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Nonlinear Buckling Interaction
for Spherical Shells Subject to
Pressure and Probing Forces
Elastic spherical shells loaded under uniform pressure are subject to equal and opposite
compressive probing forces at their poles to trigger and explore buckling. When the
shells support external pressure, buckling is usually axisymmetric; the maximum probing
force and the energy barrier the probe must overcome are determined. Applications of
the probing forces under two different loading conditions, constant pressure or constant
volume, are qualitatively different from one another and fully characterized. The effects
of probe forces on both perfect shells and shells with axisymmetric dimple imperfections
are studied. When the shells are subject to internal pressure, buckling occurs as a nonaxi-
symmetric bifurcation from the axisymmetric state in the shape of a mode with multiple
circumferential waves concentrated in the vicinity of the probe. Exciting new experiments
by others are briefly described. [DOI: 10.1115/1.4036355]
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1 Introduction

This paper explores the buckling of complete spherical shells
under combined pressure loading of magnitude p and equal and
opposite compressive point forces P. The point loads might be
extra loads that the shell is designed to carry, or they might repre-
sent unexpected perturbations from an operational environment.
Alternatively, they might be regarded as experimental probes
designed to test the stability of the uniformly compressed sphere
as suggested by Thompson and Sieber [1,2]. The possibilities are
fairly rich, given that the pressure may be internal or external, and
either the pressure itself may be prescribed or it may depend on
the shell deformation if instead the volume within the shell is pre-
scribed. In this paper, we are drawing a strong and structured dis-
tinction for the uniform distributed load between a dead controlled
pressure and a rigid controlled volume. When discussing stability,
we shall, however, often want to make a similar distinction for the
probing force. We discuss this quite fully in Sec. 6, but to facilitate
short comments throughout the paper, we outline the concepts
briefly here. We shall want to consider the case of a dead probe
when its force is controlled, and a rigid probe when its displace-
ment is controlled. Finally, for the rigid case, we need to discrimi-
nate between the following: first, a probe that is “glued” to the
shell, so that it can, if required, provide a negative value of the
probing force, P ; second, a probe that is just pushing against the
shell, and can only supply a positive value of P.

The fundamental problem is axisymmetric about the axis of the
two diametrically opposing forces, but nonaxisymmetric bifurca-
tions are also located in the advanced postbifurcation regime.
When the probe forces P are applied as dead loads with pressure
or internal volume prescribed, buckling occurs either as a limit
point (maximum) of P or at one of the bifurcations, whichever is
encountered first. Both possibilities will be fully analyzed. It will
be seen that axisymmetric limit point instabilities are most likely
when the shell is subject to external pressure, while internal pres-
sure tends to stabilize the shell against these limit points giving
rise to nonaxisymmetric buckling. As an interesting digression,
we use this problem to investigate the question of at what internal

pressure does the shell behave essentially like a balloon, making
contact with a recent study by Taffetani and Vella [3]. Another
issue investigated within the framework of the present study is the
interaction between an axisymmetric dimple imperfection at each
pole and probe forces for shells under external pressure. Specifi-
cally, we ask whether imperfections result in qualitative changes
in the destabilizing role of the point forces.

This paper makes use of results in two earlier papers on spheri-
cal shell buckling by the present authors. The shell equations and
details of the numerical methods were given by Hutchinson [4].
The reader of the present paper will be referred to that paper for
all but a few aspects of the analysis: issues unique to the present
combined loading problem are given here in the Appendix. The
advanced post-buckling behavior of perfect spherical shells sub-
ject to external pressure without pole forces was presented by
Hutchinson and Thompson [5], including the treatment of pre-
scribed pressure and prescribed volume change. The present paper
will also draw on details from this second paper.

2 Formulation and Preliminaries

For the most part the notation follows that in Ref. [5]. The per-
fect spherical shell has radius R and thickness t. The shell material
is assumed to be linear elastic and isotropic with Young’s modulus
E and Poisson’s ratio �. The stretching and bending stiffness of the
shell are given by S ¼ Et=ð1� �2Þ and D ¼ Et3=12ð1� �2Þ,
respectively. The resultant membrane stresses, Nab, and bending
moments, Mab, are given in terms of the middle surface stretching
strains, Eab, and bending strains, Kab, by

Nab ¼ S½ð1� �ÞEab þ �Eccdab� and

Mab ¼ D½ð1� �ÞKab þ �Kccdab�
(1)

Attention is restricted to thin shells with R=t� 1 such that the
strains are small. Shells made from polymeric or elastomeric
materials might be as thick as R=t ¼ 25 and still undergo linear
elastic strains in the present applications, but values of R=t larger
than 100 would be required for most metal shells if they are to
remain elastic. Attention is focused on shells undergoing deforma-
tions that are symmetric about the equator. The shell equations
employed in the present study, known as small strain-moderate
rotation theory [6–8], are accurate as long as the ratio of the pole
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deflection, wpole, to R is less than about 0.1, as will be discussed
later. When the deformation is shallow such that it is confined to
regions near the poles, these equations are accurately represented
by shallow shell theory. An important consequence of shallow
deformations, which will be exploited in the present paper, is that
the dependence of the solutions on R=t and � can be absorbed into
the variable normalizations.

Denote the inward radial displacement by wðhÞ where the
meridian angle h is taken to be zero at the equator and p=2 at the
upper pole, and write the pole deflection as wpole � wðp=2Þ. Fol-
lowing the convention in the two earlier papers, take p to be the
net external pressure acting on the shell so that when a net internal
pressure is applied p is negative. Consistent with this sign conven-
tion, the change in volume, DV, is taken to be positive when vol-
ume inside the middle surface of the shell decreases. At the onset
of buckling, the pressure of the perfect shell (p > 0, P ¼ 0), the
associated inward radial displacement, and the volume change are
given by the classical results

pC ¼
2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� �2ð Þ
p t

R

� �2

; wC ¼
1� �ð Þtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� �2ð Þ

p ;

DVC ¼ 4pR2wC ¼ 4p
1� �ð ÞR2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� �2ð Þ

p
(2)

In the uniform, linear pre-buckling state with P ¼ 0, one has
wpole=wC ¼ p=pC ¼ DV=DVC. For this particular elastic system,
the equilibrium solutions are independent of the loading history.
But for convenience of presentation and understanding, it is useful
to prescribe a specific loading sequence. In this paper, we take the
uniform pressure to be applied first followed by application of the
opposing pole forces P, regarding the pole forces as probes which
trigger or explore the buckling behavior. Let Dwpole be the addi-
tional inward pole deflection due to application of P. Whether
pressure or volume is controlled, define

