^{[0,2]} [2, 3] = [1, 3]\) and \([2, 3] \uparrow^{[0,2]} [1, 2] = [-\infty, \infty]\).

Transformation of: \([0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], \ldots\)

If \(\text{int} = [0, \infty] \):
\([0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], \ldots\)

If \(\text{int} = [0, 2] \):
\([0, 0], [0, 1], [0, 2], [0, 3], [-\infty, \infty], [-\infty, \infty], \ldots\)

© 2011 Stephen Chong, Harvard University
Widening operators

• Operator $\triangledown : L \times L \rightarrow L$ is a \textit{widening operator} iff

 • \triangledown is an upper bound operator

 • for all ascending chains $(l_n)_n$ the ascending chain $(\triangledown_n)_n$ eventually stabilizes

 • $\triangledown_n = l_n$ if $n = 0$

 • $\triangledown_n = \triangledown_{n-1} \triangledown l_n$ otherwise
Widening operators

• For monotonic function \(f: L \rightarrow L \) and widening operator \(\nabla \) define \((f^{\nabla n})_n\) by

 • \(f^{\nabla n} = \perp \) if \(n = 0 \)

 • \(f^{\nabla n} = f^{\nabla n-1} \) if \(n > 0 \) and \(f(f^{\nabla n-1}) \sqsubseteq f^{\nabla n-1} \)

 • \(f^{\nabla n} = f^{\nabla n-1} \nabla f(f^{\nabla n-1}) \) otherwise

• This is an ascending chain that eventually stabilizes

 • when \(f(f^{\nabla m}) \sqsubseteq f^{\nabla m} \) for some \(m \)

 • Tarski’s Thm then gives \(f^{\nabla m} \sqsupseteq \text{lfp}(f) \)
Diagrammatically

\[\text{Red}(f) \rightarrow \text{lfp}(f) \]

\[f^m \downarrow = f^{m+1} = \text{lfp}_{\downarrow}(f) \]

© 2011 Stephen Chong, Harvard University
Example

Let K be a finite set of integers, e.g. the set of integers explicitly mentioned in a given program.
Let K be a finite set of integers, e.g. the set of integers explicitly mentioned in a given program.

We shall define a widening operator \triangledown based on K.

Idea: $[z_1, z_2] \triangledown [z_3, z_4]$ is

$$[\text{LB}(z_1, z_3), \text{UB}(z_2, z_4)]$$

where

- $\text{LB}(z_1, z_3) \in \{z_1\} \cup K \cup \{-\infty\}$ is the best possible lower bound, and
- $\text{UB}(z_2, z_4) \in \{z_2\} \cup K \cup \{\infty\}$ is the best possible upper bound.

The effect: a change in any of the bounds of the interval $[z_1, z_2]$ can only take place finitely many times – corresponding to the cardinality of K.
Example

Let $z_i \in \mathbb{Z}' = \mathbb{Z} \cup \{-\infty, \infty\}$ and write:

$$\text{LB}_K(z_1, z_3) = \begin{cases} z_1 & \text{if } z_1 \leq z_3 \\ k & \text{if } z_3 < z_1 \land k = \max\{k \in K \mid k \leq z_3\} \\ -\infty & \text{if } z_3 < z_1 \land \forall k \in K: z_3 < k \end{cases}$$

$$\text{UB}_K(z_2, z_4) = \begin{cases} z_2 & \text{if } z_4 \leq z_2 \\ k & \text{if } z_2 < z_4 \land k = \min\{k \in K \mid z_4 \leq k\} \\ \infty & \text{if } z_2 < z_4 \land \forall k \in K: k < z_4 \end{cases}$$

$$\text{int}_1 \downarrow \text{int}_2 = \begin{cases} \bot & \text{if } \text{int}_1 = \text{int}_2 = \bot \\ [\text{LB}_K(\inf(\text{int}_1), \inf(\text{int}_2)), \text{UB}_K(\sup(\text{int}_1), \sup(\text{int}_2))] & \text{otherwise} \end{cases}$$
Consider the ascending chain \((\text{int}_n)_n\)

\[[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], \ldots \]

and assume that \(K = \{3, 5\}\).

Then \((\text{int}_n^\nabla)_n\) is the chain

\[[0, 1], [0, 3], [0, 3], [0, 5], [0, 5], [0, \infty], [0, \infty], \ldots \]

which eventually stabilises.
Defining widening operators

• Suppose we have two complete lattices, L and M, and a Galois connection (L, α, γ, M) between them.

• One possibility: replace analysis $f:L \rightarrow L$ with analysis $g:M \rightarrow M$
 • Can induce g from f
 • But may reduce precision of analysis.

