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This paper addresses testing of compressed structures, such as shells, that exhibit catastrophic
buckling and notorious imperfection sensitivity. The central concept is the probing of a loaded
structural specimen by a controlled lateral displacement to gain quantitative insight into its
buckling behavior and to measure the energy barrier against buckling. This can provide design
information about a structure’s stiffness and robustness against buckling in terms of energy and
force landscapes. Developments in this area are relatively new but have proceeded rapidly with
encouraging progress.

Recent experimental tests on uniformly compressed spherical shells, and axially loaded
cylinders, show excellent agreement with theoretical solutions. The probing technique could be
a valuable experimental procedure for testing prototype structures, but before it can be used
a range of potential problems must be examined and solved. The probing response is highly
nonlinear and a variety of complications can occur. Here, we make a careful assessment of
unexpected limit points and bifurcations, that could accompany probing, causing complications
and possibly even collapse of a test specimen. First, a limit point in the probe displacement
(associated with a cusp instability and fold) can result in dynamic buckling as probing progresses,
as demonstrated in the buckling of a spherical shell under volume control. Second, various
types of bifurcations which can occur on the probing path which result in the probing response
becoming unstable are also discussed. To overcome these problems, we outline the extra controls
over the entire structure that may be needed to stabilize the response.

Keywords : Bifurcation; shell buckling theory; shell buckling experiment; nondestructive testing;
controlled probe.

1. Introduction

Many general discussions of shell buckling start
with a sketch like the one below in Fig. 1(a),
showing the potential energy, W , of the structure
and its loading device as a function of a lateral
deflection, D, and the magnitude of a controlled

loading parameter, G. This parameter might be
a generalized force applying “dead” loading or its
generalized displacement applying “rigid” loading.
The typical example of a qualitative diagram in
Fig. 1(a) is taken from a 1960’s thesis [Thompson,

1961].
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Fig. 1. Two energy landscapes: (a) A historical unquantified sketch for a post-buckling system. (b) An accurate calculated
surface for a complete spherical shell under dead uniform pressure loading using a theoretical simulation of a rigid point probe.

Energy levels at a given G are measured from
the datum of the trivial unbuckled solution drawn in
red. The heights of the green balls display the energy
levels of the unstable post-buckling path (also in
green) falling with decreasing G from the bifurca-
tion point. These are the energy barriers which must
be surmounted by any disturbances that might trig-
ger an escape from the potential well of the trivial
solution. Often the falling post-buckling path will
eventually curve upwards at a fold (limit point, L in
Fig. 1) as happens with the spherical shell under
controlled external volume. This is shown here, with
the red ball at B displaying the energy of the large-
deflection stable post-buckling state. All the ball
heights have been implicitly evaluated in many stud-
ies of the post-buckling, with varying degrees of
accuracy, and they do have a precise well-defined
meaning: namely the energy of the post-buckling
equilibrium states. But the curves between them
are totally undefined, because the continuous (or
finely discretized) shell has an infinite (or large)
number of degrees of freedom. So, between points
highlighted by balls there exist an infinite number
of possible curves depending on the path chosen
in this multidimensional state space.

Recently, emphasis has been given both theo-
retically and experimentally to the response of com-
pressed shells to a lateral point load, called a probe
or poker. This probe, invariably driven by a rigid
displacement-controlled device, is intuitively placed
to directly induce what, under a dead probe, would

be a snap-buckle towards large post-buckling deflec-
tions. This probing pushes the shell along a path
through its state space towards and usually hitting
the green unstable solution: and sometimes (but
not always) continuing to the red stable solution
as well, though this is less important. Intermediate
points on the path are not of course equilibrium
points of the original unprobed shell, but they and
their energies are easily obtained (by this probing)
on what would seem to be an ideal quantified path
for display purposes. Indeed, these probed paths
can be expected to (initially) follow some sort of
energy well through the state space. In comparison
with the unquantified sketch of Fig. 1(a), we present
in Fig. 1(b) a quantified theoretical result, using
a point probe, for a uniformly compressed spheri-
cal shell [Hutchinson & Thompson, 2017a, 2017b]
which we shall be discussing later.