Dwpole ¼ wpole � ðwpoleÞ0 ¼ wpole � wCðp=pCÞ0 (3)

where ðwpoleÞ0 and ðp=pCÞ0 denote values at the onset of the appli-
cation of P. Finally, following Ref. [5], define a dimensionless
measure of the additional pole deflection by

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p Dwpole

t
(4)

2.1 Functional Form of the Solution as Dependent on p
and n. For thin shells, the dimple produced by application of force
P at each pole is almost entirely localized at the pole. As will be

illustrated by the following example, outside the localized dimple
the stresses and strains due to P are sufficiently small compared to
those in the dimple and those due to pressure p such that the shal-
low nature of the solution renders the predictions of moderate
rotation theory indistinguishable from shallow shell theory. The
following nondimensional form of the axisymmetric solution is
based on the shallow shell theory limit of small strain-moderate
rotation theory. It captures to a high accuracy the entire depend-
ence on R=t and �. The form is similar to that used in Ref. [5] on
buckling due to p alone.

The solution for the shell subject simultaneously to p and P can
be written as

PR

2pD
¼ F n;

p

pC

� �
(5)

The associated volume change of the shell can be written as

DV

DVC
¼ p

pC
þ C

t

R
H n;

p

pC

� �
with C ¼

ffiffiffi
3
p

1� �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p (6)

All the computations reported in this paper are carried out using
moderate rotation theory for the full sphere subject to symmetry
about the equator. Based on comparison with highly accurate
numerical axisymmetric solutions to the moderate rotation theory
equations, we have established that the dimensionless forms Eqs.
(5) and (6) are accurate to within a fraction of 1% over the entire
range of interest explored in this paper for all R=t � 50 and
0 � � � 1=2.

2.2 Boundary Conditions at the Poles. Plots of the dimen-
sionless functions F and H for p=pC ¼ 0 are presented in Fig. 1.
This figure also illustrates the influence of the boundary condition
at the pole. The system of nonlinear ordinary differential equa-
tions (ODEs) governing the axisymmetric solution has a singular
point at the pole. To circumvent having to deal with unbounded
values of the third derivative of the deflection at the pole, the force
is applied to a small, rigid circular disk embedded in the shell at
the pole. This disk remains axisymmetric throughout, even in the
investigation of bifurcation into nonaxisymmetric modes consid-
ered later. The boundary conditions for the shell with the disk are
given in the Appendix. The angle subtended by the disk from the
pole to its edge, b0, is specified by

b0 ¼
c0

1� �2ð Þ1=4

ffiffiffi
t

R

r
(7)

Fig. 1 (a) Geometry and loads. The influence with p 5 0 of the width of the rigid disk insert at
each pole to which P is applied. The half-pole angle of the disk is b0. (b) Normalized pole force
versus normalized pole displacement. Volume change contribution in (c) versus normalized
pole displacement. The curves have been computed assuming axisymmetric deformations with
R=t 5 200 and m 5 0:3.
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For fixed c0, the scaling in Eq. (7) preserves the independence of
predictions to variations in R=t and �. With one exception noted
later, all the calculations in this paper have been carried out using
c0 ¼ 0:0482 such that, for example, b0 ¼ 0:2deg for R=t ¼ 200
and � ¼ 0:3.

The possibility of nonaxisymmetric bifurcation from the axi-
symmetric state in Fig. 1 will be considered in Sec. 5. That analy-
sis will reveal that over the range of pole deflections n plotted in
Fig. 1, no nonaxisymmetric bifurcation occurs. The effect of the
size of the rigid disk on the relation of P to n is largest in the
vicinity of n � 1 where the shell undergoes a significant transition
from linear to nonlinear behavior. The choice c0 ¼ 0:0482 for the
disk half-angle gives predictions very near to those for the limit
with no circular disk by Fitch [9], as will be noted in Sec. 5.

2.3 Condition for Validity of Moderate Rotation Theory
and Shallow Dimples at the Poles. In Fig. 2, the dimensionless
inward radial deflection wðhÞ=R and the rotation uðhÞ of the shell
middle surface are plotted for the example in Fig. 1 at three levels
of pole deflection. The localized nature of the deflection is evi-
dent, including the fact that the deflection and rotation outside the
dimpled region become almost (but not strictly) zero. Second,
based on the study conducted in Ref. [4] for the case in which
only external pressure is applied to the shell, moderate rotation
theory begins to become inaccurate for spherical shell problems
when the rotation exceeds about 30deg. Thus, Fig. 2(b) suggests

that moderate rotation theory should be reasonably accurate in the
range wpole=R � 0:1 or, equivalently

n � 0:1 R=t (8)

This range is more restrictive than the range for the case with
buckling subject to pressure alone (i.e., n � 0:2R=t), but neverthe-
less covers the cases of interest in this paper. Condition (8)
ensures both accuracy of moderate rotation theory and shallow
deflections localized at the pole, which together ensure the valid-
ity of the dimensionless formulas (5) and (6). Thus, when it is
asserted that results for F and H are independent of R=t and �, it is
assumed that Eq. (8) holds.

2.4 Prescribed Pressure or Prescribed Volume Change.
Specific examples will be used to illustrate the two limiting load-
ing cases of “dead” and “rigid” loading, respectively: (i) P is
increased subject to fixed net external pressure applied to the shell
and (ii) P is increased subject to fixed internal volume in the shell.
In the two examples in Fig. 3, each of these two cases has the same
net external pressure, p=pC ¼ 0:3, at the onset when P is applied.
The initial responses of the shell are almost the same for the two
loading cases but they begin to diverge when n � 2. When the vol-
ume change is constrained to be zero, the net external pressure act-
ing on the shell decreases as the pole deflection increases, as in
Fig. 3(c) and the shell becomes considerably stiffer. An equivalent
way to think of this loading is that the net internal pressure
increases if the volume constraint is enforced by, for example, an
incompressible fluid inside the shell. The difference in the two
cases is significant leading to qualitatively different behavior. For
the loading with constant external pressure, there is only one equi-
librium point, A, in Fig. 3(a) for a nonuniform state with n > 0 at
which P ¼ 0. The relation, p=pC ¼ f ðnÞ for P ¼ 0, which has been
fully characterized in Ref. [5], shows that f is a monotonically
decreasing function of n. For a rigid probe that is unattached to the
shell (just pushing, not glued), point A, is a state of unstable equilib-
rium. At A, under constant p=pC ¼ 0:3, the shell could snap
dynamically to a collapsed state in which the opposite poles of the
shell come into contact.

