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Were it is not for the slant of the crack through the thickness of the plate, the problem would be mode |, but due to the
slant the local conditions along the crack front are a combination of mode I and mode IIl. A three-dimensional formula-
tion for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and
Lode parameter through the plate in the plastic zone at the crack tip. The distribution of the mode I and mode III stress
intensity factors along the crack front are obtained for the elastic problem. The out-of-plane bending constraint
imposed on the plate significantly influences the mixed mode behavior along the crack front. The solution is examined
for clues as to why propagating slant cracks sometimes undergo a transition and flip about 90° to propagate with the

opposite slant orientation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Under conditions in which a plate is loaded symmetrically with a
symmetrically located flat crack, the initial crack advance is also usu-
ally symmetric and locally mode [ along the crack front. Extensive
tearing of metallic sheets and plates has been studied in recent years
with the aim of understanding and characterizing extensive failure
modes in large plate structures under a wide variety of loading
scenarios [1-3]. For plates of ductile metal alloys, a symmetrically
loaded cracked plate frequently undergoes a transition as it advan-
ces such that its leading edge becomes slanted at approximately 45°
to the plate middle surface [4]. When this happens, conditions along
the crack front are no longer pure mode I. In particular, a strong
mode Il component develops which produces out-of-plane asym-
metry and plate bending. Among other factors, the transition to the
slant crack is due to shear localization that occurs ahead of the crack.
More remarkably, when the transition to a slanted crack occurs, it is
often observed that the crack front flips back and forth from +45° to
—45° as the crack advances with a regular period that is usually at
least several times the plate thickness [5—8]. The mechanics of this
flipping mechanism is not understood other than the general realiza-
tion that it is tied to shear localization occurring in the fracture pro-
cess. The analysis and results presented in this paper are motivated
by slant crack propagation phenomena with the aim of providing
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some relevant theoretical background. While the flipping process is
inherently non-steady, the steady-state solution can give insight as
to why flipping might be triggered.

Fig. 1a displays the three-dimensional (3D) plate geometry con-
sidered in this paper. The infinite plate strip of thickness t and height
2H has a semi-infinite crack with slant angle s which intersects
the plate mid-surface at the plate symmetry line (x; =0, x3=0).
The tractions on the lateral faces of the strip plate are zero as
are the tractions on the crack faces. The boundary conditions along
the bottom and top edges of the plate are taken to be

012(%1,—H,X3) =013(x1, —H, x3) =0,

Uy (Xq, —H,x3) = —A, (1)
u3(xy,—H,0)=0

012(X1,H,X3) =013(X1, H,%3) =0,

Uy (X1, H,x3)=A, 2)
H3(X1,H,0):0

For the numerical finite element model introduced below, the
length of the plate strip, 2L, is taken to be finite but sufficiently long
to simulate steady-state propagation conditions with the crack tip
located at the halfway point of the length.

The geometry and boundary conditions on the top and bottom
edges are consistent with the existence of a steady-state solution.
The condition us(x;, =H,0)=0 imposed at the center of the plate
on the bottom and top edges restrains the middle surface plate
from out-of-plane displacement along this line. It will produce a
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(a)

(b)

Fig. 1. a) 3D geometry of the problem at hand and a representative surface S associated with evaluation of the average energy release rate in Eq. (5). Only the upper half of the
domain with proper rotational boundary conditions to mimic the full plate is considered in the numerical simulations, b) representative mesh employed in the elastic-plastic

simulations (here for Kg/(oyvt)=1,t/H=0.01, and 85=45").

concentrated line force/per length in the x;-direction along the cen-
terline of the top and bottom edges when out-of-plane bending
occurs. This is an important constraint, which together with the
thickness to half-height ratio t/H, plays a central role influencing
mode III conditions at the crack front. In combination, the boundary
conditions effectively clamp the plate against out-of-plane rotation
on the bottom and top edges while at the same time allowing local
shearing on the edges. Thus, for an uncracked plate of initially uni-
form isotropic material, as well as for the plate strip far ahead of the
crack, these boundary conditions admit a uniform uniaxial tensile
stress state (0,2 > 0, other components zero) with associated verti-
cal strain &3; = A/H. Far behind the crack tip the stresses completely
are relaxed in the elastic problem.