2. The Basic Probing Method

The basic method as proposed by Thompson [2015]
and Thompson and Sieber [2016] can be summa-
rized as follows. We first note that the buckle shape
at the lowest energy barrier determined by Horak
et al. [2006] for an axially loaded cylindrical shell
looks remarkably like the small dimple that might
be pressed into the cylinder by a researcher’s finger.
This immediately suggested a new form of experi-
mental test on a compressed shell (of any shape)
in which a lateral point load is applied by a rigid
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Fig. 2. An impression of the proposed experimental procedure in which a rigid probe is used to construct a lateral-load versus
lateral-displacement graph, F (D). This graph ends with F = 0 at a free equilibrium state of the shell, and the area under the
curve gives the corresponding energy barrier. Note that at F = 0, the rigid probe is stabilizing a state that would otherwise
be unstable for the free shell.

loading device. This would seem to be a useful type
of nondestructive and noninvasive test for a shell to
determine its shock-sensitivity. The type of test con-
figuration that we had in mind is illustrated, for a
cylindrical shell, in Fig. 2 where the lateral “probe”
moves slowly forward along a fixed line driven by a
screw mechanism.

Here we have the controlled displacement, D,
producing a passive reactive force from the shell,
F , which is sensed by the device, giving finally the
plot of F (D). This is all to be repeated at prescribed
values of the axial compressive load, P , which might
itself be applied in either a dead or rigid manner.
In the simplest scenario, the F (D) graphs might be
expected to look like those sketched on the right-
hand side of Fig. 2, the top for a high value of P ,
the bottom for a low value of P (but higher than
any minimum of the unstable post-buckling path).

When the test reaches the point A, where F =
0, we have located a free equilibrium state of the
shell, hopefully, the desired lowest mountain pass.
If we finally evaluate the area under the F (D) curve,
this will give us the energy barrier that has to be
overcome to cause the shell to collapse at the pre-
scribed value of P .

It is interesting to note, here, that Takei et al.
[2014] used an imposed lateral displacement in their

computations to find the unstable Maxwell state of
a thin film: this Maxwell load has proved of great
relevance in a wide range of problems [Hunt et al.,
2003; Thompson & van der Heijden, 2014].

Notice that if the curves have the forms drawn
(with no folds or bifurcations), we can be sure that
the shell will remain stable up to A under the con-
trolled D. If the probe controls D in both directions,
rigidly holding the shell at the probe point by gluing
(welded or fastened), we will be able to pass point
A, with the probe then carrying a negative F : if
however, the probe is just resting against the shell,
a dynamic jump from A will be observed, proba-
bly damaging the shell due to large bending strains.
Clearly full bilateral control is preferred, to prevent
this jump, but other factors must be considered. On
the negative side, fixing the probe to the shell may
itself cause damage, and may restrict the free defor-
mation that we are seeking to observe. In particular,
it might also restrict the shell by preventing a rota-
tional instability. Perhaps the ideal solution would
be to have an “equal and opposite” second probe
inside the shell at the same point, moving at the
same rate as the probe outside.

The various ways that this simple procedure
can fail, by for example reaching a vertical tangency
or a bifurcation on the F (D) curve before reaching
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Fig. 3. A symmetry-breaking bifurcation found by dynamic shell simulations [Thompson & Sieber, 2016]. The illustration of
the eigenvector demonstrates how the lateral F (D) curve can be located beyond the bifurcation point, S, by the introduction
of a second rigidly controlled point probe, tuned to provide zero force.

A, are explored in detail by Thompson and Sieber
[2016] focusing on simple models of both cylindri-
cal and spherical shells. In particular, they explore
the stabilization of the process by means of a sec-
ondary probe that is tuned to provide zero force
as illustrated in Fig. 3. We shall be looking more
closely at these matters in a later section.

3. Theoretical Results for a
Spherical Shell

Consider, now, the theoretical studies made by
Hutchinson and Thompson [2017a, 2017b] using
an accurate shell theory formulation (small strain-
moderate rotation theory) for the uniformly com-
pressed complete spherical shell developed by
Hutchinson [2016]. Probing characteristics from
these papers, under controlled (dead) external pres-
sure, are shown in Fig. 4(a) while the characteris-
tics under controlled (rigid) volume are displayed in
Fig. 4(b). Here the pressure on the shell is written
as p, with its classical critical value as pC . Likewise,
the volume change is ∆V and ∆VC .

