
problems 10/15/19 03:56:23 walton 1 of 1

Problems Index              Tue Oct 15 03:56:22 EDT 2019

BOSPRE 2019 PROBLEMS

------ ---- --------

The problems are in approximate order of difficulty,

easiest first.

For the first 3 problems ONLY, the autojudge will return

the input and output of the judge’s first failed test

case, on an incorrect submission.

PYTHON is fast enough to do the first 7 problems if

you program with moderate care.

    problems/cuneiform

        Old ways are the best ways?

    problems/collatz2

        Into the realm of unproven conjecture.

    problems/bubblegram

        To approve or not to approve?

    problems/annual

        How much do you want in return?

    problems/convexpainter

        Computer assisted art is fine art.

    problems/jmaze

        Jumping is better than walking!

    problems/treesearch

        Where in this thing are you?

    problems/whoosh

        An elliptical problem.

    problems/flowman

        Get the most from the budget.

    problems/railgun

        Best be a straight shooter.

    problems/trisurvey

        Triangles are the thing.



          (This Page Intentionally Left Blank )           (This Page Intentionally Left Blank )



cuneiform.txt 10/15/19 10:07:26 walton 1 of 2

Cuneiform Numbers

--------- -------

The Babylonians used a base 60 number system.  To

represent digits, they used symbols for 1 and 10 and

put them together as in a word, with the symbol for 10

first.  We will use ‘v’ for 1 and ‘<’ for 10.  The

Babylonians just used a space for 0; we will use ‘_’.

Given this notation, here are some Babylonian numbers

and their decimal equivalents:

    vvv                 3

    <<                  20

    <<vvv               23

    v  v                1*60 + 1 = 61

    v  <                1*60 + 10 = 70

    <  _  v             10*60*60 + 0*60 + 1 = 36001

    <vvv  _  _          13*60*60 + 0*60 + 0 = 46800

Some friends of yours have taken to using cuneiform

numbers in their text messages, which is annoying.

Some other friends are pestering you to write an app

that translates these numbers into decimal.  So as a

warmup, you are to write a program that takes cuneiform

numbers and translates them into decimal.

Input

-----

A sequence of lines each containing one cuneiform

number.  No line will be longer than 80 characters or

will represent a number greater than 10^9.  Input ends

with an end of file.

Output

------

Output is a copy of the input with the decimal number

represented by an input line appended to that input

line (separated from the rest of the line by a space

character).  For example, the input lines

        vvv

        <<

        <<vvv

        v v

produce the output lines

        vvv 3

        << 20

        <<vvv 23

        v v 61

Note

----

Be sure to test your program against the sample.in and

sample.test files (see next page) BEFORE you submit.  

You can do this by simply executing the command:

        make test



cuneiform.txt 10/15/19 10:07:26 walton 2 of 2

Sample Input

------ -----

vvv

<<

<<vvv

<< _

<< vvv

v v

v _ _

v _ _ _

v v v v

<<<<<vvvvvvvvv

v _ _ _ _

<<<<<vvvvvvvvv _ _ _

v <<<<<vvvvvvvvv _ _ _

vv << vvv <<< vvvv

<<v <vvv vvvvvvvvv <<<<<

<<<<vvv <<vvvvv <<<<<v <vvvvvvvvv

Sample Output

------ ------

vvv 3

<< 20

<<vvv 23

<< _ 1200

<< vvv 1203

v v 61

v _ _ 3600

v _ _ _ 216000

v v v v 219661

<<<<<vvvvvvvvv 59

v _ _ _ _ 12960000

<<<<<vvvvvvvvv _ _ _ 12744000

v <<<<<vvvvvvvvv _ _ _ 25704000

vv << vvv <<< vvvv 30252604

<<v <vvv vvvvvvvvv <<<<< 4583390

<<<<vvv <<vvvvv <<<<<v <vvvvvvvvv 9381079

File:      cuneiform.txt

Author:    Shai Simonson <shai@stonehill.edu>

Editor:    Bob Walton <walton@seas.harvard.edu>

Date:      Tue Oct 15 10:07:23 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



collatz2.txt 10/08/19 07:58:16 walton 1 of 2

Collatz Revisted

------- --------

Consider the operation F(N) defined as:

        F(N) = N/2      if N can be divided by 2

        F(N) = N/3      if N can be divided by 3

        F(N) = 5N + 1   otherwise

We conjecture that for any natural number N, applying

F repeatedly to any non-zero natural number will

eventually arrive at the number 1.

Thus

        [1]     F(5) = 26

        [2]     F(26) = 13

        [3]     F(13) = 66

        [4]     F(66) = 33

        [5]     F(33) = 11

        [6]     F(11) = 56

        [7]     F(56) = 28

        [8]     F(28) = 14

        [9]     F(14) = 7

        [10]    F(7) = 36

        [11]    F(36) = 18

        [12]    F(18) = 9

        [13]    F(9) = 3

        [14]    F(3) = 1

so F applied 14 times starting at 5 will get to 1.

The original Collatz Conjecture, named after Lothar

Collatz, who first proposed it in 1937, is for a

simpler F, and has never been proved or disproved.

Given N, you are to find the number of times F must be

applied starting at N to get to 1.

Input

-----

Input contains several test cases.  For each test case

there is one input line containing N.  Input ends with

an end of file.

All numbers N input will be such that applying F many

times to N will not generate a number above 10^9.