After the 3D steady-state formulation and its numerical imple-
mentation is introduced, the first problems addressed will be those
for a linear elastic material. Results for the through-thickness distri-
bution of the mode I and mode III elastic stress intensity factors for
the slanted crack will be presented which illustrate the role of the
out-of-plane bending. The last sections of the paper present the
results for the steadily growing elastic-plastic slant crack, having
first made contact with mode I results for the flat crack (85=0)
obtained by Sobotka and Dodds [9].

2. 3D steady-state formulation and numerical implementation
2.1. Constitutive model (J2-flow material)

J2-flow plasticity theory is adopted as a material model in the
present analysis with the current stress field determined from the
incremental constitutive law: o =Ljyéy. Here, Ly, is the elastic
stiffness tensor during elastic unloading (o, < o /™ or ¢, <0), or the
instantaneous moduli based on the von Mises surface during plastic
yielding (0. = 0" and &, > 0). The Mises effective stress is o3 =32
sijsi with s;; as the Cauchy stress deviator. A power hardenmg law is
chosen for the stress-strain response in uni-axial tension such that;

Oe

F for o.<oy

&= 1/N (3)
Oy [ Oe
E ((73/) for oe.>o0y

where E is Young's modulus, oy is the initial yield stress, and N is the
power hardening exponent. Poisson ratio is v. A small strain model

formulation with the total strain field determined from the current
displacements, &;=(u; J+uj,)/2 is used. The strain is decomposed
into an elastic, &}, and plastic, &}, contributions such that &; =&} +¢].
Thus, the plastic strain field can be determined through the elastlc
stress-strain relation as: sf.;.:s,j—Mgkiok, (exploited in the steady-
state procedure below), once the current stress field is known. Here,
with Mg,d being the isotropic elastic compliance tensor. The material
parameters used in the present study are; oy/E=0.004, v=0.3 and
N = 0.1 matching those used in Sobotka and Dodds [9].

2.2, Steady-state formulation and numerical procedure

Dean and Hutchinson [10] and Parks et al. [11] define steady-
state for a crack, propagating at a constant velocity, as the condition
for which the stress and strain fields surrounding the advancing
crack tip remain unchanged to an observer moving with the tip.
Thus, any time rate of change, f, can be related to the spatial deriva-
tive through the crack tip velocity, a, along the x;-direction, so that;
f=-a a{ An incremental quantity, in a given material point, x;, can
thereby be evaluated by streamline integration along the negative
x;-direction, which starts well in front (upstream, Xx; =X;p > 0,
X2 =x3, and x3 =x3) of the active plastic zone and ends at the point of
interest; x; =x{. In the steady-state, the deformation history at x} is
contained in all upstream material points.

In the following, a steady-state solution is approximated by using
a numerical finite element procedure similar to that of [10—14]. The
conventional principle of virtual work for quasi-static steady-state
problems reads

/ SSI-jL,-EszMdV: f Su;T;dS + f 5EUL5k,s§Idv (4)
v

where &; is the total strain, &} is the plastic strain tensor, L, is the
elastic stiffness tensor, u; is the displacement vector, and T; is the
surface traction vector. The numerical framework is based on Eq. (4),
which in 3D is discretized by 20-node isoparametric solid elements
using full Gauss quadrature for the integration. The basis of the
numerical steady-state procedure is summarized below (iterated

quantities are indicated by the superscript "n"):

1) Based on the plastic strains from the previous iteration, s pin-1)

solve Eq. (4) to obtain the current displacement field, u(”
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2) Compute the total strain, sg’), from the current displacement
field ul".

3) Determine the stress field outside of the steady-state domain:
a]@j") =1£,e, and inside of the steady-state domain:

o () (m) (m)
X] 00 do; de:!
(m) B | ; if i
0L = dx with; —— =Lijy——

¥ /x wy by T oy

10

4) Compute the plastic strain field inside the steady-state domain
using the elastic relationship: sg. :eij—MiEjk,ok;.

5) Repeat Steps 1 through 4 until satisfactory convergence is
achieved. Convergence in both the displacement field and the
stress field is here considered.

The iterative steady-state procedure is carried out by taking
appropriate differences between Gauss points on the same stream-
line, by assuming a linear variation in the total strain field between
the neighboring integration points. This enables easy division of the
interval into smaller subincrements (never less than 100). For initia-
tion of the procedure, the algorithm is fed the elastic solution of
the corresponding boundary value problem. Thus, 1—.{.}(0) =0in the first
iteration (n=1).

