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The elastic buckling of shell structures such as spherical shells subject to external pressure and cylindrical
shells loaded in axial compression is highly sensitive to imperfections and often catastrophic. Recent stud-
ies of spherical shells have provided accurate quantitative results for the relation between the buckling
pressure and the amplitude and shape of geometric imperfections and, additionally, quantitative results
for the energy barrier that must be overcome to buckle the shell by extraneous loadings or disturbances
when it is loaded to pressures below the buckling pressure. Results for the simultaneous interaction of
imperfections and energy barriers for spherical shells under external pressure will be presented. Numer-
ical studies for probing forces illustrate their use in determining the buckling energy barrier, and new
experimental results on energy barriers obtained by others by probing spherical shells will be discussed
and compared with predictions. It will be argued that while imperfections determine the buckling load
of a shell, the energy barrier at loads below the buckling load supplies important additional information
about the relative safety or precariousness of the shell to additional disturbances. Results for the energy
barrier for perfect and imperfect spherical shells under external pressure provide important insights into
the shell’s robustness, or lack thereof, at pressures below the buckling pressure. In particular, the energy
barrier trends provide critical insights into the low knockdown factor usually employed in establishing
the design load of unstiffened spherical and cylindrical shells. These design loads are shown to correlate

with conventional predictions provided that imperfection amplitudes scale as the shell radius.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

While shell buckling is not as active a research area as in
was in the middle decades of the last century it seems to re-
main true that “everyone loves a buckling problem” (Budiansky &
Hutchinson, 1979). George ]. Simitses, to whom this paper is dedi-
cated, certainly projected this attitude in his text book on buckling
(Simitses & Hodges, 2006). This paper attempts to provide a uni-
fied view of two aspects of shell buckling: the enduring issue of
imperfection-sensitivity and the more recently identified concept
of the energy barrier to buckling. We first review recent theoreti-
cal and experimental results for the effect of dimple imperfections
on the elastic buckling of spherical shells under external pressure.
Then, the focus turns to the energy barrier that must be overcome
by extraneous disturbances to trigger buckling of perfect and im-
perfect spherical shells loaded below their buckling pressure. Con-
comitantly, we explore some of the issues related to the employ-
ment of probing forces as an experimental technique to determine
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the magnitude of the energy barrier of a loaded shell (Thompson
& Sieber, 2016; Hutchinson & Thompson, 2017b; Virot et al., 2017;
Marthelot et al., 2017). The present paper determines the energy
barrier for perfect and imperfect shells revealing that at applied
pressures below about 20% of classical buckling pressure of the
perfect shell the energy barrier becomes large. The conclusion to
be drawn is that the shell should be able to withstand fairly large
extraneous loads or disturbances when loaded at these low pres-
sures. Conversely, when the shell is loaded to within 20% or 30% of
its buckling load the energy barrier is relatively small and the shell
has much less robustness to disturbances. In short, the qualitative
message of this paper is that imperfections determine the buckling
pressure of the shell while the energy barrier provides a measure
of the shell’s resistance to buckling triggered by unexpected loads
or disturbances at loads below buckling.

The paper is organized with an initial focus on imperfection-
sensitivity followed by a presentation of theoretical and exper-
imental results on energy barriers and their potential ‘shock-
sensitivity’. Results on the imperfection-sensitivity of spherical
shells subject to external pressure are presented in Sections 2 and
3. As a brief digression, Section 3 also focuses on the well-known
NASA buckling knockdown factor, which is used for both spherical
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shells under external pressure and cylindrical shells under axial
compression. The radius to thickness dependence of this factor is
examined in relation to the size-dependence of the corresponding
“worse-case” imperfection amplitude. Results for energy barriers
to buckling for perfect and imperfect spherical shells are presented
and discussed in Section 4, with application to probing forces to
trigger the buckling in Section 5. Section 5 includes some compar-
isons with new experimental probing measurements of the energy
barrier. Section 6 compares the energy barrier for spherical shells
with that obtained for cylindrical shells under axial compression
by Horak et al.,, (2006). Section 7 presents further discussion and
conclusions.

1.1. Brief historical background to the present paper

This paper derives from new insights into shell buckling that
have emerged recently in the literature of nonlinear dynamical sys-
tems, substantially driven by the work of Giles Hunt and his col-
leagues at Bath and Bristol Universities. This research made great
strides in the qualitative understanding of the localization of post-
buckling patterns associated with the Maxwell load, the energy
buckling load of Friedrichs (1941) (see Tsien, 1942), particularly for
the axially compressed cylindrical shell. These insights were exten-
sively reviewed by Thompson (2015), and here we would particu-
larly single out the papers by Lord et al., (1997), Hunt et al., (2000),
Hunt et al., (2003) and Horak et al., (2006).