The significant difference between these two
cases arises from the fact that under dead pressure
the falling unstable post-buckling solution never
restabilizes at a “lower-pressure buckling load” [von
Karman & Tsien, 1939, 1941]. On the other hand,
the post-buckling path does restabilize at a “lower-
volume buckling” load due to its backwards sweep
on the conventional pressure (vertical) versus vol-
ume (horizontal) diagram. So, as illustrated in
Fig. 4(b), the probe force turns negative at dis-
placement A but then rises for increasing deflection,
crossing zero again at B. With the usual displace-
ment control of a probe attached (or glued) to the
shell, all the drawn paths would be stable, allowing
the location of both the unstable and stable regimes
of the free post-buckling solution of the unprobed
shell.

The emphasis in the last sentence was on the
word drawn, and our more recent studies (presented
here for the first time) show that the probed shell
may not be stable for all D up to state B. Figures 5
and 6 illustrate that a probing experiment will
encounter obstacles at larger fixed volumes for a
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Fig. 4. Comparisons between the probing of dead pressure-controlled spheres and rigid volume-controlled spheres. For all the
displayed theoretical results, a rigid probe could locate all the curves including the free post-buckling states, A and B, and
the areas displaying the energy barriers (two of which are colored in gray).

shell with a radius to thickness ratio of R/t = 100
and Poisson’s ratio of ν = 0.3.

Figure 6 shows theoretical probing plots of
force, F , versus displacement, D, for the spheri-
cal shell at equal steps (0.18–0.98) of the controlled
volume parameter, G = ∆V/∆VC . All F (D) plots

start at F equal to zero, and return to zero when-
ever they hit the unstable (green) or stable (red)
free post-buckling states of the compressed but
unprobed shell. The bases of the colored slabs are
drawn, arbitrarily for visual purposes, at F = −10.
The vertical tangents of the F (D) curves starting

Fig. 5. New results for the probing of a complete spherical shell loaded by uniform external pressure. Notice that the unstable
post-buckling path, A, is stabilized at point L which is the “lower buckling point” of this volume-controlled system: and observe
the additional vertical tangents of the surface near the critical point (zero displacement, ∆V = ∆VC).
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Fig. 6. Identifying the features of the spherical shell probing under rigid volume control. Vertical tangents in the force-
deflection curves would prevent a simple progression to the large amplitude stable state, B.

at G � 0.66, lie beyond the unstable points, A, but
they do prevent any simple progression to the sta-
ble states, B. We shall discuss this more fully in a
later section.

The force landscape in Figs. 5 and 6 has been
computed as the solution of two coupled third-order
nonlinear boundary-value problems for the normal-
ized deflection d and the rotation ϕ. Both variables
are functions of the latitude angle θ on the sphere in
the interval [0, π/2]. The precise differential equa-
tions are described by Hutchinson [2016] as the
result of the assumption of small strain and moder-
ate rotation, combined with the symmetry assump-
tion that the shell stays rotationally symmetric
around the pole axis and reflection symmetric with
respect to the equator. To enable continuation of
the solution through vertical tangents, the pole
deflection D = d(π/2), which is a parameter of the
nonlinear problem entering in the boundary condi-
tion, was left as an additional free variable in the
nonlinear solver such that the boundary-value prob-
lem could be embedded into a curve-tracking algo-
rithm [Dankowicz & Schilder, 2013].

In a submitted paper, Hutchinson and Thomp-
son [2018] compared the aforementioned results of
Horak et al. [2006] for the energy barrier of an axi-
ally loaded cylinder with their own results for the
pressurized sphere, obtaining excellent agreement

between these two disparate shell structures as
shown in Fig. 7. Similar work on the cylinder by
Kreilos and Schneider [2017] should be noted, but
their paper does not include results for the barrier.