To model the plate geometry in Fig. 1a only the upper half of the
plate is considered, while appropriate rotational symmetry has been
enforced to account for a slant propagating crack. In comparison to
modeling the full plate, this approach has proven efficient and with
no effect on the results presented. For the elastic-plastic simulations,
the through-thickness direction is discretized by 20 elements (grad-
uate finer towards the free surfaces), and with a fine discretization
in the xpxs-plane near the crack tip covering a domain of
0.25-0.5 times the reference value, (Kg/oy)?, that approximately
scales the plastic zone height. The fine discretized near tip domain of
24 by 24 elements is refined towards the slant crack surface. The
total mesh consists of 70,640 20-node 3D elements and 298,591
nodes (see Fig. 1b). A similar mesh is used for the elastic calculations,
but here with the elements push toward the crack tip such that a
very fine resolution of the crack face displacement is obtained.

The current three-dimensional steady-state model has been vali-
dated against a recent study on crack growth in thin sheet metals by
Sobotka and Dodds [9], as well as corresponding 2D models [14,15],
which are known to agree well with the predictions made in earlier
papers [10,12,16].

3. Stress intensity factors for a slant crack in an elastic plate strip

The geometry for the elastic slant crack problems is that in
Fig. 1a. This problem is studied first to provide basic elastic results
for the strip plate problem. Although the iteration process required
for steady-state elastic-plastic problems is not needed for the linear
elastic problems, the same formulation without iteration can be
employed to generate the elastic results. The elastic problems also
serve to guide the choice of finite element mesh. The plate material
is assumed to be uniform and isotropic with Young's modulus E and
Poisson’s ratio v.

The 3D J-integral is a useful tool for the elastic problems, espe-
cially as a check on the accuracy of the numerical results. Let S be
any surface within the plate (see Fig. 1a) that surrounds the crack
front with outward pointing unit normal n. The surface S intersects
the lateral traction-free faces of the plate on both sides and inter-
sects both traction-free crack faces behind the crack front. With
W =0j&;/2 as the elastic energy density of the plate material, the
3D J-integral provides the energy release rate G averaged over the
crack front as

C[’:f(Wﬂ] —Tfui_])dS, with T;=oyn; (5)
N

Using techniques similar to those employed originally by Rice
[17], one can readily show that the integral is surface-independent
in the sense that the integral is the same for all such S [18]. The fact
that the crack faces and the lateral plate surfaces are traction-free
with no x;-component of n is essential to this property.

Consider a surface S which far ahead of the crack front is pla-
nar with normal n=(1,0,0), extending from the bottom edge to
the top edge, and far behind the crack front is also planar with nor-
mal n=(—1,0,0) extending from the bottom and top edges to the
crack faces. Between these two planar surfaces, take the surfaces of
S to coincide with the bottom and top planar edges. The integrand
of Eq. (5) vanishes for all the planar surfaces making up this S
except for the plane far ahead of the crack. Far ahead of the crack
tip the stress state is uniaxial tension, o ., =EA/H, leading to the
result from (5): G=EA®/H =02_H/E. Next, shrink S down to a cir-
cular cylindrical surface connecting the two lateral faces of the
plate with the straight crack front as the center of the cylinder. At
every interior point along the crack front the singular fields are
a combination of the singular fields for plane strain mode I and
for mode III. The stress intensity factors of these fields, Ki(s) and
Ku(s), vary with position salong the front. By shrinking the cylinder
S down to zero radius and asserting surface-independence, one
obtains from (5)

— 1 pr2cosBs (12 1+v
C— 7/ {—K,(s)z-o- —K”,(s)z}ds (6)
t —t/2cospBy E E

where s is position along the front measured from the plate mid-
plane. The 3D corner singularity [ 19] where the crack front intersects
the lateral faces of the plate does not alter this result which depends
on the distribution of the intensity factors through the interior of
the crack front.

In the numerical simulations, the elastic stress intensity factor
distribution is evaluated by fitting the local finite element displace-
ments near the crack front to the displacement fields associated
with the plane strain mode I and mode III singularity fields. No effort
was made to characterize or capture the amplitude of the corner sin-
gularity. More sophisticated techniques for evaluating the intensity
factors could be used, but this method proved satisfactory for pres-
ent purposes where the main objective for the elastic problem is to
understand the role of the out-of-plane bending constraint on the
mode I and mode III contributions.

