Symbolic Execution

CS252r Spring 2011
Contains content from slides by Jeff Foster
Static analysis

- Static analysis allows us to reason about all possible executions of a program
 - Gives assurance about any execution, prior to deployment
 - Lots of interesting static analysis ideas and tools
- But difficult for developers to use
 - Commercial tools spend a lot of effort dealing with developer confusion, false positives, etc.

See A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World in CACM 53(2), 2010
One issue is abstraction

- Abstraction lets us scale and model all possible runs
 - But must be conservative
 - Try to balance precision and scalability
 - Flow-sensitive, context-sensitive, path-sensitivity, ...

- And static analysis abstractions do not cleanly match developer abstractions
Testing

• Fits well with developer intuitions
• In practice, most common form of bug-detection
• But each test explores only one possible execution of the system
 • Hopefully, test cases generalize
Symbolic execution

• King, CACM 1976.

• Key idea: generalize testing by using unknown symbolic variables in evaluation

• Symbolic executor executes program, tracking *symbolic state*.

• If execution path depends on unknown, we fork symbolic executor
 • at least, conceptually
Symbolic execution example

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11. assert(x+y+z!=3)
1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10. }
11. assert(x+y+z!=3)
1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10. }
11. assert(x+y+z!=3)
What’s going on here?

• During symbolic execution, we are trying to determine if certain formulas are satisfiable

 • E.g., is a particular program point reachable?
 • Figure out if the path condition is satisfiable

 • E.g., is array access $a[i]$ out of bounds?
 • Figure out if conjunction of path condition and $i<0 \lor i > a.length$ is satisfiable

• E.g., generate concrete inputs that execute the same paths

• This is enabled by powerful SMT/SAT solvers

 • SAT = Satisfiability

 • SMT = Satisfiability modulo theory = SAT++
 • E.g. Z3, Yices, STP
SMT

• Satisfiability Modulo Theory

• SMT instance is a formula in first-order logic, where some function and predicate symbols have additional meaning

• The “additional meaning” depends on the theory being used
 • E.g., Linear inequalities
 • Symbols with extra meaning include the integers, +, -, ×, ≤
 • A richer modeling language than just Boolean SAT
 • Some commonly supported theories: Uninterpreted functions; Linear real and integer arithmetic; Extensional arrays; Fixed-size bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples, records; Lambda expressions; Dependent types

• A lot of recent success using SMT solvers
 • In symbolic execution and otherwise...
Predicate transformer semantics

- **Predicate transformer semantics** give semantics to programs as relations from logical formulas to logical formulas
 - Strongest post-condition semantics: if formula φ is true before program c executes, then formula ψ is true after c executes
 - Like forward symbolic execution of program
 - Weakest pre-condition semantics: if formula φ is true after program c executes, then formula ψ must be true before c executes
 - Like backward symbolic execution of program
Predicate transformer semantics

• Predicate transformers operationalize Hoare Logic
• Hoare Logic is a deductive system
 • Axioms and inference rules for deriving proofs of Hoare triples (aka partial correctness assertion)
 • \{ \varphi \} \ c \ { \psi \} says that if \varphi \ holds before execution of program c and c terminates, then \psi \ holds after c terminates
• Predicate transformers provide a way of producing valid Hoare triples
Hoare logic

• First we need a language for the assertions
 • E.g., first order logic

assertions

\[P, Q \in \text{Assn} \]

\[P ::= \text{true} \mid \text{false} \mid a_1 < a_2 \]
\[\mid P_1 \land P_2 \mid P_1 \lor P_2 \mid P_1 \Rightarrow P_2 \mid \neg P \]
\[\mid \forall i. P \mid \exists i. P \]

arithmetic expressions

\[a \in \text{Aexp} \]

\[a ::= \ldots \]

logical variables

\[i, j \in \text{LVar} \]

• We also need a semantics for assertions
 • For state \(\sigma: \text{Var} \rightarrow \text{Int} \) and interpretation \(I: \text{LVar} \rightarrow \text{Int} \) we write \(\sigma, I \models P \) if \(P \) is true when interpreted under \(\sigma, I \)
Rules of Hoare Logic

SKIP

\[\{P\} \text{skip} \{P\} \]

SEQ

\[\{P\} c_1 \{R\} \quad \{R\} c_2 \{Q\} \]

\[\{P\} c_1; c_2 \{Q\} \]

ASSIGN

\[\{P[a/x]\} x := a \{P\} \]

IF

\[\{P \land b\} c_1 \{Q\} \quad \{P \land \neg b\} c_2 \{Q\} \]

\[\{P\} \text{if } b \text{ then } c_1 \text{ else } c_2 \{Q\} \]

CONSEQUENCE

\[\vdash (P \Rightarrow P') \quad \{P'\} c \{Q'\} \quad \vdash (Q' \Rightarrow Q) \]

\[\{P\} c \{Q\} \]

WHILE

\[\{P \land b\} c \{P\} \]

\[\{P\} \text{while } b \text{ do } c \{P \land \neg b\} \]
Soundness and completeness of Hoare Logic

• Semantics of Hoare Triples
 • $\sigma, I \models \{P\} c \{Q\} \triangleq \text{if } \sigma, I \models P \text{ and } \llbracket c \rrbracket_\sigma = \sigma', \text{ then } \sigma', I \models P$
 • $\models \{P\} c \{Q\} \triangleq \text{for all } \sigma, I \text{ we have } \sigma, I \models \{P\} c \{Q\}$