Fig. 7. Good agreement between two theoretical load-
barrier curves for disparate shell structures. The curve for
an axially compressed cylinder is due to Horak et al. [2006],
while the curve for a pressurized sphere is due to Hutchin-
son and Thompson [2018]. The dimensionless form of these
curves applies to thin cylindrical and spherical shells with
radius to thickness ratios greater than about 50.
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4. Experiments on Spherical Shells

An experimental study probing hemispherical shells
has been conducted by Marthelot et al. [2017].
Historically it is well established that the cylindrical
shell under axial compression and the spherical
shell under external pressure have comparably
catastrophic and imperfection-sensitive buckling
behavior. The shells tested by Marthelot et al.
were clamped at the equator, then subject to
fixed prescribed external pressure (pressure control)
achieved using a large reservoir with air as the
pressurizing medium, and finally probed at the
pole. The shells were made of an elastomer with
a typical radius to thickness on the order of
100. Near-perfect shells were manufactured which,
when tested under pressure alone, buckled at pres-
sures as high as 80% of the buckling pressure
for the perfect shell, pC . Significantly, Marth-
elot et al. also manufactured shells with pre-
cisely formed geometric dimple imperfections at the
pole. The buckling pressure of these shells tested
under pressure alone ranged from roughly 60%
down to 20% of pC , depending on the imperfec-
tion amplitude, and in excellent agreement with
numerical buckling calculations accounting for the
imperfections. The reversible elasticity of the elas-
tomer allowed each of these shells to be tested at
many pressure levels even though the shells col-
lapsed under the prescribed pressure when they
buckled.

Fig. 8. Dimensionless probe force versus dimensionless
probe displacement, for 11 values of prescribed pressure from
Marthelot et al. [2017] for a shell with R/t = 119. Each exper-
imental curve is the average of six probing histories with iden-
tical conditions. The solid lines are results computed using
the numerical method presented by Hutchinson and Thomp-
son [2017a, 2017b].

For the pressurized hemi-sphere subject to the
displacement-controlled probing, a dimple buckle
forms under the probe confined to the vicinity of
the pole prior to collapse. Curves of experimentally
measured probe force versus probe displacement for
11 values of prescribed pressure from Marthelot
et al. [2017] are shown in Fig. 7 for a shell with

Fig. 9. (a) The dimensionless maximum probing force and (b) the dimensionless energy barrier as measured experimentally
by Marthelot et al. [2017] at various values of the prescribed pressure. The theoretical predictions for a perfect shell from
Hutchinson and Thompson [2017a, 2017b, 2018] are shown as solid curves. The shell, the same as that in Fig. 8, buckled at
0.74pC under pressure alone and was probed at its pole.
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R/t = 119 which buckled under pressure alone at
p/pC = 0.74.

Marthelot et al. [2017] also evaluated the work,
W , done by the probe to reach the unstable equi-
librium state, which for a prescribed pressured is
proportional to the area under the curve between
the origin and intersection of the probing force with
the horizontal axis in the figure. This work is the
energy barrier against buckling for a shell loaded
to that pressure. A plot of the experimentally mea-
sured maximum probe force and the work to reach
state A for the tested shell in Fig. 8 as a function
of the prescribed pressure are shown in Figs. 9(a)
and 9(b). Included in the figures as solid curves
are the theoretical predictions for maximum probe
force and the energy barrier. Recent related work
on energy barriers of spherical shells was presented
by Evkin and Lykhachova [2017].

5. Experiments on Cylindrical
Shells

Recently, Virot et al. [2017] have made a pioneer-
ing series of probing (poking) tests on axially com-
pressed Coke cans. The axial compression is usually
rigid (displacement-controlled) but they do make
a few dead (force-controlled) tests to confirm that

this makes no essential difference to the measured
buckling load. The force control will of course result
in the complete destruction of the specimen when it
buckles. Meanwhile, the probes are always displace-
ment controlled. The poker tips are steel “marbles,”
the diameters of which are shown to be largely irrel-
evant. Many of the response curves are shown to be
reversible, confirming elastic behavior throughout.
Interestingly, at high axial loads several dimples are
formed during the dynamic buckling process.

The authors usually fix the axial loading, and
then apply the rigid (displacement-controlled) prob-
ing, but they show that reversing this process gives
the same final result: as in theory, the determined
landscape is independent of the control route. The
controlled probe displacements do of course first
drop to zero at the natural, free-but-unstable post-
buckling solution of the shell (A in previous figures),
where they typically have a magnitude of several
times the shell thickness. Tests on a single speci-
men were used to generate the smoothest landscape,
illustrated in Fig. 10.