Fig. 2 presents the distribution of the mode I stress intensity fac-
tors over the range of plate thickness to half-height, 0.01 < t/H < 0.5,
for the flat crack (8;=0). The problem is mode I and the intensity
factor is normalized by Kz = \/16% =0« vH. The distribution is sym-
metric with respect to the mid-surface of the plate. Note that the
variation of Kj/Ky through the thickness is very small, not more than
about 3%. The strip with the smallest height, t/H=0.5, flattens the
distribution. Our numerical method is not expected to accurately
capture the details of the distributions very near the crack faces
where the corner singularity influences the distribution. Also shown
is the plot of the ratio G;/G as a function of t/H where the average G;
is evaluated numerically using the distribution K; in Eq. (6). The
close agreement between G; and Gis an indicator of the accuracy of
the numerical method.

Fig. 3 presents the distribution of the mode I and III stress
intensity factors over the same range of thickness to plate half-
height for the slant crack (8;=45°). The intensity factors are
again normalized by K = o, vH. Each distribution is symmetric
with respect to the mid-surface of the plate; Ki(s) is maximum at
the mid-surface while Ky{(s) is maximum at the faces. The strip
plate with the smallest height considered, t/H=0.5, produces the
largest mode III stress intensity factor and component average G.
This implies that increasing the strip height, thereby relaxing the
out-of-plane bending constraint, lowers the mode III contribution
in the elastic case.
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Fig. 2. Flat crack, 8,=0°, for elastic problem (Poisson’s ratio,v=0.3), showing a) the
through-thickness distribution of mode I stress intensity factor, and b) the numerical
evaluation of the average energy release rate using Eq. (6) normalized by the imposed
average energy release rate; G= EAZ/H.

As already emphasized, the numerical method is not expected to
accurately capture the details of the distributions very near the crack
faces where the corner singularity influences the local distribution.
Plots of the individual mode I and mode Il contributions to the
energy release rate on the right hand side of Eq. (6), labeled as G,
and Gy, respectively, are shown in the lower part of Fig. 3. The sum
of these two components constitutes the numerical evaluation of G
based on the integral in Eq. (6). Thus, results for the sum of G; and
Gy in Fig. 3 demonstrate again that surface-independence is accu-
rately met except for the smallest half-heights where it begins to be
eroded. The accompanying out-of-plane shearing displacement,
Az =u3(—r,0",0)—u3(—r,07,0), normalized by the prescribed strip
separation, A = o H/E, is presented as a function of —x; /H in Fig. 4.
The out-of-plane contribution to Kj; would be positive if As> 0 and
vice versa. Relaxation of the mode Il component by out-of-plane
bending is consistent with the negative sign of As.

Variations of the two contributions to the average energy
release rate, G; and Gy, and their sum are shown in Fig. 5 as
a function of the slant crack angle from Bs=0° to Bg=45°".
These have been computed using the numerical technique just
described. The sum of the computed rates is again compared
to the prescribed value, G=02 H/E revealing the same level of
accuracy noted for the 45° slant crack. These results reinforce the
earlier assertion that the out-of-plane bending of the strips with
the greatest height provides the largest relaxation of the mode III
contribution.

The following elementary approximate calculation for the two
energy release rate contributions provides further insight. Assume
that at each point along the crack front the only displacement contri-
bution of order +/r to the relative displacement of the crack faces is
u,, where r is the perpendicular distance from the front. That is,
ignore the asymmetry of the slant crack with respect to the plate
mid-surface x3 =0 by ignoring the out-of-plane contribution of us
to the crack face displacement such that the only contribution has
the form uy = c(s)/7. With

[t3, u5] =c(5)VF[cos(Bs), sin(B)] (7)

as the associated components of displacement in local axes aligned
with the crack front, one can easily show by enforcing (6) that

— G
G= 2 - 2
cos(Bs)” + (1-v)sin(f)
e G
= -
cos(Bs)? + (1-v)sin(fs)?
The dependency on the slant crack angle is shown in Fig. 6 for
several values of v. The curves for t/H=0.01 and v=0.3 from Fig. 5
are also included in the figure. While this approximation provides
no information on the position-dependence of the stress intensity

factors along the crack front, it does clearly capture the trend of their
contributions to the average energy release rate.

cos(Bs)
(8)
(1-v)sin(Bs)?