The last of these papers (which we review in Section 6) was
particularly pivotal and influential, leading fairly directly to our
present work. In it, Horak and his co-workers used a novel math-
ematical technique to locate and quantify the lowest energy bar-
rier against buckling for a cylindrical shell under axial com-
pression. Drawing on this work, Thompson and van der Heij-
den (2014) used their background in the torsional buckling of elas-
tic rods to demonstrate how in shell-like post-buckling a lowered
energy barrier can generate a severe ‘shock-sensitivity’ above the
Maxwell load. Meanwhile, Thompson (2015) in his review had pro-
posed the controlled experimental probing of shells to explore, in
a non-destructive way, the severity of the shock sensitivity. This
was shown to be feasible by Thompson and Sieber (2016) using
a simplified dynamical model of a cylindrical shell, and a histori-
cal statical model of a spherical shell. Possible problems with the
technique were fully discussed, and it was shown that a bifurca-
tion under the primary probing could be stabilized by the addition
of a second rigidly controlled probe, tuned to provide zero force.

A second important source of data and stimulus came
from highly accurate analyses of the post-buckling of the
complete spherical shell under uniform external pressure by
Hutchinson (2016). This triggered two follow-up studies of the
sphere. In the first, Hutchinson and Thompson (2017a) determined
energy barriers under dead, rigid and semi-rigid loading, cou-
pled with a study of symmetry-breaking bifurcations. This work
established that axisymmetric dimple buckles are stable against
non-axisymmetric bifurcation until deep into the post-buckling
range. These bifurcations also allowed a significant comparison
with large amplitude experimental dimples with, for example,
pentagonal forms. In the second study, Hutchinson and Thomp-
son (2017b) studied the response of a pre-pressurized sphere to
a point probe and its determination of energy barriers against pre-
mature collapse; again, some bifurcations from the basic axisym-
metric form were observed and quantified.

We might finally note that energy barriers against the prema-
ture buckling of compressed shell structures, spheres and cylin-
ders, have never featured strongly in the main stream of the shell-
buckling literature. Some of the work that has been done is dif-
ficult to access, but we would refer the interested reader to the
excellent account given by Evkin and Lykhachova (2017) and to

some further discussion relevant to cylindrical shell buckling in
Section 6.

2. Imperfection-sensitivity of thin elastic spherical shells under
external pressure

Recent results for the effect of dimple imperfections on the
buckling of elastic spherical shells drawn from Hutchinson (2016),
Lee et al., (2016a), Hutchinson and Thompson (2017b) and the ear-
lier work of Starlinger et al., (1988) will be presented briefly in
this section to set the stage for the discussion of the distinct roles
of imperfections and energy barriers. Attention is focused on the
buckling under uniform external pressure of isotropic elastic spher-
ical shells with radius R, thickness t, Young’s modulus E and Pois-
son’s ratio v. Points on the middle surface of the undeformed shell
are located by Euler angles with 6 as the meridional angle mea-
sured from the equator and w as the circumferential angle. Atten-
tion is initially limited to buckling behavior that is symmetric with
respect to the equator, but for thin shells the localized nature of
the axisymmetric dimple buckles that form at the poles is such
the results are also accurate for the case of a single dimple at one
pole or for hemispherical shells clamped at their equator. Initial
geometric imperfections in the middle surface are assumed in the
form of a slight stress-free, axisymmetric dimple focused at each
pole with inward normal displacement in the form

wi(0) = Se~ BB’ (21)

where B =m/2—6 is measured from the pole and § is the imper-
fection amplitude. The angular radius of the dimple scales accord-
ing to

pr = S (2.2)

/(1 —V2R/t

where for the critical imperfections B is of order unity.