They do suggest that ridge-tracking along the
path of maximum probe force might be useful.

The protocols of the tests are nicely summa-
rized in their Table 1, which we elaborate below.

Fig. 10. The smoothest experimental force landscape created using a single specimen by Virot et al. [2017]. On the left is a
photograph of their experimental testing of an axially compressed Coke can.

Table 1.

Fixed Varied Datasets Comments

Axial shortening Probe deflection 89 ‘Normal procedure’
Axial shortening Probe deflection 5 All on a single specimen
Axial shortening Probe deflection 14 Larger tip diameter
Axial load Probe deflection 39 Destruction of specimen
Probe deflection Axial shortening 17 Different control route
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Extending Fig. 4 of their paper into regimes
where the ultimate rising stable post-buckling path,
B, (under controlled axial shortening) can be deter-
mined, the authors produced what they called a sta-
bility landscape in the space of the probe force, the
probe displacement and the axial shortening. We
examine these landscapes further in the following
section.

6. More About the Force Landscape

Stability landscapes are conventionally drawn with
the two control parameters in the base plane, say
the main compression (generalized force or deflec-
tion) written as G and the probe deflection, D.

From the base plane can be erected either the
probe force, or by simple integration, the energy
needed to create the probe displacement. The latter
has often been drawn or sketched as we illustrated
in Fig. 1, and conveniently displays the energy bar-
rier against final collapse. But we here examine the
probe force diagram, as drawn by Virot et al. [2017],
which has other interesting features.

The simplified schematic sketch of Fig. 11
draws on this experimental work of Virot et al.,
and also on some further test results on a Japanese

Fig. 11. Schematic force landscape based on an Asahi can
test. The passive probing force, F , is drawn as a surface
over the base plane defined by the two control parameters, G
and D.

Asahi can, kindly supplied by the same experimen-
tal group.

Three equilibrium paths of the free unprobed
shell, with F = 0 are identified on this diagram. The
stable (red) trivial path, T, lies along the G axis,
the unstable (green) regime of the post-buckling
path originating at the (unseen) classical critical
point, A, and the re-stabilized (red) regime, B, lying
beyond fold L at the lower buckling load. Notice
that the notional sketched contours displayed under
the surface of the blue “lake” could only be deter-
mined if the probe could exert force in both direc-
tions on the shell. However, all the dry shore-line
near the lake could be explored without crossing the
lake if the experimental controls allowed the follow-
ing of a curved (or piecewise-linear) path in the (G,
D) control plane.

These probe graphs do draw attention to three
different tolerances that might be demanded of a
practical shell. Under different operating conditions
a shell might need a high energy barrier, W , a
high resistance to lateral forces (the maximum value
of F ), or a large distance to the barrier (the value
of D at the unstable state A).

7. Obstacles to a Probing Sequence

Assuming that a probe has succeeded in reaching
a free equilibrium post-buckling state of a shell-like
elastic structure, it is useful to enquire how the path
leading from the trivial solution to this state by
changing D will change qualitatively as the main
loading parameter, G, is varied. Of particular inter-
est is whether the path remains “simple,” that is,
without any vertical tangents or other events that
correspond to buckling of the probed system. To
do this, we consider here all of the typical bifur-
cation events that can generically arise during the
probing procedure as we vary one primary param-
eter (here D) to obtain a path and one secondary
parameter (here G, the main load parameter) to
obtain a family of paths.

For a hypothetical elastic structure, Fig. 12
displays a series of probing tests being made at
increasing values of the main load parameter which
might be either a dead generalized force or its cor-
responding deflection. We assume throughout that
the probe is acting as a rigid device, with its dis-
placement controlled and is moreover glued to the
structure so that it can provide negative force if
needed.

1730048-9

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
01

/3
0/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 20, 2018 8:10 WSPC/S0218-1274 1730048

J. M. T. Thompson et al.

Fig. 12. Illustration of all the generic bifurcations that can arise under the two controls, G and D, and so disrupt a probing
sequence. The appearance of a transcritical bifurcation is clarified in Fig. 13.