4. Steady-state, elastic-plastic results for the flat crack f; =0°

The numerical method described in Section 2 has been applied to
the mode I flat crack with B¢ =0° primarily to provide a base of com-
parison with the slant crack and to make contact with the prior 3D
results for this problem given by Sobotka and Dodds [9]. The dimen-
sionless load parameter used here is the same as that employed in
[9]: with Kzx=0.,vH as the measure of applied load, the load
parameter is Kg/(oy+/t). The plastic zone (where the effective stress
satisfies o, > ay) is shown in Fig. 7 for two values of the dimension-
less load, the lower level for a case with the plastic zone diameter
less than one-half the plate thickness and the higher level having a
plastic zone about ten times the thickness. These zones are in close
accord with the corresponding zones for steady-state growth pre-
sented in [9]. Note that the zone is fairly uniform in shape through
most of the thickness with a slight decrease in size just inside the
free surfaces for the smaller of the two zones with K/(oyvt)=1,
similar to the zone presented for this loading in [9]. Moreover, the
shape of this smaller zone is similar to the 3D zone reported for
monotonic loading in small scale yielding by Nielsen and Gundlach
[20], apart from the existence of the reloading wake for the growing
crack.

It is worth recording that the shape of the smaller of the two
zones in Fig. 7 is quite different from the depiction of such zones pre-
sented in a number of texts on fracture. The standard depiction has
the zone significantly expanding in size as it approaches the free sur-
faces. To our knowledge, the textbook depictions are not based on
numerical simulations but rather are qualitative based on the idea
that a plane strain zone exists in the center region of the plate
(which is correct) and a plane stress-like zone exists at the surfaces
(which is not correct). While the state of stress on the surface is
plane stress, plasticity at the surface is nevertheless subject to the
3D constraint of the surrounding elastic region. Only when the plas-
tic zone becomes considerably larger than the plate thickness, as in
the case of the larger zone in Fig. 7, can the outer region of the zone
be characterized as plane stress.

Sobotka and Dodds [9] present an array of detailed results on the
stress and strain distribution at the tip of a 3D crack making contact
with 2D results for mode I for both plane strain and plane stress. The
focus in this paper will be on distributions near the crack tip of
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Fig. 3. Slant crack, f, =45, for elastic problem (Poisson's ratio,u =0.3), showing a) the through-thickness distribution of mode I stress intensity factor, and b) the through-
thickness distribution of mode III stress intensity factor, and c) the numerical evaluation of the average components of the energy release.

the three invariants of stress. Figs. 8 and 9 give contour plots of the
distribution of the Mises effective stress, the triaxiality, T=o0m /0,
with o, = 074 /3 as the mean stress, and the Lode parameter,

_ 20({; fr o )
1—0u

where (o) > oy; > oyy) are the principal stresses. These plots are for

values at the free surface (x3 =t/2) and at the mid-surface (x5 =0).

The loading in Fig. 8 is Kg/(oyvt)=1, while that in Fig. 9 is

Kg/(oyV/) =5, in both cases for t/H =0.01.

L
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Fig. 4. Out-of-plane deflection at mid-thickness for the elastic problem (v=0.3).

The significant difference between the effective stress contours in
Figs. 8 and 9 are consistent with the remarks made above. When the
plastic zone is small compared to the plate thickness, the effective
stress distribution is much closer to the plane strain distribution
than the plane stress distribution even at the plate surface. Only
when the zone is large compared with the thickness, as in Fig. 9, is
the distribution similar to the 2D plane stress distribution, at least at
distances from the tip greater than .

To interpret the distribution on the Lode parameter in Figs. 8
and 9, one should note that L=0 corresponds to a shearing stress

(Gr+ Gi)/G

1; \f\
0.8} 1
—=—t/H =0.01 s
06| —o—t/H =01 GG
——t/H =05

04r

02r

Fig. 5. Numerical results for the elastic problem (v =0.3) for the average mode I and
11l components of the energy release rate as dependent on the slant angle, 8 and ¢/H.
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Fig. 6. Approximate results of Eq. (8) for average energy release rate components based
only on the assumption of no out-of-plane crack face displacement contribution to the
stress intensities compared with the numerical results for t/H=0.01 and v=0.3.
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Fig. 7. Active plastic zone for a flat crack propagating at steady-state. Here with
the loading corresponding to a) Kg/(oyvt)=1, and b) Kg/(oyvE)=5. Axes are
normalized by the sheet thickness.