Output

------

For each test case, one line containing first N and then

the number of times F must be applied starting at N to

get to 1.



collatz2.txt 10/08/19 07:58:16 walton 2 of 2

Sample Input

------ -----

1

2

3

4

5

6

7

8

9

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

Sample Output

------- ------

1 0

2 1

3 1

4 2

5 14

6 2

7 5

8 3

9 2

10 15

100 11

1000 28

10000 28

100000 55

1000000 44

10000000 90

100000000 55

1000000000 87

File:      collatz2.txt

Authors:   Tom Widland

           Bob Walton <walton@seas.harvard.edu>

Date:      Tue Oct  8 07:49:59 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



bubblegram.txt 10/15/19 14:00:31 walton 1 of 2

Bubblegram

----------

Iffy the ‘artist’ produces a kind of abstract painting

that he calls a ‘bubblegram’.  This consists of a bunch

of non-intersecting circles that Iffy paints different

colors.  To help him, Iffy has built a machine that will

project a random circle on the canvas.  He can then

accept or reject the circle.

However, many of his bubblegrams have so many circles

that Iffy has trouble seeing if the projected circle

intersects any existing circle.  So he wants you to

build a second machine that tells him if a projected

circle intersects an existing circle.

More specifically, he wants your machine to output the

FIRST one of the following ‘judgments’ that applies:

    inside      The projected circle is inside some

                existing circle, OR, some existing

                circle is inside the projected circle.

    overlap     The projected circle partly overlaps an

                existing circle (the intersection has

                non-zero area less than the area of

                either circle).

    touch       The projected circle just touches an

                existing circle.

    outside     The projected circle is completely

                outside all existing circles.

As a first cut, you are to write a program that works

if there is only one existing circle.

Input

-----

A sequence of test cases.  Each test case consists of

a single line of the form:

        XP YP RP XE YE RE

defining a projected circle with center (XP,YP) and

radius RP and an existing circle of center (XE,YE) and

radius RE.

        -1,000 <= XP,YP,XE,YE <= +1,000

        1 <= RP,RE <= 500

All numbers are integers.  Input ends with an end of

file.

Output

------

For each test case, one line, consisting of a copy of

the test case input line followed by space character

followed by the judgment.

NOTE: Because input numbers are integers, you can solve

      this problem without using floating point arith-

      metic in a way that makes the judgments precise.

      The judge’s solution does this.  It is still

      possible to solve the problem using floating point

      if you treat tiny values as equal to zero.



bubblegram.txt 10/15/19 14:00:31 walton 2 of 2

Display

-------

The input can be displayed in X-Windows or printed by

the commands

        display_bubbles sample.in

        display_bubbles sample.test

        print_bubbles sample.in

        print_bubbles sample.test

where the .in or .test files can be replaced by any test

case input or output file.

Sample Input

------ -----

0 0 5 0 0 4

0 0 5 1 0 4

0 0 5 1 0 6

0 0 5 8 0 4

0 0 5 8 0 3

0 0 5 9 0 3

-3 10 10 1 13 15

-3 10 10 1 13 5

-3 10 10 1 13 6

-3 10 10 9 19 6

-3 10 10 9 19 5

-3 10 10 9 19 4

Sample Output

------ ------

0 0 5 0 0 4 inside

0 0 5 1 0 4 inside

0 0 5 1 0 6 inside

0 0 5 8 0 4 overlap

0 0 5 8 0 3 touch

0 0 5 9 0 3 outside

-3 10 10 1 13 15 inside

-3 10 10 1 13 5 inside

-3 10 10 1 13 6 overlap

-3 10 10 9 19 6 overlap

-3 10 10 9 19 5 touch

-3 10 10 9 19 4 outside

File:           bubblegram.txt

Author:         Bob Walton <walton@seas.harvard.edu>

Contributor:    Shai Simonson <shai@stonehill.edu>

Date:           Tue Oct 15 14:00:26 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



0 0 5 0 0 4 inside 0 0 5 1 0 4 inside

0 0 5 1 0 6 inside 0 0 5 8 0 4 overlap

0 0 5 8 0 3 touch 0 0 5 9 0 3 outside



-3 10 10 1 13 15 inside -3 10 10 1 13 5 inside

-3 10 10 1 13 6 overlap -3 10 10 9 19 6 overlap

-3 10 10 9 19 5 touch -3 10 10 9 19 4 outside



annual.txt 10/13/19 20:53:01 walton 1 of 2

Average Annual Return

------- ------ ------

You have a brokerage account and you let your broker buy

and sell stocks and bonds in the account for your

benefit.  You want to know the average annual return

of the account between any two times.  So what do we

mean by ‘average annual return’?

Suppose we have an account that at the beginning of year

y contains V(y) dollars, and suppose we do NOT make any

deposits or withdrawals in the account.  Then the

average annual return A(y1,y2) from the beginning of

year y1 to the beginning of year y2 is such that:

    V(y2) = V(y1) * ( 1 + A(y1,y2)/100 )**(y2 - y1)

Note that A(.,.) is a percentage.  we can solve for it

by taking the logarithms of both sides of this equation.

However, what if we make deposits and withdrawals?

Suppose at the beginning of year y when the account has

value V(y) we deposit D(y) dollars and withdraw W(y)

dollars.  Immediately afterwards the account has

        V(y) + D(y) - W(y)

        

dollars.  Then how do we define A(y1,y2).