In the first (front) probe characteristic there is
a direct, simple connection to the unstable post-
buckling state, A, and beyond. We focus here on
the behavior before the probe reaches state A, but
the discussion would equally apply to the continu-
ation from A to a stable large-amplitude state, B.
Here there is no obstacle to progress along the prob-
ing path, and the whole of the displayed path is

stable and can be explored satisfactorily. In partic-
ular, state A can be located, and the energy bar-
rier given by the integral under the force-deflection
curve is easily evaluated.

In the second probing characteristic, we display
a local folding just after the appearance of two ver-
tical tangencies (in a so-called cusp point). Such
an event has recently been found and discussed in

Fig. 13. Surface features around a large cusp, showing the routes to vertical tangencies and a transcritical bifurcation. Curved
control routes show how more equilibria can be explored in synchronized control sweeps.
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Sec. 3 (between A and B) in the post-buckling of a
spherical shell when its volume is being rigidly con-
trolled. After the main load G is increased from (a)
to (b) in Fig. 12 through a “cusp” there will be a
small dynamic jump at constant probe deflection,
which should restabilize on the same probing path.
After this small jump, it might be possible to con-
tinue to state A as before, but such a jump would be
dangerous and might trigger premature buckling.

In the third and fourth characteristics, an
encounter with a symmetry-breaking pitchfork
bifurcation is displayed which can be either super-
critical or subcritical. This will, of course, only
occur if the system contains a symmetry that can
be broken. In both cases, the route to state A
has been rendered unstable. One such pitchfork
was in fact found (before A) in an earlier study
of a model cylindrical shell [Thompson & Sieber,
2016]. In that study it was shown that the unsta-
ble probing path after the bifurcation can be stabi-
lized and followed by the introduction of a suitably
placed secondary probe tuned to zero force. Nev-
ertheless, these symmetry-breaking bifurcations are
potentially dangerous events, which might not be
foreseen.

The really important event that is highlighted
in this figure is shown in the fifth characteris-
tic, where a transcritical bifurcation is encountered
on the probing path. This is the “asymmetric”
bifurcation studied experimentally and theoreti-
cally by Roorda [1965], and described for a propped
cantilever in [Thompson & Hunt, 1973]: it has
an imperfection sensitivity governed by a one-half
power law. Immediately after the transcritical bifur-
cation there will be two folds with vertical tangen-
cies, which completely disrupt and break the prob-
ing process, as shown in the sixth diagram.

Figure 13 shows how, in the vicinity of a large
cusp (for example), the vertical tangencies and tran-
scritical bifurcations can be typically encountered.
This diagram also usefully shows how extra areas of
the stable (red) surface can be explored by varying
the controls simultaneously to follow curved paths
in control space. This would for example allow an
experimentalist to manoeuvre around a cusp.

We mentioned in the introduction that we
might expect a lateral push on a shell to follow a
sort of minimum energy path towards the unstable
state, A. So how is it that we are now witnessing
(in the spherical shell for example, in Figs. 5 and 6)
vertical tangencies in which a path starts to return

Fig. 14. Sketch showing a ball pushed by a unidirectional
force via a smooth plate. Setting off up a curved valley, the
ball’s path can turn back at what in our (F , D) diagrams
would be a vertical tangency.

towards the displacement origin? Although it per-
haps does not fully provide an explanation, it is
useful to think about a ball being pushed by a fric-
tionless plate over an energy landscape, following
the concept introduced by Thompson and Sieber
[2016]. The horizontal force maintains its original
direction (perpendicular to the plate), and for equi-
librium the ball must move to keep the plate tan-
gential to the contours, and we see in Fig. 14 that
a push up a curved valley can indeed give rise to a
vertical tangency.