• Soundness: If there is a proof of $\{P\} c \{Q\}$, then $\models \{P\} c \{Q\}$

• Relative completeness: If $\models \{P\} c \{Q\}$ then there is a proof of $\{P\} c \{Q\}$
 • (assuming you can prove the implications in the rule of consequence).
Weakest pre-condition semantics

- Function \(wp \) takes command \(c \) and assertion \(Q \) and returns assertion \(P \) such that \(\models \{P\}c\{Q\} \)
- \(wp(c, Q) \) is the **weakest** such condition
 - \(\models \{P\}c\{Q\} \) if and only if \(P \Rightarrow wp(c, Q) \)
- \(wp(\text{skip}, Q) = Q \)
- \(wp(x:=a, Q) = Q[a/x] \)
- \(wp(c_1;c_2, Q) = wp(c_1, wp(c_2, Q)) \)
- \(wp(\text{if } b \text{ then } c_1 \text{ else } c_2, Q) = (b \Rightarrow wp(c_1, Q) \land (\neg b \Rightarrow wp(c_2, Q)) \)
What about loops?

- Two possibilities: do we want the weakest precondition to guarantee termination of the loop?
- **Weakest liberal precondition**: does not guarantee termination
 - Corresponds to partial correctness of Hoare triples
 - \(\text{wp(while } b \text{ do } c, Q) = \forall i \in \text{Nat. } L_i(Q) \)
 - where \(L_0(Q) = \text{true} \)

 \[
 L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow \text{wp}(c, L_i(Q)))
 \]
 - Ensures loop terminates in a state that satisfies \(Q \) or runs forever
What about loops?

- **Weakest precondition**: guarantees termination
 - Corresponds to total correctness of Hoare triples
 - $\text{wp(while } b \text{ do } c, Q) = \exists i \in \text{Nat. } L_i(Q)$
 - $L_0(Q) = \text{false}$
 - $L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow \text{wp}(c, L_i(Q)))$
 - Ensures loop terminates in a state that satisfies Q
Strongest post condition

- Function sp takes command c and assertion P and returns assertion Q such that $\models \{P\}c\{Q\}$
- $sp(c, P)$ is the strongest such condition
 - $\models \{P\}c\{Q\}$ if and only if $sp(c, P) \Rightarrow Q$
Strongest post condition

- \(\text{sp}(\text{skip}, P) = P \)
- \(\text{sp}(x:=a, P) = \exists n. x=a[n/x] \land P[n/x] \)
- \(\text{sp}(c_1; c_2, P) = \text{sp}(c_2, \text{sp}(c_1, P)) \)
- \(\text{sp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) = \text{sp}(c_1, b \land P) \lor \text{sp}(c_2, \neg b \land P)) \)
- \(\text{sp}(\text{while } b \text{ do } c, P) = \neg b \land \exists i. L_i(P) \)
 where
 \[L_0(P) = P \]
 \[L_{i+1}(P) = \text{sp}(c, b \land L_i(P)) \]
- Weakest preconditions are typically easier to use than strongest postconditions
Symbolic execution

• Symbolic execution can be viewed as a predicate transformation semantics

• Symbolic state and path condition correspond to a formula that is true at a program point
 • e.g., Symbolic state \([x\mapsto\alpha, y\mapsto\beta+7]\) and path condition \(\alpha>0\) may correspond to \(\alpha>0 \land x=\alpha \land y=\beta+7\)

• Strongest post condition transformations gives us a forward symbolic execution of a program

• Weakest pre condition transformations gives us a backward symbolic execution of a program
Symbolic execution

• Recall
 • \(\text{sp}(x:=e, P) = \exists n. x=e[n/x] \land P[y/x] \)
 • \(\text{sp}(c_1;c_2, P) = \text{sp}(c_2, \text{sp}(c_1, P)) \)
 • \(\text{sp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) = \text{sp}(c_1, b \land P) \lor \text{sp}(c_2, \neg b \land P) \)
 • \(\text{sp}(\text{while } b \text{ do } c, P) = \neg b \land \exists i. \text{L}_i(P) \)
 where \(\text{L}_0(P) = \text{true} \)
 \(\text{L}_{i+1}(P) = \text{sp}(c, b \land \text{L}_i(P)) \)

• Disjunction encoded by multiple states
 • \(\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \Downarrow \langle \text{skip}, \{b \land P, \neg b \land P\} \rangle \)
 • or equivalently with non-deterministic semantics?
 • \(\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \leftrightarrow \langle c_1, b \land P \rangle \) and
 \(\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \leftrightarrow \langle c_2, \neg b \land P \rangle \)

• While loops simply unrolled (may fail to terminate)
Symbolic execution and abstract interpretation

• Can we use logical formulas as an abstract domain?
 • Yes! See Sumit Gulwani’s paper next week, which uses logical abstract interpretation
 • Also makes use of SMT solvers

• Can perhaps be seen as an abstract semantics for a concrete predicate transformer semantics?
Summary

• Symbolic execution
 • Predicate transformation semantics
 • Allows us to reason about multiple concrete executions
 • But may not allow us to reason about all possible executions
 • Enabled by recent advances in SMT solvers
• Next class: two symbolic execution papers
• Next week: logical abstract interpretation