We define it by defining a virtual account that has

v(y) dollars at the beginning of each year (before

deposits and withdrawals), and is such that

    v(y1) = V(y1)

    for y1 <= y < y2:

        v(y+1) = (1 + A(y1,y2)/100)

               * (v(y) + D(y) - W(y))

    v(y2) = V(y2)

Thus the virtual account earns at a constant rate

A(y1,y2) that is independent of the year in between

y1 and y2, and in this sense is the average annual rate

from y1 to y2.  Note that for y1 < y < y2, v(y) is NOT

required to equal V(y).

When there are deposits and withdrawals, it is hard to

calculate A(y1,y2) without the aid of a computer.  So of

course we want you to compute A(y1,y2).

However, you actually make deposits and withdrawals on

the first of each month, so we want you to deal in

months m1, m2 and compute the average monthly growth

rate M(m1,m2) instead of the annual rate.  But as

monthly rates are hard to understand, we want you to

report the annual rate A(m1,m2) defined by solving the

equation:

        1 + A(m1,m2)/100 = (1 + M(m1,m2)/100)**12

Input

-----

A sequence of test cases.  Each test case begins with

a line containing the test case name.  The next line

has the form

        N Q

where N is the number of months and Q the number of

queries.  This is followed by N lines of the form:

        V D W

where for the I’th line V is the actual value of the

account at the beginning of month I just before you

deposit D and withdraw W.  For simplicity, V, D, and

W are non-negative integers.



annual.txt 10/13/19 20:53:01 walton 2 of 2

This is followed by Q lines each of the form:

        m1 m2

which represents a query asking for the average annual

rate of return from the beginning of month m1 to the

beginning of the month m2.

        2 <= N <= 241

        1 <= Q <= 20

        0 <= V,D,W <= 1,000,000

        V + D - W >= 0

        1 <= m1 < m1 <= N

Input ends with an end of file.  The test case name is

at most 80 characters.

Input will be such that the virtual value will never be

negative and -20% <= A(m1,m2) <= 20% (which implies that

-2% <= M(m1,m2) <= +2%).

Output

------

For each test case, first an exact copy of the test case

name line.  Then for each query one line containing:

        m1 m2 A

where ‘m1 m2’ copies the query input line and A is the

average annual rate of return from the beginning of

month m1 to the beginning of month m2.  ‘A’ should be

accurate to two decimal places.

Note that A can be negative.

Sample Input

------ -----

-- SAMPLE 1 --

13 2

 10000      0      0

 10100      0      0

 10000    100      0

  9800      0    100

 10000      0      0

 10100     50      0

 10000      0      0

  9700      0     50

 10400      0    200

 10000    200      0

  9900      0      0

 10100      0      0

 10500      0      0

  1  13

  2  11

[ see sample.in for more sample input ]

Sample Output

------ ------

-- SAMPLE 1 --

1 13 5.00

2 11 -2.63

[ see sample.test for more sample output ]

File:      annual.txt

Author:    Bob Walton <walton@seas.harvard.edu>

Date:      Sun Oct 13 20:50:47 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



convexpainter.txt 10/13/19 21:02:48 walton 1 of 2

Convex Painter

------ -------

Iffy the ‘artist’ has developed a new drawing machine

to help him paint abstract art.  The art is to consist

of a set of nested convex polygons, the outlines of

which the machine is to draw.   Then Iffy will paint

the areas bounded by consecutively nested polygons

various different colorful colors.

More specifically, the input to the machine is a convex

polygon on the canvas and a sequence of points randomly

chosen to be somewhere inside the canvas.  The machine

then chooses a subsequence of the randomly chosen points

that together are the vertices of a new convex polygon

that is inside the input polygon.  It does this by

accepting or rejecting each random point as it is

presented.  The first two random points that are inside

the input polygon are always accepted.  Thereafter the

machine accepts a point P if and only if:

(1) P is inside the input polygon, and NOT on the

    boundary of that polygon.

(2) If P1 and P2 are the first two accepted points in

    order of acceptance, and Q1 and Q2 are the last two

    accepted points in order of acceptance, then:

    (2a) P is to the right of the directed line from

         Q1 to Q2.

    (2b) P1 is to the right of the directed line from

         Q2 to P.

    (2c) P2 is to the right of the directed line from

         P to P1.

Given this, if the machine accepts at least 3 points,

the accepted points in order of acceptance will be

the vertices of a convex polygon in clockwise order.

If Iffy does not like the result, he will reject it

and ask the machine to try again.  But this is outside

the purview of this problem.

Input

-----

A sequence of test cases.  Each test case begins with

a line containing the test case name.  Following are

exactly two ‘point sequence lines’, each of the form

        K X1 Y1 X2 Y2 ... XK YK

where K >= 3 is an integer and (X1,Y1), (X2,Y2), ...

(XK,YK) are K points in the plane.  The first of the

two lines defines the input convex polygon by giving

its vertices in clockwise order.  The second of the

two lines defines the sequence of random points on the

canvas.

The X’s and Y’s are integers.  If the values of K for

the two lines in a test case are designated K1 and K2,

then

        3 <= K1, K2 <= 1,000

        sum K1*K2 over all test cases <= 1,000,000

        -10,000 <= X,Y <= +10,000

The test case name line has at most 80 characters.

Input ends with an end of file.



convexpainter.txt 10/13/19 21:02:48 walton 2 of 2

Output

------

For each test case, first an exact copy of the test case

name line.  Then just one point sequence line, formatted

as above, that gives the sequence of accepted points, in

order of acceptance.

The input will be such that at least 3 points will be

accepted, so the sequence of accepted points will be the

vertices of a convex polygon.