By contrast, the increase in net internal pressure in the case of
the shell subject to no change in volume during the application of
P has two equilibrium points with n > 0 and P ¼ 0, A and B in
Fig. 3(a). For a rigid unattached probe, A is again unstable while
B is stable. State B is the stable dimple buckle. The solutions pro-
duced here with P ¼ 0 coincide with the dimpled buckling states

Fig. 2 Variation of the inward radial deflection of the shell,
w=R, in (a) and the rotation of the shell middle surface, u, in (b)
for the shell in Fig. 1 with no pressure loading (p 5 0) and with
R=t 5 200 and m 5 0:3 (b0 5 0:2 deg)

Fig. 3 (a) Illustration of the difference between the responses of the complete spherical shell
subject to concentrated forces P at the poles for one case in which the net external pressure p
is held constant and the other case where the volume in the shell is constrained to be constant.
Both cases have p=pC 5 DV=DVC 5 0:3 at the onset of the application of P. (b) applies to con-
stant p with H specifying the volume change as defined in the text. (c) applies to constant DV
showing the variation of the net external pressure acting on the shell. These results have been
computed with R=t 5 200 and m 5 0:3 but they are essentially independent of R=t and m as dis-
cussed in the text.
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for the perfect shell subject only to external pressure [2,5]. Further
details of the two loading cases will be discussed in Secs. 3 and 4,
including energy barriers to buckling associated with application
of the probing forces.

3 Shells Under Prescribed Pressure and Pole Forces

3.1 Forces Applied Subject to Prescribed External
Pressure. In this section, more extensive results are presented for
the case in which pressure p is prescribed and held fixed while P
is applied, first for net external pressure (p > 0) and then in Sec.
3.3 for net internal pressure (p < 0). In Fig. 4, computed curves
are presented for P versus its corresponding pole deflection as
measured by n. The associated volume change characterized by H
in Eq. (6) is also plotted. Over the range of p=pC and n presented
in Fig. 4(b), H ffi 0:17n2 provides a reasonable approximation.
Over the range of n plotted, nonaxisymmetric bifurcation from
these axisymmetric states does not occur, as will be discussed
more fully in Sec. 5. Earlier work on the axisymmetric problem
has been reviewed by Evkin et al. [10]. These authors carried out
an analysis of the combined external pressure and point force
problem deriving formulas that provide the relations between the
probe force and deflection that are similar to the curves in
Fig. 4(a).

As described in Sec. 2.4, for each pressure loading, there is at
most only one equilibrium state with n > 0 and P ¼ 0 (c.f. point
A in Fig. 3). Moreover, this equilibrium state is the dimple buck-
ling mode of the shell subject to pressure alone, and it is unstable
assuming the pole deflection is unconstrained. If one regards the
force P as a probe used to explore the post-buckling response of
the uniformly pressurized shell, then the energy expended at each
pole to induce buckling is the work done by P to reach state A

W ¼
ðA

0

PdDwpole or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

RW

2pDt
¼
ðA

0

F n; p=pCð Þdn (9)

This energy barrier of the pressurized shell does not include the
work done by the pressure through the change in volume during
application of P because that work is a component of the free
energy of the system being probed. The maximum probe force
(the maximum P in Fig. 4(a)) and the dimensionless energy bar-
rier to bucking are plotted in Fig. 5 as a function of p=pC. These
results are independent of R=t and � assuming condition (8) is
met. Evkin et al. [10] give numerical values for the maximum
probe force for the values of p=pC in Fig. 5(a) represented by the
solid dots. The plot in Fig. 5(b) agrees with the results obtained in
Ref. [5] for the energy barrier computed using the solution for the
shell subject only to external pressure. Since the system is elastic
and the loadings are conservative, this agreement must hold if the
equilibrium state determined for P ¼ 0 in the present combined

loading problem is identical to the buckled state for the problem
with only external pressure considered.

Thinking of the point load as an imperfection, the plot of
Pmaxðp=pCÞ can be viewed as an imperfection-sensitivity diagram,
and it is interesting to note that the effect of Pmax is not particu-
larly severe with a finite, nonzero, slope at p=pC ¼ 1. Meanwhile,
the graph of Wðp=pCÞ, with a similar overall form, does imply
a severe shock-sensitivity [2], with zero slope, at p=pC ¼ 1.
Although predicted here from a point load “probe,” this energy
barrier holds for any form of static or dynamic shock.

3.2 The Role of Imperfections: Forces Applied to Shells
With Dimple Imperfections. The spherical shells considered thus
far and in the sections to follow are perfect. It is well known that
spherical shells buckling under external pressure are extremely sen-
sitive to initial geometric imperfections. A natural question to ask
is whether imperfections change the qualitative character of the
trends revealed above and later for the perfect shells. This subsec-
tion addresses this issue by introducing an axisymmetric dimple
imperfection at each pole and then repeating the analysis for the
combined prescribed external pressure and pole probing forces.
The probe force acts at the center of the dimple imperfection, not at
a random location on the shell, and thus, it is assumed that the
imperfection location has been identified prior to applying the
probe. To our knowledge, studies of probing at random locations
on an imperfect spherical shell have not been carried out. Given the
localized nature of the deformation associated with a dimple imper-
fection and with the probing force, one can anticipate little interac-
tion between them if their respective domains of influence do not
overlap. In other words, if the probe is applied in an imperfection-
free region of the shell, one might anticipate the response to be sim-
ilar to that for a perfect shell, but this is only a conjecture.

A dimple imperfection at the upper pole with an initial inward
radial deflection from the perfect spherical shape is assumed
[4,11]

wIðhÞ ¼ de�ðb=bIÞ2 with bI ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

R=t

q
(10)

Here, b ¼ p=2� h is the angle measured from the pole. An identi-
cal dimple is assumed at the lower pole to preserve symmetry
about the equator. For specified B, the scaling of the dimple width
as measured by bI in Eq. (10) yields imperfection-sensitivity pre-
dictions that are independent of R=t and �. The modifications
needed to incorporate the imperfection into the shell equations
and the numerical analysis are given in Refs. [4] and [11].