• Another possibility
 • Use M just to ensure convergence of fixedpoints.
 • Assume upper bound operator ∇_M for M
 • Define $l_1 \nabla_L l_2 = \gamma(\alpha(l_1) \nabla_M \alpha(l_2))$
 • ∇_L is widening operator if either
 (i) M has no infinite ascending chains or
 (ii) (L, α, γ, M) is Galois insertion and ∇_M is widening operator.
Improving on lfp$_\triangledown$(f)

• Widening gives upper approximation lfp$_\triangledown$(f) of lfp(f)

• But $f(lfp$_\triangledown$(f)) \subseteq lfp$_\triangledown(f) so we can improve approximation by considering sequence $(f^n(lfp$_\triangledown$(f)))_n$

• For all i we have $lfp(f) \subseteq f^i(lfp$_\triangledown$(f)) \subseteq lfp$_\triangledown(f)
 • So can stop anytime with an upper approximation

• Defining a **narrowing operator** gives a way to describe when to stop
Narrowing operator

An operator $\Delta : L \times L \rightarrow L$ is a narrowing operator iff

- $l_2 \sqsubseteq l_1 \Rightarrow l_2 \sqsubseteq (l_1 \Delta l_2) \sqsubseteq l_1$ for all $l_1, l_2 \in L$, and

- for all descending chains $(l_n)_n$ the sequence $(l_n^\Delta)_n$ eventually stabilises.

We construct the sequence $([f]^n_\Delta)_n$

$$[f]^n_\Delta = \begin{cases} \text{lfp}_\nabla(f) & \text{if } n = 0 \\ [f]^{n-1}_\Delta \Delta f([f]^{n-1}_\Delta) & \text{if } n > 0 \end{cases}$$

One can show that:

- $([f]^n_\Delta)_n$ is a descending chain where all elements satisfy $\text{lfp}(f) \sqsubseteq [f]^n_\Delta$

- the chain eventually stabilises so $[f]^{m'}_{\Delta} = [f]^{m'+1}_{\Delta}$ for some value m'
The narrowing operator \(\Delta \) applied to \(f \).

\[
\text{Red}(f) \Rightarrow \ldots \Rightarrow [f]_{\Delta}^0 = \text{lfp}_\nabla(f) \Rightarrow [f]_{\Delta}^1 \Rightarrow \ldots \Rightarrow [f]_{\Delta}^{m'-1} \Rightarrow [f]_{\Delta}^m = [f]_{\Delta}^{m'+1} = \text{lfp}_\nabla
\]
Example

The complete lattice \((\text{Interval}, \sqsubseteq)\) has two kinds of infinite descending chains:

- those with elements of the form \([-\infty, z], z \in \mathbb{Z}\)
- those with elements of the form \([z, \infty], z \in \mathbb{Z}\)

Idea: Given some fixed non-negative number \(N\) the narrowing operator \(\Delta_N\) will force an infinite descending chain

\([z_1, \infty], [z_2, \infty], [z_3, \infty], \ldots\)

(where \(z_1 < z_2 < z_3 < \cdots\)) to stabilise when \(z_i > N\)

Similarly, for a descending chain with elements of the form \([-\infty, z_i]\) the narrowing operator will force it to stabilise when \(z_i < -N\)
Example

Define $\Delta = \Delta_N$ by

$$int_1 \Delta int_2 = \begin{cases} \bot & \text{if } int_1 = \bot \lor int_2 = \bot \\ [z_1, z_2] & \text{otherwise} \end{cases}$$

where

$$z_1 = \begin{cases} \inf(int_1) & \text{if } N < \inf(int_2) \land \sup(int_2) = \infty \\ \inf(int_2) & \text{otherwise} \end{cases}$$

$$z_2 = \begin{cases} \sup(int_1) & \text{if } \inf(int_2) = -\infty \land \sup(int_2) < -N \\ \sup(int_2) & \text{otherwise} \end{cases}$$

Consider the infinite descending chain $([n, \infty])_n$

$$[0, \infty], [1, \infty], [2, \infty], [3, \infty], [4, \infty], [5, \infty], \cdots$$

and assume that $N = 3$.

Then the narrowing operator Δ_N will give the sequence $([n, \infty]^{\Delta})_n$

$$[0, \infty], [1, \infty], [2, \infty], [3, \infty], [3, \infty], [3, \infty], \cdots$$
Summary

• Given monotonic $f: L \rightarrow L$ where L is a lattice
• Approximating least fixed point of f accurately and quickly a key challenge of program analysis
• Widening operators
• Widening following by narrowing