state (i.e., a shear stress in some axes orientation plus hydrostatic
tension or compression), while L= 41 corresponds to axisymmet-
ric stressing (i.e., L=—1 corresponds uniaxial stress in some orien-
tation plus hydrostatic tension or compression while L=1
corresponds equi-biaxial stress in some orientation plus hydro-
static tension or compression). For the smaller of the two plastic
zones in Fig. 8e and f, the Lode parameter directly ahead of the
crack tip across the central region is approximately L=0.5 and
then becomes L=21 at the surface. Across the entire crack front, L =
0 along rays approximately & 35° to the crack plane. For the
smaller zone, the triaxiality is largest in a relatively broad region
ahead of the crack tip both in the interior and at the surface. It is
also significant that the triaxiality is almost as large along rays at &+
45° to the crack plane as directly ahead of the tip. For the larger
plastic zone, in Fig. 9e and f, L=0 in a fairly broad region ahead of
the tip. The Lode parameter ahead of the crack tip, L=0, is consis-
tent with a state of plane strain tension (011 =032/2, 033 =0) with
triaxality, T=1/v/3, which is very close to the computed values
T=0.6. For a material susceptible to the void mechanism of failure,
these conditions are favorable for out-of-plane shear failure on one
or other of the planes at + 45° to the plate mid-surface.

5. Steady-state elastic-plastic results for the slant crack with
Bs=45°

Three-dimensional views of the active plastic zone at four levels
of the normalized load parameter, Kz/(oy+/f), are shown in Fig, 10

a) 09 b)

t/2

stress

Fig. 8. Contour plot at x5 =t/2 (free surface, plots; a, c, ) and at x; =0 (plots; b, d, ).
Here, showing; a-b) normalized von Mises stress (ofoy), c-d) Stress triaxiality, and
e-f) Lode parameter, (Kg/(oyvt)=1,t/H=0.01,and 8;=0°).

for the 45° slant crack. First and foremost one sees that the size of
the plastic zone roughly scales with (Kg/oy)? such that for the lowest
load intensity (Kz/(oy+vt)=1), the diameter of the plastic zone is
roughly 0.4t and about 8t when Kg/(oyvt)=5. In addition, a thin
active plastic zone is observed close to the crack surfaces in the
wake behind the advancing crack tip where a small amount of
reverse plastic flow occurs. All-in-all, this behavior is similar to that
for the corresponding flat crack. However, the slanting asymmetry
develops in the active plastic zone due to the mode Il contribution
discussed previously. In particular, the asymmetry is obvious for the
lowest values of the normalized load parameter (Ky/(oyv/t) =1 or 2,
see Fig. 10a and b), while it diminishes somewhat when the load
parameter is increased (see Fig. 10c and d). Thus, when the plastic
zone size is smaller than the plate thickness a significant slanting
asymmetry arises, whereas when the plastic zone is much larger
than the plate thickness there is relatively little through-thickness
variation. Similar behavior is also observed in the contour plots of
the three stress invariants presented in Figs. 11 and 12 for the
larger value of normalized load. For, Kp/(oyvi)=5 the free
surface contours are hard to distinguish from the contours plotted at
X3 =t/3 (compare Fig. 12a,c and e to Fig. 12b,d and f). The effective
stress, stress triaxiality and Lode parameter all remain roughly
constant through thickness except very near the crack tip which
Fig. 12 does not resolve. By contrast, for the lowest normalized load,
Kg/(oy+/t)=1 in Fig. 11, a fairly significant through-thickness varia-
tion exists. At the free surface (Fig. 11a,c and e), a clear downward
pointing trend is seen in all parameters of interest. To help interpret
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Fig. 9. Contour plot at x; =t/2 (free surface, plots; a, c, ) and at x3 =0 (plots; b, d, f).
Here, showing; a-b) normalized von Mises stress (g./ay), c-d) Stress triaxiality, and
e-f) Lode parameter, (Kg /(oyvf) =5, t/H=0.01,and B;=0°).

these figures, note that the free surface contours are the view of the
surface seen from the left in Fig. 10a, and similarly for the distribu-
tions at x3 = t/3. The effective stress contour has a kidney shape, but
with one part situated downward along the x,-axis and the other
lobe along the growth direction of the x;-axis with a slight down-
ward bend. In a similar fashion, the slant crack tip emits a ray of
increasing stress triaxiality in a roughly —45° angle, and the Lode
parameter is zero (shearing stress states) along two rays that meet
up near the crack tip, one being roughly in the crack growth direc-
tion, and one angled downwards. The downward trend in the vari-
ous fields, and the asymmetry, gradually weakens as one moves
along the crack front into the plate, as is evident from Fig. 11b,d
and f.