Curves of external pressure (with P ¼ 0) versus pole deflection
are plotted in Fig. 6(a) for the perfect shell and for several imper-
fection amplitudes, d=t, for shells with R=t ¼ 200, � ¼ 0:3 and
B ¼ 1:5. The maximum, or buckling, pressure, pmax, is plotted as
a function of the imperfection amplitude in Fig. 6(b) for three

Fig. 4 Dimensionless plots for F in (a) and H in (b) for spherical
shells subject to prescribed external pressure. These results
have been computed with R=t 5 200 and m 5 0:3 but are essen-
tially independent of R=t and m.

Fig. 5 For prescribed external pressure p : (a) maximum probe
force. The solid dots are from Table 1, formula (31), in Ref. [10];
(b) energy barrier per pole to buckling by the probe force. These
results have been computed with R=t 5 200 and m 5 0:3 but are
essentially independent of R=t and m.
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values of R=t. The exceptionally strong imperfection-sensitivity
associated with the spherical shell subject to external pressure is
evident, as is the fact that these results are essentially independent
of R=t. Further discussion of the imperfection-sensitivity is given
by Hutchinson [4], Lee et al. [11], and Jimenez et al. [12]. The
objective here is to apply probe forces P to the imperfect shell
loaded to a prescribed external pressure below pmax to see if the
trends of Pmax and the energy barrier W with respect to p=pmax are
similar to those for the perfect shell.

The response of an imperfect shell to the probe force is shown
in Fig. 7 for prescribed pressures at and just below pmax. When the
pressure is pmax, the probe immediately triggers buckling with P
immediately becoming negative. Only if the probe were glued to
the shell so as to resist the inward pole motion might the shell be
stabilized. If the probe was unattached to the shell, dynamic snap
buckling to a collapsed state would occur immediately. For pres-
sures somewhat below pmax, there is a regime in which the
displacement-controlled probe is stable prior to becoming unsta-
ble when P ¼ 0.

The maximum probe force and the energy barrier defined in Eq.
(9) are plotted in Fig. 8 as a function of prescribed pressure ratio,
p=pmax, for three levels of imperfection. The curves for the small-
est imperfection amplitude, d=t ¼ 0:01, are very close to those plot-
ted in Fig. 5 for the perfect shell. The more imperfect the shell, the
larger is the maximum probe force and energy barrier for a given
ratio p=pmax, albeit pmax is less for the more imperfect shells. The
more important conclusion to be drawn from the results in Fig. 8 is
that the qualitative trends of the maximum probe force and the
energy barrier as they depend on p=pmax are similar for imperfect
and perfect shells. In other words, the main results of this paper,

which are for perfect shells, capture the essential aspects of the non-
linear buckling interaction between the pressure and probe force.

3.3 Forces Applied Subject to Prescribed Internal Pressure.
Net internal pressure (p < 0) acting on the shell has a stabilizing
effect, stiffening the shell against the probing force P. There is an
extensive literature on this case for axisymmetric behavior, both
linear and nonlinear, as well as regarding nonaxisymmetric buck-
ing. Reference [3] serves as a useful access to this literature. The
present short subsection on this case is included to provide a com-
plete picture of the role of pressure on stiffening the shell and as
necessary background for the bifurcation analysis in Sec. 5. Over
the range of pole deflection plotted in Fig. 9, (n � 10), the pole
deflection increases monotonically with increasing P and there are
no solutions with P ¼ 0 other than that associated with n ¼ 0.
Within the range plotted, nonaxisymmetric bifurcations do not
occur. Figure 9(b) reveals that for sufficiently large internal pres-
sure, the pole deflection scales approximately in proportion to P=p
suggesting that the stiffness of the shell is dominantly determined
by the internal pressure. We will digress in Sec. 3.4 to address the
question of when the spherical shell effectively becomes a pressur-
ized balloon. Later, in Sec. 5, it will be seen that nonaxisymmetric
bifurcation does occur at larger pole deflections than those in
Fig. 9.

3.4 When Does a Pressurized Spherical Shell Become a
Balloon?. The fact that internal pressure stiffens the shell and at
sufficiently large pressure appears to dominate the stiffness, as seen
in Fig. 9(b), suggests that the shell has effectively become a balloon
or membrane. This issue can be investigated by examining the role
of the bending stiffness on the shell’s response to the pole forces.
The axisymmetric equations governing the combined loading prob-
lem are readily modified to accommodate the following change. In
(1), the shell stretching stiffness, S, is unchanged while the bending
stiffness is replaced by DM ¼ aD ¼ aEt3=12ð1� �2Þ. The choice
a ¼ 1 coincides with the formulation considered until now, but as a
is reduced the shell becomes more and more like a membrane. The
numerical analysis of the governing ODEs is easily modified, and
the results presented in this subsection have been computed in the
same manner as those already reported.

Results for three levels of internal pressure in Fig. 10 reveal
that, when the pressure is as low as p=pC ¼ �0:5, reducing the
bending modulus by a factor of ten significantly reduces the initial
stiffness of the shell. Moreover, this reduction lowers the load level
over the entire range of deflections. An additional reduction by a
factor of ten to DM ¼ D=100 has little further effect. When the
internal pressure is p=pC ¼ �1, the same effects are evident but
noticeably smaller. However, for p=pC ¼ �10, reducing the bend-
ing modulus has almost no effect on either the initial stiffness or on

Fig. 6 Imperfection-sensitivity of spherical shells with dimple
imperfections subject to external pressure alone. (a) Pressure
versus pole deflection for shells with R=t 5 200, m 5 0:3 and
B 5 1:5. (b) Maximum pressure versus imperfection amplitude
for three values of R=t.

Fig. 7 Application of probe force P at fixed external pressure
for a shell with imperfection amplitude d=t 5 0:25 and B 5 1:5.
(a) Four pressures identified by dots at which probe force is
applied. (b) Relation of P to additional pole deflection for each
of the four pressures.

Fig. 8 Maximum probe force in (a) and energy barrier to buck-
ling in (b) for imperfect spherical shells at prescribed external
pressures below pmax . Here, pmax is the buckling pressure for
a given imperfection amplitude d (with B 5 1:5) plotted in
Fig. 6(b).
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the load level at larger pole deflections. The shell is now effectively
a membrane.