Display

-------

The input and output can be displayed in X-Windows or

printed by the commands

        display_canvas sample.in [sample.test]

        print_canvas sample.in [sample.test]

where sample.test is the output file corresponding to

sample.in, and these files can be replaced by any

test case input file and its corresponding output.

The output file can be omitted in which case only the

input will be displayed.

Sample Input

------ -----

-- SAMPLE 1 --

5 0 0 1 10 10 8 11 4 5 -3

9 2 2 2 11 4 4 5 5 6 4 7 8 8 2 5 1 1 1

-- SAMPLE 2 --

6 3 -9 -9 -4 -5 0 -1 3 5 7 9 -4

10 2 -9 -6 -3 -3 -9 3 -2 4 -2 4 -8 2 -5 -7 -4 -1 1 3 5

Sample Output

------ ------

-- SAMPLE 1 --

5 2 2 4 4 6 4 8 2 5 1

-- SAMPLE 2 --

5 -6 -3 3 -2 4 -2 4 -8 -7 -4

File:      convexpainter.txt

Author:    Bob Walton <walton@seas.harvard.edu>

Date:      Sun Oct 13 21:02:34 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



-- SAMPLE 1 --

9 8

7

6

5

4

3

2

1



-- SAMPLE 2 --

10

9

8

7

6

54

3

2

1



jmaze.txt 10/14/19 01:08:49 walton 1 of 2

Jumping Maze
------- ----

You’ve been given yet another maze to traverse.  This
one’s a bit different.

Its a grid and you can enter from the outside at any
boundary square.  Once you are at a square in the grid,
you will find there an instruction as to what to do
next.  The possible instructions are:

    r:c   Go to the grid square in column c of row r.
    m     Go to ANY grid square whose Manhattan
          distance from the current square is EXACTLY m.
    X     DIE!!! You Lose!
    G     goal! Success! You Win!

Here r, c, and m denote integers, whereas X and G denote
the letters ‘X’ and ‘G’.  The Manhattan distance between
square r1:c1 and square r2:c2 is defined to be
|r1-r2| + |c1-c2|.

As we said above, you start by moving to any boundary
square.  You want to win, of course; i.e., you want to
move to a point with a G.  You are not allowed to move
outside the grid.  If you go to a square from which the
goal is unreachable, you lose.

Input
-----

A sequence of test cases.  Each test case begins with
a line containing the test case name.  The next line
has the form

        M N

where the maze has M rows each with N columns.  The next
M lines each contain N instructions chosen from the ones
above.  The c’th instruction in the r’th line is the
instruction for the square r:c.

        2 <= M, N <= 1,000
        sum M*N over all test cases <= 1,000,000
        1 <= r <= M
        1 <= c <= N
        1 <= m <= M + N

In any test case there will be exactly one G, and it
will be reachable from some boundary square.

Input ends with an end of file.  The test case name line
is at most 80 characters.

Output
------

For each test case, first an exact copy of the test case
name line.  Then just one line containing the coordi-
nates of your path to the goal, in the form ‘r:c’.  The
first entry should designate the boundary square at
which you enter the maze, and the last should designate
the square containing G.

Input will be such that there is always a solution.
YOUR SOLUTION SHOULD BE THE SHORTEST.  If there are
several shortest solutions, any one will do.



jmaze.txt 10/14/19 01:08:49 walton 2 of 2

Display
-------

The input and output can be displayed in X-Windows or
printed by the commands

        display_maze sample.in [sample.test]
        print_maze sample.in [sample.test]

where sample.test is the output file corresponding to
sample.in, and these files can be replaced by any
test case input file and its corresponding output.
The output file can be omitted in which case only the
input will be displayed.

Sample Input
------ -----

-- SAMPLE 1 --
5 5
1:1 1:1 1:1 1:1 1:1
1:1 3:3 1:1 1:1 1:1
4:2 1:1   G 2:2 1:1
1:1 3:4 1:1 1:1 1:1
1:1 1:1 1:1 1:1 1:1
-- SAMPLE 2 --
9 9
   3 4:8 5:5 4:5 6:6   3   X 2:9 5:2
   X 6:5 2:2 9:8 2:3 1:1   X   4   3
   3   X 8:1   4 2:6 7:6 1:2 9:7 5:9
 9:2 9:1   X   X 8:6 3:1 5:3 8:4   4
   4   X   4 8:8 4:6 8:3 9:8 1:1 4:2
   X 6:8 7:3   4   3   3   X 4:2   X
 3:7   4 9:7   4 4:2 3:2 4:5   3 9:8
 8:1   3 2:5 7:8 5:1 1:5 3:5   G 7:8
 6:5 3:5 9:2   3 5:3 8:4   3 7:5   4

Sample Output
------ ------

-- SAMPLE 1 --
3:1 4:2 3:4 2:2 3:3
-- SAMPLE 2 --
1:5 6:6 5:4 8:8

File:      jmaze.txt
Author:    Bob Walton <walton@seas.harvard.edu>
Date:      Mon Oct 14 01:00:37 EDT 2019

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.



-- SAMPLE 1 --

5

4

3

2

1

1:11:11:11:11:1

1:11:11:13:41:1

1:12:2G1:14:2

1:11:11:13:31:1

1:11:11:11:11:1



-- SAMPLE 2 --

4

3

2

1

47:538:45:339:23:56:5

7:8G3:51:55:17:82:538:1

9:834:53:24:249:743:7

X4:2X3347:36:8X

4:21:19:88:34:68:84X4

48:45:33:18:6XX9:19:2

5:99:71:27:62:648:1X3

34X1:12:39:82:26:5X

5:22:9X36:64:55:54:83



treesearch.txt 10/15/19 14:04:46 walton 1 of 3

Tree Search
---- ------

Trax and Jax live in the tunnels inside the planet Pax.
There are a lot of tunnels.  But there is only one
path through the tunnels from any point to any other
point (no running around in circles possible).