For a ductile plate that fails by the void growth mechanism, the
downward pointing trend of the contours near the free surface sug-
gests that the crack is encouraged to alter its direction of propaga-
tion. It is well known that void growth develops most rapidly in high
triaxiality regions undergoing plastic deformation, and these are the
conditions in the downward pointing region near the slant crack tip.
The fact that the Lode parameter is nearly zero in this downward
pointing region as well further favors shear localization. These
results nicely support a recent X-ray tomography study presented
by Nielsen and Gundlach [20], where crack tip flipping is observed
to start as shear-lips where the slant crack intersects the free sur-
face. Upon further loading, the initiated flip crack grows and over-
takes the parent slant crack until the crack face flips completely
to the opposite 45° orientation. Moreover, the finding that the
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Fig. 10. Active plastic zone for a 45° slant crack propagating at steady-state with the
loading corresponding to a) Kg/(oyv/T) =1, b) Kz/(oyvT) =2, ¢) Kg/(oy+/1)=3, and d)
Kg/{oyv/t) =5. Axes are normalized by the sheet thickness.
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Fig. 11. Contour plot at x3 =t/2 (free surface, plots; a, ¢, e) and at x3 =t/3 (plots; b, d,
f). Here, showing; a-b) normalized von Mises stress (oefcy), c-d) Stress triaxiality, and
e-f) Lode parameter, (Kg/(oyv1) =1,t/H=0.01,and B;=45").
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Fig. 12. Contour plot at x; = t/2 (free surface, plots; a, ¢, e) and at x; =t/3 (plots; b, d, f).
Here, showing; a-b) normalized von Mises stress (o./o), c-d) Stress triaxiality, and e-f)
Lode parameter, (Kg/(oyvt) =5, t/H=0.01, and B;=45").

through-thickness variation within the active plastic zone heavily
depends on the normalized load parameter also suggests that the
flipping mechanism (driven by the asymmetry) may be restricted to
a specific range of plate thicknesses dependent on the material yield
stress. When the plastic zone becomes large compared to the sheet
thickness, the driving force for the flipping becomes small due to the
loss of the downward trends in the distributions noted in connection
with Fig. 12. In the early experimental study of the phenomenon by
El-Naaman and Nielsen [7], thin sheets of different thicknesses were
tested without clear evidence of flipping. Only when thicker plates
(t=4mm for plates of moderate strength steel) were tested was
reproducible flipping observed.

The near tip out-of-plane deflection for the elastic-plastic
case is presented in Fig. 13 for thickness to plate half-height
t/H=0.01, representing the plate strip with the least out-of-plane
bending constraint. A clear shift in the direction of the out-of-plane
plate deflection is observed as the load intensity increases, with
the purely elastic case presenting a negative deflection (as dis-
cussed in the previous section) and the most heavily loaded
(Kz/(cyVT)=5) elastic-plastic case showing a strongly positive
deflection. When the plastic zone becomes larger than the plate
thickness, plastic shear ahead of the crack front overrides the ten-
dency seen for the elastic slant crack for the out-of-plane deflec-
tion to reduce the mode IIl contribution. The significant positive
crack face mode Il displacement just behind the crack tip for the
two higher loadings is evident in Fig. 13. This shearing explains
why the Lode parameter is zero on the extended plane ahead of the
crack (see Fig. 12e and f).
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Fig. 13. Out-of-plane deflection for the elastic-plastic problem with t/H=0.01.