The shell is subject to a net external pressure p. The classical
results for the elastic buckling pressure of the perfect shell (§ =0)
and the associated decrease in volume are

2Et? 47 (1 — V)Rt

Pc= ——-———and AV =
¢ V/3(1 —v2)R? ¢ V31 —v2)

Fig. 1 displays the reduction of the buckling pressure due
to the dimple imperfection, with wpe, as the inward normal
displacement at the pole. These results have been computed
with B=1.5 which gives near-critical reductions of the buckling
pressure over the range of imperfection amplitude plotted—see
Hutchinson (2016) and Lee et al., (2016a) for computational de-
tails and further discussion of the B-dependence. Fig. 1a and b are
plotted over precisely the same range, in the first plot as pressure
versus pole deflection and in the second as pressure versus vol-
ume change. Due to the localized nature of the dimple buckle at
the pole, the major component of the volume change as the pres-
sure drops is the uniform expansion of the shell outside the buck-
led area. A detailed analysis in Section 4 of Hutchinson (2016) us-
ing a shell theory with exact bending and stretching measures re-
veals that at larger deflections the pressure continues to decreases
monotonically until the point where the opposite poles make con-
tact. The moderate rotation shell theory used for the calculations
underlying the results in this paper is accurate for pole deflections
as large as 0.2R. Fig. 1c reveals both the extreme imperfection-
sensitivity of spherical shell buckling subject to external pressure
and the fact that the buckling pressure, i.e., the maximum pres-
sure pmax the shell can support, plateaus to a level roughly 20%
of pc when the imperfection amplitude exceeds about one shell
thickness.

(2.3)
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Fig. 1. (a) Pressure versus inward pole deflection for the perfect spherical shell and for three levels of imperfection. (b) Pressure versus volume chance for the same cases in
(a) and plotted over the same range of buckling deflection. (c) Buckling pressure (maximum pressure) versus imperfection amplitude for three values of R/t. The results in (a)
and (b) have been computed with R/t=200 and v =0.3. The results in (a), but not in (b), are essentially independent of R/t similar to those for the imperfection-sensitivity
curves in (c). The results have been computed for a full sphere deforming symmetrically with respect to its equator, but results for a hemispherical shell clamped at the

equator or for a full shell are almost identical.

The imperfection-sensitivity is essentially independent of R/t
if R/t > 50 assuming the imperfection radius scales according to
(2.2). The onset of the plateau of the buckling load in Fig. 1c is as-
sociated with an imperfection level that nearly flattens the shell at
the pole, i.e., a curvature « of the unloaded shell at the pole such
that

(2.4)

(1 1 dzw,> N §_ B
K=|<s—= =0 = - ——
R R &0 £~ 2VT 02

Most spherical shell buckling tests and applications have load-
ing conditions that lie between the two limits of prescribed pres-
sure (referred to by some as dead pressure) and prescribed vol-
ume change (also referred to as rigid loading). Many laboratory
tests make use of water inside the shell and induce a net exter-
nal pressure by reducing the volume of water within the shell.
Because water can be regarded as nearly incompressible under
these circumstances, such tests are inevitably much closer to pre-
scribed volume change than prescribed pressure. The two limiting
cases differ markedly in their advanced post-buckling responses—
the shell snaps to a stable dimple buckle under prescribed volume
change but fully collapses under prescribed pressure with the two
poles making contact (within the idealizations of the modelling).
These differences will be discussed further in Section 4. The de-
pendence of the maximum pressure of an imperfect shell plotted
in Fig. 1c applies to both prescribed pressure and prescribed vol-
ume change with the understanding that under prescribed volume
change the pressure is a function of the prescribed volume change.
Because the maximum pressure is attained at very small pole de-
flections (c.f., Fig. 1a), to a very good approximation, p/pc=AV/AV¢
at the maximum pressure, as will be seen in Section 4. Conse-
quently, there is only a very small difference between the pressure
at instability between the two limiting loading cases. Imperfection-
sensitivity results such as those in Fig. 1c are applicable whether
the loading is prescribed pressure or volume change.

3. Imperfection-sensitivity trends for thin cylindrical and
spherical shells

We briefly review some of the imperfection-sensitivity trends
for cylindrical shells under axial compression and spherical shells
under external pressure in light of the recent set of experiments
carried out on spherical shells having controlled dimple imper-
fections (Lee et al., 2016a) and the availablity of accurate buck-
ling predictions for these shells. One should not loose sight of

the fact that these two shell/loading combinations are the most
imperfection-sensitive and are thus not necessarily typical of other
shells and loadings.