Trax needs to locate Jax, and fortunately she has a
locator device that can help.  The device, however, does
not simply tell Trax where Jax is.  Instead Trax can
suggest to the device a possible location for Jax, and
the device will tell her whether Jax is there and if
not, which direction from the suggested location Jax is.

Unfortunately the locator device uses a lot of power
for each response, and can only answer a few queries.

In this problem you write a program that talks to the
locator device until you suggest the location where
Jax is or run out of power.

Your Input/Output
---- ------------

You write the program whose binary name is ‘treesearch’.
The locator is implemented by a separate program whose
name is ‘locator’.  The ‘locator’ program runs your
‘treesearch’ program as a subprocess.  The command that
does this is

  locator [-trace] treesearch ... <TEST-CASE-INPUT

where ... are arguments passed to treesearch (only used
for debugging).  You write queries to your standard
output.  The locator program reads these and writes a
response so that you can read it from your standard
input.  The locator also gives you a tunnel map which
you read from your standard input at the very beginning
before any queries.

Note that YOUR program DOES NOT READ the test case input
or write the test case output.  The ‘locator’ program
does this.

The tunnel map is a description of the tunnels viewed
as a computer science tree with you at the root.  The
syntax is

        tree ::= () | (tree-list)
        tree-list ::= tree | tree tree-list

Here () represents a tree leaf with no children and
(tree-list) is a tree whose children are the trees
listed in tree-list.  For example,

    (()(()())) represents:    ((()())()) represents:

              *                         *
             / \                       / \
            *   *                     *   *
               / \                   / \
              *   *                 *   *

In order to identify tree nodes we number them in
the order that their ‘(’s occur in the tree map.  Thus

    (()(()())) represents:    ((()())()) represents:

              1                         1
             / \                       / \
            2   3                     2   5
               / \                   / \
              4   5                 3   4

The locator begins by writing the tree map to your
standard input.  You may then make queries.



treesearch.txt 10/15/19 14:04:46 walton 2 of 3

To make a query you output the number S of the tree node
you are suggesting on a single line.  The response is
a single line that you can read which contains one of
the following:

  * just ‘FOUND’ if Jax is at the suggested node
  * just ‘POWER’ if the locator has run out of power
    and you have failed to locate Jax (and your
    submission will be rejected)
  * the number R of another tree node such that S and R
    are directly connected by a single tunnel and R is
    closer to Jax than S is; here distance between nodes
    is the number of tunnels needed to get from one node
    to the other node

If the tunnel map has N nodes, you are allowed Q queries
before power runs out, where

        2 <= N <= 1,000,000

        Q = 1 + ceiling of log base 2 of N

All lines input to your program will have at most 80
characters, except the line containing the tunnel_map,
which has 2*N characters.  All query lines output from
your program must have less than 80 characters.

WARNING
-------

If you use printf in C or C++ you must use fflush after
printing a line, as in

        printf ( "...\n", ... );
        fflush (stdout);

Similarly if you use ‘print’ in python you must flush
after printing a line, as in

        print ( ’....’ )
        sys.stdout.flush()

Otherwise your output will be trapped in a buffer and
never get to the locator program.  The C++ ‘endl’ IO
manipulator and JAVA ‘println’ functions flush this
buffer, so if you are using these functions nothing
special needs to be done.

Debugging
---------

If you specify -trace in the command that runs your
treesearch program, your program will be run in trace
mode.

In trace mode the locator outputs to its standard output
(not your program) the lines it reads from your program,
prefaced by ‘<< ’, and the lines it writes to your
program, prefaced by ’>> ’.  In trace mode, any line
output by your program that begins with a ‘*’ will be
traced but otherwise ignored.  You can use such lines
for debugging output, and you can use arguments passed
to your program to tell your program to output these
lines.

The input tree, if not very large, may be printed or
displayed in an X-window by the commands:

        print_tree sample.in
        display_tree sample.in

You can replace ‘sample.in’ by another locator input
file.  Jax’s location is marked by a ‘*’.



treesearch.txt 10/15/19 14:04:46 walton 3 of 3

Test Case Descriptions And Output
---- ---- ------------ --- ------

In the test environment, the locator (and not your
program) reads test case descriptions from its standard
input and the locator (and not your program) writes test
case output to its standard output.

Each test case description has two lines.  First a line
containing just the test case name.  Then a line
containing

        N SEED

where N is the number of tree nodes and SEED is an
unsigned integer used to seed a pseudo-random number
generator that generates the tunnel map.  SEED
is 9 digits long: 10**8 <= SEED < 10**9.

The test case output written by the locator to its
standard output (not your program) consists of
first a line copying the test case name input line,
then any trace output, and finally a single line
containing either just ‘FOUND’ or ‘POWER’.

Sample Input
------ -----

-- SAMPLE 1 --
11 785983564
-- SAMPLE 2 --
35 352401876

Sample Output
------ ------

-- SAMPLE 1 --
FOUND
-- SAMPLE 2 --
FOUND

Sample Output in Trace Mode (with -trace)
------ ------ -- ----- ---- ----- -------

-- SAMPLE 1 --
>> (()((())())((()(()))))
<< 1
>> 7
<< 8
>> FOUND
FOUND
-- SAMPLE 2 --
>> ((((((())...rest omitted, see sample.trace
<< 8
>> 5
<< 26
>> 27
<< 28
>> FOUND
FOUND

File:      treesearch.txt
Author:    Bob Walton <walton@seas.harvard.edu>
Date:      Tue Oct 15 14:04:42 EDT 2019

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.