A competition between the far-field elastic response and the near
tip plasticity is at play here. One sees this trend with the reduction
of the load intensity in Fig. 13. In fact, for the lowest load intensity
(i.e., Kg/(oyVt)=1, when the size of the plastic zone compares to
the plate thickness), the plate is found to deflect in the negative out-
of-plane direction near to the crack tip while becoming positive
direction some distance downstream from the crack tip. For
these plate strips with substantial height (e.g. t/H=0.01), the load
level Ki/(oy+vt)=2 appears to roughly mark the transition above
which the plate no longer displays a negative near-tip out-of-
plane deflection. Interestingly, in the plate tearing experiments by
Simonsen and Tornqvist [6] and by El-Naaman and Nielsen [7],
where an edge crack in large steel and aluminum plates is observed
to flip repeatedly, the normalized load parameter Kg/(ay+/t) is esti-
mated to be about 1.9 for two sets of the steel plates and 1.3 for
the aluminum plates.

Fig. 14 shows the role of the out-of-plane bending constraint via
variations in the plate thickness to half-height, t/H, for fixed load
intensity, Kz/(oyvt)=1. For low values of t/H, corresponding to a
limited constraint on the deflection, the plate displays negative
out-of-plane deflection close to the crack tip, while the deflection
becomes positive further downstream. By contrast, as the constraint
on the out-of-plane deflection intensifies with larger t/H, A3 remains
negative and attains a negative plateau. Increasing the out-of-plane
bending constraint of the plate reduces the positive mode III plastic
shearing contribution.
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Fig. 14. t/H=0.1. Out-of-plane deflection for fixed Kg/(oy+/T) = 1 and varying t/H.
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6. Conclusions

The 3D formulation for steady-state growth of slant cracks in sym-
metrically loaded elastic-plastic plate strips has been used to gain
insight into the propagation behavior of slant cracks. The steady-state
formulation permits generation of behavior in the plastic zone for a
crack that has undergone extensive crack advance without the neces-
sity of computing the transient growth to reach steady-state. New
results for the elastic problem are a byproduct of the study in the
form of distributions of mode I and mode Il stress intensity factors
along the crack front. The study also makes contact with the earlier
3D steady-state study for elastic-plastic behavior for mode I flat
cracks by Sobotka and Dodds [9]. The primary results are for the 45°
slant crack in the form of distributions of the three stress invariants
within the plastic zone and the role of the out-of-plane bending con-
straint on these stress distributions. The results are examined with a
focus on identifying clues for the tendency of slant cracks in certain
plate tearing tests to flip back and forth between £ 45°. While crack
tip flipping is a non-steady process, the steady-state solution provides
insights into the onset of the advance of a flipping crack.

The numerical results reveal that for the plate strips with the
least out-of-plane bending resistance (t/H=0.01) there is a range of
loading as measured by Kg/(oy+/t) in which conditions may be favor-
able to crack tip flipping. In the acute angle corner where the slant
crack intersects the plate surface the stress distribution appears to
be consistent with initiation of a re-oriented shear crack in a the flip-
ping direction. These conditions involve relatively high effective
stress and triaxiality with a Lode parameter, L~20, associated with
shearing states. If Kz /(oy+/t) is much greater than 2, the plastic zone
begins to become so large compared to the thickness that these
favorable conditions disappear. Estimates for three sets of tests for
which periodic flip-flop was observed gave Kg/(oyv't) 2 1.9 for two
sets of moderate strength steel plates and Kg/(oy+t) = 1.3 for one
set of aluminum plates. There was no clear evidence of flipping for
a set of thinner aluminum plates with higher values of Kz /(oyVt).

The experimental plates just mentioned had heights comparable
to the highest strip plates in the theoretical study and thus can be
considered to have relatively low resistance to out-of-plane bending.
The numerical simulations for the strip plates show that constrain-
ing the out-of-plane deformation by considering strips with less
height, i.e., larger t/H, reduces the crack tip contribution due to plas-
tic shearing ahead of the slant crack. While the Young's modulus has
not been varied in our numerical studies, it is expected that increas-
ing the elastic modulus will have a constraining effect on the out-of-
plane bending displacement similar to the effect of decreasing the
height of the strips. In experiments with aluminum and steel plates
the increase of modulus associated with the steel plates was the
apparent reason for the larger flipping frequency of the steel plates
relative to the aluminum plates (see Fig. 1 in [7]). Thus, the authors
speculate that the plate height becomes an influential factor in the
flipping process due to its influence on the out-of-plane constraint.

It is important to bear in mind that a small strain formulation
has been employed in the present paper which is not capable of

capturing necking within the plastic zone ahead of the crack tip.
Thus, the present study does not shed light on any influence sheet
necking might have on distribution of the stresses in the plastic zone
and any role this might have in the flipping mechanism.
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