Fig. 2a collects in one plot three imperfection-sensitivity curves
which reveal that the trends for these two shell/loading combina-
tions are remarkably similar even though the imperfection shapes
are quite different. One of the curves is Koiter's (1963) special
buckling analysis for the effect of sinusoidal axisymmetric imper-
fections on the axial compression of cylindrical shells. Another
curve, for spherical shells under external pressure, shows the effect
of sinusoidal axisymmetric imperfections located near the equator
of the shell, so-called belt-line imperfections (Hutchinson, 1967).
The third, uppermost curve is for axisymmetric dimple imperfec-
tions in the form of (2.1) and (2.2). For the axisymmetric sinusoidal
imperfections, buckling occurs as a non-axisymmetric bifurcation
from the axisymmetic state. For each of these two cases, the nor-
mal displacement associated with the imperfection is given by

w; = 8 cos(¢x/R) with & = (12(1 — \)2))1/4,/R/t (3.1)

where x is the middle surface coordinate aligned with the varia-
tion of the imperfection. Following Koiter’s analysis of the cylin-
drical shell, the two cases, one for the cylinder and the other for
the sphere, can be treated in a single analysis, and it is the out-
come of this combined analysis in Hutchinson (2010) which has
been used to plot the two lower curves in Fig. 2a." Recent analysis
in Hutchinson (2016) for complete spherical shells has confirmed
the accuracy of the results in Fig. 2a for the sphere with the belt-
line sinusoidal imperfections. For each imperfection amplitude, §/t,
the upper curve for the dimple imperfection in Fig. 2a is the lower
envelope of the maximum pressure computed over all B in (2.2)
given accurately by the fitting formula (Lee et al., 2016a):

- 0.25
pc ’ 0.28 +1.05v/1 — 12§/t

For thin shells buckling elastically, each of the normalized
curves in Fig. 2a is independent of R/t and v. For the spherical
shell, the belt-line sinusoidal imperfection gives a somewhat larger

Dbuck _

(3.2)

T The formula (15) in Hutchinson (2010) for P, giving the bifurcation stress for
both spherical shells under external pressure and cylindrical shells under axial com-
pression is correct, but there is a misprint in the expression for b, given just
prior to (15). The correct expression ish; = 1 (5 +¥?)?[-(§ +By?) + %]We
also note that there is a misprint in Eq. (2.4) of Hutchinson & Thompson (2017a);
the correct expression is Aw/Aw,,e = g(5. §).
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Fig. 2. Buckling stress or pressure as a function of normalized imperfection amplitude for cylindrical shells under axial compression and spherical shells under external
pressure. For thin elastic shells, the numerical predictions are independent of R/t and v. (a) Koiter’s (1963) buckling stress for cylindrical shells with axisymmetric sinusoidal
imperfections, buckling pressure of spherical shells with axisymmetic sinusoidal belt-line imperfections (Hutchinson 1967, 2010), and the lower envelop (3.2) of the buckling
pressure for spherical shells with axisymmetric dimple imperfections (Lee et al., 2016a). (b) Experimentally measured buckling pressure for spherical shells with precisely
manufactured axisymmetric dimple imperfections (R/t=108, v=1/2) subject to external pressure compared to the lower envelop of theoretical buckling pressures from a)

(Lee et al., 2016a).
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Fig. 3. Buckling of cylindrical shells under axial compression. (a) Experimental buckling data for thin cylindrical shells under axial compression collected in 1960 and
plotted as the average compressive stress at buckling divided by the classical buckling stress for the perfect shell versus the radius to thickness ratio. The NASA knockdown
factor used in design codes for assigning the buckling load assuming ‘worse case’ imperfections is shown. This factor is also frequently used for design of spherical shells
under external pressure. (b) The ‘worse case’ imperfection amplitude corresponding to the NASA knockdown factor as a function of R/t. Koiter's result for axisymmetric
imperfections in Fig. 2a is used to compute the curve for the cylinder. While (3.2) for the dimple imperfection is used to determine the curve for the sphere.

reduction in the buckling pressure than the dimple imperfection,
especially in the range of small amplitudes. However, the differ-
ence between the two curves is not large and, moreover, the dim-
ple imperfection is almost certainly the more realistic of the two
imperfections shapes under most circumstances.

Fig. 2b compares the experimental results for the buckling pres-
sure of hemispherical shells clamped at their equator having dim-
ple imperfections in the form (2.1) at their pole from Lee et al.,
(2016a) with the lower envelope of the buckling predictions for
the dimple imperfections. The shells are made from an elastomeric
material with geometric dimple imperfections at the pole manu-
factured having well defined amplitude § and polar angle §,;. The
data in Fig. 2b for the tested shells have R/t=108, v=1/2 and a
range of B;. By the standards of most shell buckling comparisons,
the agreement between test and theory seen in Fig. 2b is remark-
ably good confirming the strong link between buckling pressure
and imperfection. The tests reveal the trend to plateau-like behav-
ior for imperfection amplitudes larger than about one shell thick-
ness.