          (This Page Intentionally Left Blank )           (This Page Intentionally Left Blank )



-- SAMPLE 1 --

1

7

8*

10

11

9

3

64

5

2



-- SAMPLE 2 --

1

2

3

3526

343330

3231

27

28*

29

4

5

8

24

25

11

12

21

22

23

13

2018

19

14

1715

16

9

10

6

7



whoosh.txt 10/15/19 14:09:23 walton 1 of 2

Whoosh

------

Every ten years the city of Whoosh has a solo-pedal race

from one end of the city to the other.  Whoosh is known

as a city that is just one big paved flat area in which

solo-pedallers go whooshing around.  But the race is

made interesting because the buildings are in the way;

solo-pedallers may not go into a building.

You have been asked by a friend who is participating to

find a shortest path around the buildings.

Whoosh is laid out as a North-South East-West grid of

squares, each square containing exactly one building.

The corners of the squares are race waypoints, and by

rule your route must go from waypoint to waypoint.  In

addition, any two consecutive waypoints on your route

must be corners of the SAME square.  If you go straight

North, South, East, or West from a waypoint you will not

go through a building.  But if you go diagonally across

a square, you may or may not have to go around the side

of the building in the square.  If you need to go

around, your route may hug the side of the building.

The buildings in Whoosh are all ellipses, so solo-

pedallers cannot injure themselves by running into sharp

corners.

You have a map of Whoosh showing the buildings, so it

should be simple.

WARNING: The sine an cosine functions take too long

to be executed millions of times per test case, so they

must be used sparingly.

Input

-----

A sequence of test cases.  Each test case begins with

a line containing the test case name.  The next line

contains

        M N L

specifying that the Whoosh grid has M rows of N squares

each, and the square sides are each L feet long.  The

waypoint xy-coordinates range from (0,0) in the lower

left to (L*M,L*N) in the upper right.  The races starts

at (0,0) and ends at (L*M,L*N).

Then there are M*N lines each specifying one building.

Each of these lines has the form:

        cx cy angle minor major

and describes a building whose footprint is an ellipse

with center (cx,cy), given angle of major axis, and

given lengths in feet of minor and major semi-axes.

The angle is measured in degrees counter-clockwise from

the positive x-axis in the usual way.  A semi-axis is

one half an axis, so if angle == 0 the equation of the

ellipse would be:

    ((x-cx)/major)^2 + ((y-cy)/minor)^2 = 1

There is exactly one building for each grid square, but

the building description lines are in arbitrary order.



whoosh.txt 10/15/19 14:09:23 walton 2 of 2

All input numbers are integers.

             1 <= M,N            <= 20

         1,000 <= L              <= 10,000

             0 <= cy             <= M*L

             0 <= cx             <= N*L

         - 180 <  angle       <=  + 180

            50 <= minor <= major <= L/2 - 50

No building part is within 50 feet of a North-South or

East-West line running through any waypoint.

Input ends with an end of file.  The test case name line

is at most 80 characters.

Output

------

For each test case, first an exact copy of the test case

name line.  Then just one line giving the length of the

shortest route that obeys the rules.  The length should

be accurate to 1 part in 10^5.

Assume the size of a solo-pedal is negligible so if the

route includes part of a building perimeter, only the

exact length of that perimeter part counts as part of

the length.

Sample Input

------ -----

-- SAMPLE 1 --

2 2 1000

 600  400 0 100 100

1500  500 0 100 100

 500 1500 0 100 100

1500 1500 0 225 225

-- SAMPLE 2 --

2 3 1000

 500  500   0 100 150

1500  500   0 150 200

2500  500  45  75 200

 500 1510  30 100 150

1510 1500  60 150 200

2510 1510 120  75 200

Sample Output

------ ------

-- SAMPLE 1 --

2900.64

-- SAMPLE 2 --

3882.51

File:      whoosh.txt

Author:    Bob Walton <walton@seas.harvard.edu>

Date:      Tue Oct 15 14:09:19 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



-- SAMPLE 1 --



-- SAMPLE 2 --



flowman.txt 10/15/19 03:00:20 walton 1 of 3

Flow Management
---- ----------

You work for a company that manages the flow of gasoline
from refineries in the Southwest to depots in the
Northeast.

The year is 2473, and things have changed.  Gone are
all the large companies, and all companies are very
small.  There are thousands of small companies that
each operate a single pipeline from one depot to
another, with depots all across the country.  Each
charges its own price per gallon for transport from the
beginning of its pipe to the end of its pipe.

The good news is that everything is computerized, so
your customers put orders into your computer, your
computer puts orders into pipeline company computers,
and pipeline company computers turn valves on and off
to make things happen.  Also, there is no minimum charge
for using a pipeline, and the charge is linear in the
amount of gasoline per hour, because gasoline is
actually batched in tanks at depots and sent down a
pipeline in batches, so the cost per gallon is held
constant by twiddling the size of the batches.