For the spherical geometry and loading combination consid-
ered, the transition from shell to membrane is not sharp but a use-
ful estimate of the internal pressure marking the transition is
p ffi �pC. This transition estimate is in agreement with an estimate
s ffi 4 obtained from Fig. 3(a) in Taffetani and Vella [3], where
s � pinternalR

2=
ffiffiffiffiffiffiffiffi
EtD
p

¼ �4p=pC is the dimensionless pressure in
that paper. These authors have introduced a dimensionless form of
the shallow shell equations that incorporates the combined
dependence on R=t and pinternal, thereby reducing the parametric
dependency in the regime of high pressure (s� 1) when the shell
is effectively a membrane.

4 Shells Under Prescribed Change in Volume and

Pole Forces

Formally, the case with no change in volume during the appli-
cation of P can be constructed using the general solution given by
Eqs. (5) and (6) for the case of prescribed pressure. If DV=DVC is
prescribed, then n and p=pC are related by Eq. (6). The dimension-
less pole force is still given by Eq. (5). Thus, these two equations
simultaneously generate relations between PR=2pD and n as well
as between p=pC and n. We have not attempted to generate a com-
plete functional description of Fðn; p=pCÞ and Hðn; p=pCÞ which
would be required to implement this construction. Instead, in solv-
ing the governing ODEs numerically, we have directly imposed
the constant volume constraint, as discussed in the Appendix.

When the volume change of the shell is constrained to be zero
during the application of P, the behavior is quite different from
that for constant p as noted in the discussion of Fig. 3. Volume
constraint in Fig. 3 would be applicable, for example, if the shell
contained an incompressible fluid and if, prior to application of P,
fluid was withdrawn until (for example) the net external pressure
p=pC ¼ 0:3 is reached. Then, during the application of P, the vol-
ume constraint would apply if the shell was sealed with no further
exchange of fluid. This is a common way of applying pressure in
laboratory tests. Water can be regarded as effectively incompres-
sible for most laboratory scale spherical shells whether metallic or
polymeric. During the application of P, the pressure inside the
shell increases as n increases, i.e., the net external pressure
decreases as plotted in Fig. 3(c). The response of the shell to the
pole forces is therefore stiffer than in the case of prescribed pres-
sure and, as seen in the example in Fig. 3(a), P attains a minimum
and then begins to increase again as n increases. For this case
there are two nonzero values of n with P ¼ 0, denoted by A and
B.

4.1 Forces Applied Subject to Prescribed Volume Change
Generating Initial External Pressure. In this subsection, consid-
eration is limited to imposed volume changes generating a net
external pressure prior to application of the polar probe forces,
i.e., ðp=pCÞn¼0 ¼ DV=DVC > 0. Probe force–deflection behavior
for various values of prescribed DV=DVC are shown in Fig. 11(a)
together with the associated drop in net external pressure in

Fig. 9 Response of the spherical shell under prescribed internal pressure ðp<0Þ subject to
pole force P . These results have been computed with R=t 5 200 and m 5 0:3 but are essentially
independent of R=t and m.

Fig. 10 The effect of reducing the bending stiffness of the shell to DM on the relation of P to
pole deflection while keeping the stretching stiffness unchanged. The three levels of internal
pressure are: (a) p=pC 5 20:5, (b) p=pC 5 21, and (c) p=pC 5 210. These results have been com-
puted with R=t 5 200, m 5 0:3 and b0 5 1 deg. The bending stiffness in the ordinate is the full
bending stiffness, D 5 Et3=½12ð12m2Þ�.
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Fig. 11(b). With DV=DVC ¼ 0:25, the load–deflection curve dis-
plays a local maximum and minimum but no states with P ¼ 0
except in the uniform state (n ¼ 0). By contrast, for
DV=DVC > DVL=DVC, there are two states with P ¼ 0 and n > 0.
For shells subject to prescribed change of volume, the lower limit,
DVL=DVC, for which states with P ¼ 0 ðn > 0Þ exist depends on
R=t and �. This minimum has been determined in Ref. [5]. For the
present example, with R=t ¼ 200 and � ¼ 0:3, DVL=DVC ¼ 0:285.

Think back to the free, unprobed shell, with the notation intro-
duced in Fig. 3(a) for solutions having two equilibrium states with
P ¼ 0. Then, from any perturbed state between the origin and A,
the shell would snap back to the origin, while for any perturbed
state between A and B, the shell would snap toward the buckled
state B. As previously noted, we have verified that the states A and
B are identical to the dimpled buckling states for a shell subject to
prescribed change of volume alone. The force P acts as a probe to
trigger the buckle. The energy barrier between the uniform state
and stable buckled state B is the work done by P through the pole
deflection from the uniform state to state A, where snapping to B
can occur

W ¼
ðA

0

PdDwpole (11)

The maximum probe force and energy barrier per pole are pre-
sented in Fig. 12. The maximum probe force in Fig. 12(a) is
nearly identical to that for the case of prescribed external pressure
in Fig. 5(a) if one makes the identification DV=DVC $ p=pC. This

is because the difference between the two loading conditions only
becomes appreciable beyond the local maximum, c.f. Fig. 3(a).
There is somewhat more difference between the energy barrier for
the two cases, although even here the difference is not large and
becomes less so as DV=DVC approaches one. The loading case
with prescribed volume change has a limit below which buckled
states do not exist, as already noted, and those limits, which
depend on R=t and �, are evident in Fig. 12(b). The effect of
attaching the probe to the shell on stability is discussed in Sec. 6.

4.2 Forces Applied Subject to Prescribed Volume Change
Generating Internal Pressure. Force–deflection curves and
associated changes in net pressure are presented in Fig. 13 for pre-
scribed volume changes that give rise to a net internal pressure in
the shell (DV=DVC � 0 and p=pC � 0). The trends are qualita-
tively similar to those for the prescribed internal pressure case in
Fig. 9. The largest differences between the two cases occur for the
smaller internal pressures. At larger internal pressures, for exam-
ple with DV=DVC < �2, the change in internal pressure during
application of P in Fig. 13(b) relative to the initial internal pres-
sure becomes small. Consequently, for DV=DVC < �2, the
increase in internal pressure during application of P can effec-
tively be neglected. The close agreement for the two cases at
higher initial internal pressures is evident in comparing Fig. 9(a)
with Fig. 13(a).