8. General Controllability Through
Probing

While the experimental studies by Marthelot et al.
[2017] and Virot et al. [2017] applied probing with
a one-sided force (the poker in Fig. 10 pushes but
cannot pull), the numerical results in Figs. 1, 3
and 5 extend the equilibrium surface for the probed
shell to negative probe forces, achievable, for exam-
ple, by gluing the poker to the shell (as proposed
in the introduction). Gluing corresponds to a two-
sided clamp, prescribing the displacement of the
shell at the probed point. One might view the glued
probe as an application of feedback control, since
the glued probe can provide the force F in real-time
depending on the displacement D. In feedback con-
trol terminology, the prescribed displacement D is
an additional input, while the force F exerted at
the clamp (measured, for example, with a stiff load
cell) is an output.
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While the probing force landscape F (D,G)
depends on the specifics of the probe (for exam-
ple, the location of the poker in Fig. 10) several
of its features are independent of the probe. As
explained in the introduction, the curve defined by
F = 0 corresponds to the buckled states of the
unprobed shell, since the probe has no effect by
definition on the curve (no force is applied at the
probe). This is a special case of the general prin-
ciple that one may use feedback control in experi-
ments to explore dynamically unstable phenomena:
first introduce an artificial control input u (in our
case displacement D of the probe), then vary u and
detect values uN for which the control is noninva-
sive (in our case, the measured force F equals 0).
The experiment for these values uN is in a state that
corresponds to a natural state (for example, an equi-
librium, in our case, the buckled state) of the uncon-
trolled experiment. Thus, it may be worthwhile to
introduce feedback control inputs into a pure test
experiment (such as the buckling tests by Marth-
elot et al. [2017] and Virot et al. [2017]). The addi-
tional equipment and experimental effort required
pays off in the ability to safely explore the exper-
iment in states that are unstable, but important.
In the case of buckling tests these are the unstable
buckling states, which define thresholds to buck-
ling of the shell. Figure 15 illustrates this princi-
ple. It shows a sequence of numerical simulations

for probing tests that keep the volume prescribed
(G = ∆V/∆VC is evenly spaced between 0.18 and
0.98), while varying the probe displacement D and
measuring the force F . The underlying numerical
results are of course identical to those in Fig. 5.
Thus, all curves in Fig. 15 are on the probing force
landscape of Fig. 5. If the probe is purely pushing
only the part of the landscape, surface covered by
blue curves in Fig. 15 can be reached. Moreover, due
to experimental disturbances one may have to stay
away from the boundaries of the surface, which are
precisely the buckling threshold states one is inter-
ested in. On the other hand, if the displacement D
is glued or clamped from both sides, one can also
access the part covered by red curves in Fig. 15 (in
addition to the blue curves). As explained in Sec. 7,
some obstacles in the landscape, such as cusps and
folds can be avoided by choosing suitable paths
in the two-parameter G–D plane, as illustrated in
Fig. 13.

The interpretation of the probe as a type of
feedback control gives guidance to how one may
overcome obstacles when exploring the entire prob-
ing force landscape by introducing additional feed-
back control inputs. Figure 15 illustrates the effect
of improving feedback control. If one is able to
adjust the displacement D depending on the mea-
sured force in real-time, then a simple linear feed-
back law of the form D(F ) = D0 + gDF will force

Fig. 15. Front view of the probed shell equilibrium surface from numerical simulation, as also shown in Fig. 5. Shown are
21 probing responses for prescribed volume parameter, G = dV/Vc, evenly spaced from 0.18 to 0.98, with varying probe
displacement D and probe force F . On the right is a zoom-in close to F = 0, D = 0, with background colors emphasizing the
overall features.
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the experiment to follow the correspondingly tilted
line in the D–F plane of Fig. 15. Consequently, for a
suitably chosen control gain, gD, we can access also
the parts of the landscape covered by green curves.
The boundary of controllability is then the curve
in the landscape where the normal has a zero D
component. If one introduces a further control input
by varying also the prescribed volume parameter G
depending on F , then a linear feedback law of the
form D(F ) = D0 + gDF , G(F ) = G0 + gGG makes
every point on the landscape accessible with a suit-
able choice of control gains gD and gG except those
isolated points where the normal has zero D and
G components. This includes the part of the land-
scape covered by purple curves in Fig. 15. While
for the particular shell parameters used in the sim-
ulations for Figs. 5 and 15 no further intersections
of the probing force landscape with the force level
F = 0 occurred, this may be possible for other sys-
tem parameters. For example, the local maxima of
the D–F curves for large G (close to the critical
volume), visible in the zoom on the right graph of
Fig. 15 come close to F = 0.

While the illustration in Fig. 15 focuses on
feedback control through real-time variation of the
control parameters D and G, other additional feed-
back control inputs are possible. Thompson and
Sieber [2016] suggested additional probing points.
These additional probing points are feasible in
a particularly straightforward way in experiments
with simpler structures such as arches. Harvey and
Virgin [2015] give an experimental demonstration of
probing for shallow arches (though with only uni-
lateral, one-sided clamping such that no unstable
buckling states could be directly observed in the
experiments).