You are your company’s software department, and as we
said, everything is done automatically by computer.
So in a sense, you company is just a computer program.
Its called FLOWMAN, the flow manager.  Its block diagram
is:

         Customer                       Pipeline
            ^                             Data
            |                              |
            v           queries            v
        REQUESTER  -------------------> EVALUATOR
            ^                              |
            |                              v
            +-------------------------> DECIDER
                                           |
                                           v
                                         Pipeline
                                          Order

Your immediate job is to write a new and better
EVALUATOR.  This is given queries of the form:

    What is the maximum flow rate of gasoline in gallons
    per hour that we can achieve from depot QS to depot
    QD if we spend up to QC dollars per hour?

Given such a query and the current pipeline data, your
EVALUATOR must return a number that is the answer to the
query.  As some point the DECIDER will place an order
based on your answers to several queries, and then the
pipeline operators will change the pipeline data to
reflect the new order.



flowman.txt 10/15/19 03:00:20 walton 2 of 3

Input
-----

A sequence of test cases.  Each test case begins with
a line containing the test case name.  The next line
contains

        D P Q

where D is the number of depots, P the number of pipe-
lines, and Q the number of queries. Depots have ID
numbers 1, 2, ..., D.

Then next P lines each describe one pipeline and have
the form

        PS PD PC PP

where PS is the source depot ID of the pipeline, PD is
the destination depot ID, PC is the capacity of the
pipeline given as in integer in gallons per hour, and PP
is the price in dollars per gallon to the nearest hund-
reth of a cent (0.0001 dollars).

Pipelines only work in one direction and cannot maintain
a flow greater than their capacity.  But they can work
with any flow value less than their capacity, including
NON-INTEGRAL numbers of gallons per hour.

The next Q lines each describe one query and have the
form

        QS QD QC

where QS is the source depot ID, QD is the destination
depot ID, and QC is the maximum expenditure rate in
dollars per hour, given as an integer.

For each query you must compute a network flow such
that the net flow into every depot but QS and QD is
zero, as the flow must be sustained indefinitely.  The
net flow out of QS must equal the net flow into QD, and
this must be maximized given the pipeline capacities and
the maximum total expenditure constraint QC.

        2 <= D <= 1,000
        1 <= P <= 1,000
        1 <= Q <= 10
        1 <= PC <= 500
        0.0100 <= PP <= 1.0000
        1 <= QC <= 100,000

        sum D*P*Q over all test cases <= 1,000,000

Input ends with an end of file.  The test case name line
is at most 80 characters.

Output
------

For each test case, first an exact copy of the test case
name line.  Then for each query, just one line giving
the maximum flow possible, in gallons per hour, accurate
to 0.1 gallon.  Each query is evaluated independently of
the other queries.



flowman.txt 10/15/19 03:00:20 walton 3 of 3

Sample Input
------ -----

-- SAMPLE 1 --
4 5 3
1 2 100 0.1000
1 3  50 0.3000
2 4 100 0.2000
2 3  50 0.0300
3 4  50 0.0700
1 4  10
1 4  25
1 4  40
-- SAMPLE 2 --
4 5 2
1 2 100 0.1000
2 3 100 0.2000
3 4 100 0.1000
2 1  50 0.0100
4 3  50 0.0200
1 4 25
4 1 25

Sample Output
------ ------

-- SAMPLE 1 --
50.00
100.00
131.91
-- SAMPLE 2 --
62.50
0.00

[See sample.flow for pipe flows]

File:      flowman.txt
Author:    Bob Walton <walton@seas.harvard.edu>
Date:      Tue Oct 15 02:59:55 EDT 2019

The authors have placed this file in the public domain;
they make no warranty and accept no liability for this
file.



          (This Page Intentionally Left Blank )           (This Page Intentionally Left Blank )



railgun.txt 10/15/19 05:05:28 walton 1 of 2

Railgun

-------

Its URGENT!  You MUST get a message to the Princess!

She’s in the station on the other side of the twin

suns, and because of the suns, you cannot get an

electromagnetic or photonic message through to her.

You must use a message capsule fired from a rail gun.

The velocity of the capsule just after it is fired from

the rail gun is fixed.  The good news is that both you

and the Princess’s station are holding constant position

relative to the suns, and the velocity is fast enough

that the path of the message capsule will be close to

the straight line between you and the Princess.

The suns are of course rotating about each other, and

as you and the Princess are fixed relative to the

suns, the coordinate system you are using is rotating

with the suns.  Therefore there are Coriolis, centri-

fugal, and Euler forces that are not negligible.

However, you are to IGNORE THESE (treat them as zero),

as they significantly slow the computation and thus make

judging more difficult.

Input

-----

A sequence of test cases.  Each test case has four

lines of the form:

        TEST-CASE-NAME

        M1 X1 M2 X2

        X3 Y3 Z3 X4 Y4 Z4

        V D

The first line is a test case name line, that has at

most 80 characters.  The other lines contain the

floating point numbers defined as follows:

  M1 is the mass of sun 1, and (X1,0,0) is its center

  M2 is the mass of sun 2, and (X2,0,0) is its center

  (X3,Y3,Z3) is your position

  (X4,Y4,Z4) is the Princess’s station position

  V is the capsule velocity when it leaves the rail gun

  D is the distance within which the capsule must come

    to the Princess’s station in order for the station

    to capture the capsule

Units are kilograms, meters, meters per second.

Coordinates are chosen so that (0,0,0) is the center

of gravity of the 2-sun system, that is,

        M1*X1 + M2*X2 = 0

Acceleration caused by the gravity of a sun is

        G*M/R**2 pointed at the center of the sun

where M is the mass of the sun, R the distance to the

sun, and

        G = 6.67408e-11 m**3/(kg*sec**2)

All spacial coordinates are in the range [-1e15,+1e15]

meters and masses are in the range [1e30,1e32] kilo-

grams.  V will be large enough to get the capsule to the

Princess within 1e4 seconds (3 hours).  D will be in the

range [1e3,1e5].