5 NonAxisymmetric Bifurcation From the

Axisymmetric State

Nonaxisymmetric bifurcation from the axisymmetric state has
been determined for the combination of prescribed pressure and
applied pole forces. This is an eigenvalue problem where the
radial displacement component of the bifurcation mode has the
form w ¼ f ðhÞcos mx with h as the meridional angle, x as the cir-
cumferential angle, and m as the integer number of circumferen-
tial waves. The computational method is presented in Ref. [4]
with a few additional details specific to the pole force problem
given in the Appendix. Figure 14(a) shows the axisymmetric pole
force/deflection behavior for various values of p=pC fixed during
application of the pole force. The solid dot on each curve marks
the first point of bifurcation. The lowest eigenvalue, as measured
by the additional pole deflection n at bifurcation, is plotted in
Fig. 14(b). The value of m associated with the critical mode is
also indicated. It follows from Fig. 14, as has already been
asserted, that nonaxisymmetric bifurcation from the axisymmetric
solutions does not occur over the range of pole deflections plotted
in any of the previous figures.

Fitch [9] appears to be the first to have obtained accurate results
for nonaxisymmetric bucking from the axisymmetric state for

Fig. 11 Probe force versus pole displacement in (a) and asso-
ciated net external pressure in (b) for spherical shells subject to
fixed change in internal volume, DV=DVC . The net external pres-
sure prior to application of P is ðp=pCÞn 5 0 5 DV=DVC . These
results have been computed with R=t 5 200 and m 5 0:3.

Fig. 12 For prescribed change in volume with DV=DVC >0 : (a)
maximum probe force; (b) energy barrier per pole to buckling.
The lower limit DVL=DVC for which a buckled state exists with
P 5 0 depends on R=t and m. The normalized maximum probe
force Pmax is nearly independent of R=t and m except for the
lower limit DVL=DVC . There is a slight dependence on R=t and m
for the normalized energy barrier in (b) where the lower limit is
evident.

Fig. 13 Force versus pole displacement in (a) and associated
net external pressure in (b) for spherical shells subject to fixed
internal volume, DV=DVC , during application of P generating a
net internal pressure. These results have been computed with
R=t 5 200 and m 5 0:3.
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indentation by a pole force. Fitch’s results were computed with
p ¼ 0 for clamped spherical caps, but his bifurcation results for
the least shallow caps agree closely with the results obtained here
for p=pC ¼ 0, i.e., PR=ð2pDÞ ¼ 11:2, n ¼ 14:5, and m ¼ 3. Fitch
also carried out an initial postbifurcation calculation and estab-
lished that the nonaxisymmetric buckling behavior is stable under
prescribed P. More recently, there have been a number of experi-
mental and numerical studies of spherical shell buckling due to
point forces where the shell is either unpressurized or subject to
internal pressure [3,13–17]. These studies confirm the stable, rela-
tively benign nature of nonaxisymmetric buckling behavior and in
some cases explore behavior by probing far beyond the onset of
bifurcation.

A small amount of external pressure significantly increases the
pole deflection n at which nonaxisymmetric bifurcation occurs.
The plot in Fig. 14(b) has been terminated at p=pC ¼ 0:1 because
at this value of p=pC, and at larger values, P becomes negative
prior to attaining the critical value of n for nonaxisymmetric bifur-
cation. If the probe applying the pole force were not attached to
the shell, the shell would snap dynamically to a collapsed buckled
state when P becomes zero prior to nonaxisymmetric bifurcation.
Thus, the axisymmetric solutions plotted in Fig. 4 for p=pC > 0:1
do not experience nonaxisymmetric bifurcation in the range of

positive probe force P. However, in the range 0 � p=pC < 0:1
plotted in Fig. 14(b), P is positive when nonaxisymmetric bifurca-
tion occurs but with pole deflections never less than about n ¼ 14.

When the shell is subject to internal pressure (p=pC < 0 in Fig.
14), P is always positive when the pole deflection is positive, and
the critical pole deflection at nonaxisymmetric bifurcation as
measured by n increases almost linearly with increasing internal
pressure. Moreover, the number of circumferential waves m in the
bifurcation mode also increases with increasing internal pressure.

Figure 15 illustrates some of the important features of the bifur-
cation mode and the critical axisymmetric state for a typical case
with p=pC ¼ �3 at the critical pole deflection n ¼ 23:5. As both
the axisymmetric solution and the mode are localized at the pole,
the dimensionless meridional distance from the pole,

�s ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ

p
=Rt

q
, is used in place of h because this scaling

generates results that are independent of R=t. For the case shown
in Fig. 15, the normal displacement of the bifurcation mode has
the form wbif ¼ f ð�sÞcos mx. The meridional dependence, f ð�sÞ,
normalized to have a maximum of unity, is plotted in Fig. 15(c)
for the mode associated with the lowest eigenvalue which has
m ¼ 5. The distribution of the axisymmetric state of Dw ¼
w� w0 (with w0 as the uniform deflection associated with p) and

Fig. 14 Nonaxisymmetric buckling from the axisymmetric state due to application of pole
forces for the case of prescribed pressure. (a) Curve of pole force versus pole deflection for axi-
symmetric deformation with solid dots indicating the first nonaxisymmetric bifurcation. (b) The
value of normalized pole deflection n associated with the first bifurcation is plotted as a function
of p=pC along with the number of circumferential waves m associated with the critical mode.
Note that the scale of the horizontal axis changes by a factor of 100 at p 5 0. These results have
been computed with R=t 5 500, v 5 0:3 and c0 5 0:0482, but to a good approximation they are
independent of R=t and m.

Fig. 15 An illustration of the nonaxisymmetric bifurcation mode and the associated axisym-
metric state for a spherical shell with internal pressure p=pC 5 23 and subject to pole forces.
Distributions associated with the axisymmetric state in (a) and (b) at bifurcation, and the meridi-
onal variation of the critical bifurcation mode in (c) having m 5 5. The meridional distance from

the is pole measured by �s 5 s
� ffiffiffiffiffiffiffiffiffiffiffiffi

12m2
p

=Rt
�1=2

. These distributions have been computed with
R=t 5 500, m 5 0:3 and c0 5 0:0482, but they are essentially independent of R=t .
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the resultant membrane stresses, Nxx and Nhh, are presented in
Figs. 15(a) and 15(b). The circumferential compression associated
with negative Nxx in the range given approximately by 1 � �s � 4
drives nonaxisymmetric buckling, and the mode decays to zero
outside this range.

The correspondence between the bifurcation mode in Fig. 15
and the buckling mode observed on an indented rubber beach ball
by Vella et al. [18] in Fig. 16 is evident. The buckles are confined
to an annulus centered on the probe at the top of the shell in which
Nxx is compressive. The ball has been indented beyond the onset
of nonaxisymmetric bifurcation deep into the post-buckled
regime. As noted earlier, when the internal pressure is sufficiently
large such that the shell’s bending stiffness is of secondary impor-
tance, the alternative dimensionless form of the shell equations
given in Ref. [3] provides a more efficient description of the
behavior which analytically captures the influence of the pressure.