In summary, the motivation for introducing
feedback control into a test experiment is that it
permits one to safely explore threshold states. The
general principle is that one introduces feedback
control inputs, which stabilize the experiment and
then adjusts the inputs such that the actual control
force at all inputs equals zero. This turns the test
experiment into a nonlinear system of equations of
dimension n for n control inputs. The process of
adjusting the control inputs follows the same rules
as one would use to solve any nonlinear system (for
example, with a Newton iteration). Schilder et al.
[2015] gave detailed instructions on how one can
modify standard numerical methods to cope with
large disturbances as one might typically encounter

in experiments. They also demonstrate feedback
control-based bifurcation analysis in vibration ex-
periments (other recent demonstrations and reviews
on vibration experiments are listed by Barton
[2017]).

9. Concluding Remarks

Because of imperfection-sensitivity and the poten-
tial for catastrophic failure, the design of shell
structures against buckling has traditionally relied
heavily on empirical rules derived from many tests,
often large-scale tests. Major efforts are currently
underway to shift emphasis towards heavier reliance
on computational methods. This shift is driven, in
part, because many advanced shell structures are
reinforced and stiffened in a multitude of ways mak-
ing it increasingly difficult to rely on experimental
data applicable to newly conceived design configu-
rations. Consideration of the energy barrier against
buckling is a new development in shell buckling. The
barriers for unstiffened perfect spherical shells sub-
ject to pressure and for cylindrical shells under axial
compression presented in Fig. 7 reveal the transi-
tion from a very weak barrier for shells loaded to
within 30%, say, of the buckling load to a consider-
ably larger barrier when the load is below about one
half of the buckling load. The experimental results
for the barrier obtained by displacement-controlled
probing of the high quality spherical shell in Fig. 9
are in good agreement with the theory. The transi-
tion from a weak to a substantial barrier has clear
implications for design against buckling. The gen-
eral trends revealed here for probing perfect shells
and for their energy barriers have been shown to
carry over to imperfect spherical shells by Hutchin-
son and Thompson [2018].

The present paper has addressed some of the
complications that can arise in probing loaded shells
with illustrations of specific examples where possi-
ble. Probing a loaded shell to locate an unstable free
buckling state and to measure the associated energy
barrier can be a highly nonlinear process. The probe
response can be interrupted by limit points and
various types of bifurcation which, in turn, may
inadvertently trigger dynamic buckling. Such events
might possibly damage the test shell if steps (dis-
cussed here and in [Thompson & Sieber, 2016])
are not taken to control them. The recent probing
experiments of Virot et al. [2017] and Marthelot
et al. [2017] are particularly promising in that they
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have demonstrated that equilibrium buckled states
can be located and the associated energy barriers
can be quantified. The experiments were shown to
exhibit reversibility and repeatability, but difficulty
was sometimes experienced in getting precisely to
the unstable state A. Additionally, it is notable
that these experiments have been carried out on the
two most imperfection-sensitive shell/loading sys-
tems known to exist.

Imperfections determine the reduction of the
buckling load below the prediction for the perfect
shell while the energy barrier measures the robust-
ness, or precariousness, of the shell in the loaded
state to unanticipated loads and disturbances. Due
to the localized nature of buckling of many shell
structures, and especially for the unstiffened cylin-
drical and spherical shells, imperfections determin-
ing buckling will often be local. If the critical
buckling state associated with the lowest applied
load is to be located, the test probe must be applied
in the vicinity of the imperfection. If, on the other
hand, the test probe is applied in a region well away
from the imperfection where the shell is relatively
perfect, the test operator will measure a response
that is more characteristic of the perfect shell than
the real imperfect shell. While there is still much
to learn about locating probes, a small number of
examples illustrating such behavior have been stud-
ied experimentally and theoretically in the papers
referenced above. The lesson from this limited num-
ber of studies appears to be that, in addition to
dealing with the potential complications that can
arise in the probing response emphasized here, a
probing protocol must also sample enough locations
on the shell to ensure that the lowest buckling state
is found.
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