Input ends with an end of file.



railgun.txt 10/15/19 05:05:28 walton 2 of 2

Output

------

For each test case, first an exact copy of the test case

name line.  Then just one line of the form

        VX VY VZ

giving the initial velocity of capsule.  To be judged

correct, the numbers should be output with 10 digits of

precision.

The capsule must go to the Princess’s station without

going completely around either sun.  The capsule must

come within D meters of the Princess’s station, and the

total initial velocity, sqrt (VX**2 + VY**2 + VZ**2),

must be within 0.0001% of V.

There will of course be many slightly different solu-

tions; any one will do.

Display

-------

There is an interactive display command that may help

you visualize the problem.  To see its documentation

use

        display_trajectory -doc

and to run it use

        display_trajectory sample.in

replacing sample.in with any test case input file.

The display command requires X windows.

Sample Input

------ -----

-- SAMPLE 1 --

1e30 -1e10   1e30 +1e10

2e10 1e10 +2.0e9   0 -1e10 +5.0e9

5e6 1e4

-- SAMPLE 2 --

1e30 -1e10   1e30 +1e10

-0.99e10 1e10 0   -0.99e10 -1e10 0

1e7 1e4

Sample Output

------ ------

-- SAMPLE 1 --

-3515346.385 -3515696.573 531241.3722

-- SAMPLE 2 --

45647.43196 -9999895.815 0.01604674784

File:      railgun.txt

Author:    Bob Walton <walton@seas.harvard.edu>

Date:      Tue Oct 15 05:05:25 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



trisurvey.txt 10/15/19 14:50:56 walton 1 of 2

Triangle Survey

-------- ------

You are the chief programmer for the Triangle Survey

Company, and you have a problem.  Your company surveys

very large properties to accurately locate points on

the property, and half the data for a recent job has

gone missing.

Your survey team did its usual thing: it organized the

points into a simple polygon whose vertices are points

to be located with all the remaining points to be

located inside the polygon, and then triangulated the

polygon so that the set of all triangle vertices was

exactly the set of points to be located.  Then the team

measured the lengths of all the triangle edges precise-

ly.  Lastly the team should have reported:

  1) A length list of triples <I,J,L> each specifying

     that the distance from point I to point J is L.

  2) A triangle list of triples <I,J,K> each specifying

     that points I, J, K are vertices of a triangle

     and the order I, J, K is clockwise order.

The team reported the length list as usual, but then the

team LOST the triangle list.

You are being asked to find all the point locations from

the length list, without knowing the triangle list a

priori.

Input

-----

A sequence of test cases.  Each test case begins with a

line containing the test case name.  The next line has

the form

        P E

where P is the number of points and E is the number of

lengths (triangle edges) measured.  Points are numbered

1, 2, ..., P.

Next come E length list lines each of the form

        I J L

where I and J are numbers of distinct points connected

by a triangle edge and L is the length of the edge.

Lengths are positive floating point numbers.

Points 1 and 2 are at the front of the property, and the

first length line has the form:

        1 2 L12

You are to assign point 1 the coordinates (0,0) and

point 2 the coordinates (0,L12).  All other points are

to be assigned Y-coordinate > 0, i.e., the property is

in a half-plane bounded by its front, and you are to

put the property points in the upper half-plane.

In addition, to simplify scoring this problem, the X and

Y coordinates of all points have been chosen to be

integers.

                 

        3 <= P <= 10,000

        E <= 3*P - 3

        1 <= L <= 100,000

The test case name lines are at most 80 characters.

Input ends with an end of file.



trisurvey.txt 10/15/19 14:50:56 walton 2 of 2

The input will be such that all the point X and Y values

are integers such that

        - 30,000 <= X <= + 30,000

               0 <= Y <= + 30,000

        where Y == 0 only for points 1 and 2

        and X == 0 for point 1 (and maybe other points)

Output

------

For each test case, first an exact copy of the test case

name line.  This is followed by P lines of the form

        X Y

where the I’th such line contains the integer coordi-

nates (X,Y) of point I.  The first of these lines is

therefore ‘0 0’ and the second is ‘L12 0’.

X and Y must be exactly accurate (as integers).

Display

-------

You can display or print test cases with the commands:

        display_survey sample.in sample.test

        print_survey sample.in sample.test

where sample.in/sample.test can be replaced by any test

case input file and its corresponding output file.

Sample Input

------ -----

-- SAMPLE 1 --

5 8

         1         2          100.000000

         2         3          100.498756

         3         4           22.360680

         4         1          142.126704

         5         1           64.031242

         5         2           64.031242

         5         3           84.852814

         5         4           80.622577

[See sample.in for more sample input.]

Sample Output

------ ------

-- SAMPLE 1 --

         0         0

       100         0

       110       100

        90       110

        50        40

[See sample.test for more sample output.]

File:      trisurvey.txt

Author:    Bob Walton <walton@seas.harvard.edu>

Date:      Tue Oct 15 14:50:52 EDT 2019

The authors have placed this file in the public domain;

they make no warranty and accept no liability for this

file.



-- SAMPLE 1 --

5

4

3

21



-- SAMPLE 2 --

12

11

10

9

8

7

6

5

4

3

21



-- SAMPLE 3 --

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

21



-- SAMPLE 4 --

14131211109

876543

21