6 Implications for Experimental Probing of Shock

Sensitivity

The study in this paper has emphasized the interaction of polar
probing forces on spherical shells subject to both internal and
external pressure. For loading combinations involving external
pressure, the probing force can trigger dynamic snap buckling.
For external pressure loadings, the distinction between probing
under prescribed, or dead, pressure and prescribed, or rigid, volume
control is dramatic. Assuming the probe is unattached to the shell,
the former loading results in catastrophic collapse of the shell while
the latter results in a dynamic jump to a stable buckled state. The
maximum probe force and the associated energy barrier to buckling
have been determined as a function of the external pressure for
both dead pressure and rigid volume control. In addition, it has
been shown that the qualitative trends of these dependencies for
imperfect spherical shells are similar to those for the perfect shell
when the probe is applied to the center of the imperfection. The
present study has also shown that for the perfect spherical shell and
the shells with axisymmetric imperfections, nonaxisymmetric bifur-
cation from the axisymmetric state does not occur over the range
relevant to these results. For a shell subject to internal pressure, the
distinction between dead pressure and rigid volume control is less
important, particularly in the range of larger internal pressures. For
internal pressure, buckling due to the probe force occurs as a non-
axisymmetric bifurcation localized in an annular region surround-
ing the probe at relatively large pole deflections (no less than about
14 times the shell thickness) and is considerably more benign than
in the case of external pressure.

Having obtained and examined the comprehensive interaction
curves involving point and external pressure loading summarized
in Figs. 4(a) and 11(a), we are now in a position to examine the

implications for the experimental probing technique proposed by
Thompson and Sieber [1,2]. In this examination, it will be impor-
tant to consider more fully the manner in which the probe force is
applied and whether the probe is attached or unattached to the
shell. To assist in this examination, the results of these two figures
are reproduced in simplified form in Fig. 17. We shall also draw
on the significant result of Sec. 5, which affirms that in the deflec-
tion regimes under consideration there are no bifurcations to non-
axisymmetric states.

The technique proposed in Refs. [1,2] is based on the idea of
probing a test specimen of a shell (spherical or cylindrical, say)
which is already compressed to, or close to, its working load. A
consequential question is whether it is possible to probe the shell in
such a way as to nondestructively measure its buckling load or at
least to make some assessment of its stability. In attempting to
answer this question, it will be necessary to characterize in more
detail the manner in which the probe force is applied. In the sim-
plest case, a rigid probing displacement is imposed on the shell
while the passive resisting force is continuously monitored. In this
way, one of the curves of Figs. 17(a) or 17(b) can be followed from
the unloaded state at the origin, with the graph being displayed in
real time as the test proceeds. The use of a rigidly controlled prob-
ing displacement (rather than force) means that the graph can be
followed safely over a maximum of P. The aim is to head toward,
and locate at least approximately, the free buckled state of the com-
pressed shell, denoted by A. The area under the force–displacement
curve from the origin to A then supplies the energy barrier, as illus-
trated in gray for the lower curves in Figs. 17(a) and 17(b). This
barrier gives a quantitative measure of the shock-sensitivity of the
compressed shell against random static or dynamic disturbances.
The test must be performed with great care by an operative well
versed in stability theory. If the experimental probe is capable of
supplying a negative value of the force (by virtue of being attached
or glued to the shell rather than just pushing against it), the test can
be continued past state A. Danger of a dynamic jump resulting in
damage to the shell can arise from an unexpected bifurcation or the
sudden occurrence of a vertical tangency in the force–displacement
curve, as discussed thoroughly in Ref. [2]. We have established that
neither of these occurs in the spherical shell scenario discussed in
this paper whether for the perfect shell or for the shell with the
probe located at the center of the dimple imperfection. Even if one
of these extraneous events does occur with, for example, com-
pressed cylindrical shells, techniques of control using a secondary
probe tuned to provide zero force are examined in the afore-
mention paper.

We end this paper by taking a systematic look at the variety of
rigid/dead scenarios presented in Fig. 17.

6.1 Dead Pressure With Dead Probing Forces. Focus first
on Fig. 17(a) for dead pressure loads. Here, under applied dead
probing forces, P, the shells starting at the origin will experience
dynamic jumps from the limit point of maximum P, which will

Fig. 16 Buckling of an inflated rubber ball subject to a cylindri-
cal indenter (Reproduced with permission from Vella et al. [18].
Copyright 2015 by IOPscience.)

Fig. 17 The results of Figs. 4(a) and 11(a) reproduced in sim-
plified form to aid the present discussion
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never restabilize until the poles self-contact as described earlier. All
the post-buckling equilibrium paths beyond the P maximum will be
unstable as indicated. Notice, as is well understood, that any experi-
mental probing would not be able to reach the desired intersections
A with the horizontal axis.

6.2 Dead Pressure With Rigid Probe Forces. The post-
buckling curves for fixed p=pC ratios in Fig. 17(a) would however
be stabilized if the point loading were to be rigid (with the probe
glued to the shell), with controlled pole deflections. We can be
sure of this because when loading an initially stable elastic, con-
servative, system (here the shell plus its pressure loading system), the
stability can only be lost at either a bifurcation point (not present
here) or at a limit point (fold) where the controlled parameter (here
the displacement) reaches a local maximum. These paths could thus
be traced experimentally to points A on the horizontal axis, and the
energy barriers evaluated as the areas under the curves from the ori-
gin to A. The area is shown in gray for the lowest curve.

6.3 Rigid Volume Control With Dead Probe Forces. Turn
next to Fig. 17(b) for the results under rigid volume control. The
big difference here is that after a maximum of P, all the curves
reach a minimum of P, and then increase until they leave the
domain of the graph. With two simple folds like this, it is guaran-
teed that each path loses its stability at the maximum of P, where
the shell jumps to a buckled state, restabilizing at the same P
(almost certainly, but not guaranteed) on the stable rising regime of
the same path. Then, if P is reduced, the shell remains in a buckled
condition until the minimum is reached where it jumps back to an
unbuckled state [19]. Accordingly, under such a cyclic history of
prescribed P, there would exist a hysteresis cycle, with the dynamic
jumps at the maximum and minimum values of P. Once again, as
expected, an experimental probing under controlled dead P will not
be successful in locating A.

6.4 Rigid Volume Control With Rigid Probing Forces.
Finally, consider Fig. 17(b) under conditions in which the probing
forces, P, are provided by a rigid device such as a screw jack with
the probe attached to the shell in such a way that it can apply nega-
tive as well as positive P, thereby prescribing the pole displace-
ments. All paths are now everywhere stable. The curves can be
followed all the way across the drawn graphs, picking up point A if
the axis is crossed. But if, alternatively, the probe is just pushing
against the shell so that negative P cannot be supplied, the system
will jump from A, and perhaps come to rest at B. Luckily, if P and
its displacement are being monitored in real time, the fact that P is
heading toward negative values will be observed by the operator,
and the test terminated (just) before this jump. So, for those curves
that cross the horizontal axis, the first crossing point A can again be
located and the energy barrier evaluated by experimental probing.

This just leaves the cases in Fig. 17(b), typified by the single
drawn graph at volume ratio 0.25, where the equilibrium path does
not cross the horizontal axis. This curve could be followed experi-
mentally, and would effectively tell the operator that with just pres-
sure loading (P ¼ 0) there are no post-buckling equilibrium states,
and consequently no shock-sensitivity.

We have made a comprehensive investigation of the interactive
nonlinear responses of a complete spherical shell subjected simulta-
neously to uniform external (or internal) pressure and a pair of dia-
metrically opposed point forces. It has been shown that the shell
deformations are predominantly axisymmetric, but bifurcations into
nonaxisymmetric modes have been sought and identified. The point
forces could be extra loads that the shell is designed to carry or
noisy perturbations from an operational environment. However,
special attention has been directed toward their use as experimental
probes designed to test the stability and shock-sensitivity of the uni-
formly compressed sphere [1,2].

For this latter case, we have been lucky to find and allowed to
describe very recent as-yet unpublished work by researchers at

EPFL, Lausanne, Switzerland (Tobias M. Schneider and Tobias
Kreilos of the Laboratory for Emergent Complexity in Physical
Systems) and Harvard (Emmanuel Virot and Shmuel M. Rubin-
stein). Their theoretical and experimental results are not written up
yet, but the following comments on their elegant and innovative
experiments are based on the website of the SMRLab at Harvard1

[20]. The experimental setup is shown and briefly described in Fig.
18 along with a set of measured curves of probe force versus probe
displacement at various levels of axial compression for one of the
cylindrical shells. The probe (or poker, as the authors call it) was
not glued to the shell so that the shell buckled and jumped away
from the probe once A was reached. This served to confirm that the
shell had in fact reached the relevant saddle point of the energy bar-
rier. As far as we are aware, this is the first successful application
of the proposed probing technique.

The use of such probes to test, nondestructively, large, and
expensive prototype structures is still a long way off, and many
problems still need to be explored and overcome. A major problem,
beyond those examined in this paper, is that spherical and cylindri-
cal shells are extremely sensitive to small imperfections that may
be located almost anywhere on the shell. This makes the siting of
the probe very important, but seemingly rather arbitrary unless geo-
metrical irregularities of the shell surface have been carefully
mapped as is being done by NASA in their latest large-scale experi-
mental studies.

Appendix: Boundary Conditions at the Pole

The only significant differences between the numerical method
used to generate the results presented in this paper and that
detailed in Refs. [4] and [11] for the problem with pressure alone
is inclusion of a rigid disk on which the probe force acts and the
enforcement of the volume change constraint for probe loading at
constant volume. The shell equations for small strain-moderate
rotation theory are listed in the aforementioned references. For
both the axisymmetric solution and the nonaxisymmetric bifurca-
tion eigenvalue problem, a rigid circular disk is embedded at the
pole and the probe force is applied to the disk. The edge of the
disk in the undeformed state is specified by the polar angle b0

defined in Eq. (7). The disk mimics the fact that a probe would
have small but finite radius, and it eliminates the singularity at the
pole if the force is applied at a point. For the case of axisymmetric
deformations, and for bifurcations of interest here with wavenum-
bers m � 2, the inward disk displacement, wpole, is strictly normal
to the radial line through the pole. The boundary conditions at the
edge of the disk are obtained from the principle of virtual work.

Fig. 18 Experiments by Virot, Rubinstein, Kreilos and Schnei-
der on an axially compressed cylindrical shell (the ubiquitous
coke can) where both the end load and probe are under rigid
displacement-control. The probe’s load–deflection characteris-
tics are shown on the graph for different values of the axial
load, and succeed in locating the “free” equilibrium states of
the shell, A, where the probing force has dropped to zero.

1http://projects.iq.harvard.edu/smrlab/turbulence-and-buckling-coke-cans
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With ðir; ix; ihÞ as unit vectors defining the coordinate directions
for the middle surface of the undeformed shell, the displacement
vector of a point on the middle surface is ðirur þ ixux þ ihuhÞ.

For the axisymmetric problem (ux ¼ 0), the pole deflection is
regarded as the prescribed variable both prior to and during the
application of the probe force. The boundary conditions at the
edge of the disk, h0 ¼ p=2� b0, are

uh ¼ �wpole cos h0; ur ¼ �wpole sin h0;

uðh0Þ ¼ ð�u0r þ uhÞh¼h0
=R ¼ 0

where u is the rotation and ð Þ0 ¼ dð Þ=dh. Prior to application of
the probe force, p is treated as an unknown, as discussed in Refs.
[4] and [11], with the additional condition

ppR2 ¼ �2pRNhhð0Þ

During application of P, with p fixed, the force can be evaluated
using

P ¼ �ppR2 � 2pRNhhð0Þ

For the case in which P is applied with the volume of the shell
fixed, the most straightforward way to enforce the volume con-
straint at each new value of wpole is to use Newton’s method to
adjust p to achieve the specified DV. This is an efficient procedure
because the increments of wpole are small and, accordingly, only
one Newton iteration is usually required to accurately evaluate p.

The bifurcation mode is a perturbation from the axisymmetric
solution in the form ðurðhÞcos mx; uxðhÞsin mx; uhðhÞcos mx Þ.
The bifurcation problem is solved using cubic splines to represent
the h -dependence of the nonaxisymmetric mode in the variational
principle for the eigenvalue problem [4]. For m � 2, geometric
admissibility conditions enforced at the disk edge, h ¼ h0, are
ur ¼ u0r ¼ ux ¼ uh ¼ 0.
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