It is well known that a dependence on R/t of the imperfection-
sensitivity trends exists in the experimental data for cylindrical
and spherical shell buckling. The dependence is most clearly ev-
ident in the collected experimental data presented in Fig. 3a for

cylindrical shells under axial compression (Seide et al., 1960). At
first glance, this dependence would appear to be at odds with the
fact that the trends as plotted in Figs. 1 and 2 are independent
of R/t when the imperfection amplitude is normalized by the shell
thickness. However, the R/t trend of the experimental data can be
explained by taking into account a dependence of the imperfection
amplitude on the size of the shell. To illustate this point, consider
the NASA knockdown curve plotted in Fig. 3a for the ‘worse case’
imperfection at any R/t,

Thuck — 1 - 0.901(1 - e VRIS,

o (3.3)

and ask what imperfection amplitude gives rise to this reduced
buckling stress. The result obtained using Koiter’s curve in Fig. 2a
for the cylindrical shell with axisymmetric imperfections is shown
in Fig. 3b. The Poisson ratio associated with the many experimental
points in Fig. 3a is not known, but in any case the factor /1 — v2
will be near unity. Because the normalised imperfection, §/t, is al-
most linear in R/t in Fig. 3b, it follows that the worse case imper-
fection amplitude for the cylindrical shell under axial compression
scales with shell radius according to §=R/1200.

Even though the experimental data for buckling of spherical
shells under external pressure is not nearly as extensive as that for
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cylindrical shells under axial compression, the NASA knockdown
factor (3.3) has been commonly invoked in the design of spheres
as well as cylinders. The same proceedure determining the am-
plidute of the imperfection for spherical shells under external pres-
sure that gives rise to the NASA knockdown (3.3) is also presented
in Fig. 3b using the lower envelop estimate (3.2) for the buckling
pressure due to dimple imperfections. For the spherical shell, the
“worse case” dimple-shaped imperfection amplitude has an even
closer to linear dependence on the shell radius with §=R/800. The
dimple shape of the ‘worst case’ imperfection for the spherical
shell is almost certainly more realistic than the axisymmetric sinu-
soidal shapes for the other two imperfections. To our knowledge,
accurate results for isolated dimple-shaped imperfections are not
yet available for cylindrical shells under axial compression to use
as a more representative worst case imperfection.

The fact that the worse case imperfection amplitude scales with
the radius of the shell rather than its thickness makes sense, at
least for some of the many processes used to manufacture shells.
A wide range of imperfections can be deliberately manufactured
into a shell, as demonstrated for the spherical shells of Lee et al.,
(2016a). The ‘perfect’ shells manufactured by these authors with-
out deliberately introduced imperfections buckled in the range 0.7
< Dpuck/Pc < 0.8 modestly above the NASA knockdown factor for
R/t=108 which is about 0.6. On the other hand, the most imper-
fect shells of Lee et al. in Fig. 2b lie far below the knockdown factor
for R/t=108. Shells with relatively low radius to thickness, i.e., R/t
~ 100, will clearly buckle at a pressure as low as 20% of the classi-
cal pressure if their dimple imperfection amplitudes are larger than
about one thickness.

One has to conclude that the various manufacturing processes
for cylindrical shells representative of those collected in Fig. 3a
with R/t ~ 100 give rise to imperfection amplitudes consider-
ably smaller than those deliberately manufactured into the spher-
ical shells of Lee et al., (2016a). The very thin (R/t=2000) spher-
ical shells manufactured and buckled under external pressure by
Berke and Carlson (1968) provide another illustration of the range
of perfection, or imperfection, possible for some manufacturing
processes. The Berke-Carlson shells were formed by electro-plating
nickel onto very accurate spherical substrates. Following the plat-
ing, some of the shells were electro-polished on the outer surface
while still on the substrate yielding a highly polished, smooth sur-
face. Several of these shells buckled at about 85% of the classical
buckling pressure which is remarkable for such thin shells and far
above the expectation for spherical shells with R/t=2000. When
the electro-polishing step was not employed, the shells buckled at
pressures as low, or even slightly lower, than given by the knock-
down factor (3.3).

4. Energy barrier to buckling for spherical shells subject to
external pressure

With the background in hand from Sections 2 and 3 on the
role of initial imperfections in determining the buckling pressure
of spherical shells, we now ask a different question: For any shell,
perfect or imperfect, loaded to a pressure below its buckling pres-
sure, how robust is that shell to additional loads or disturbances
that the shell might experience? In other words, are rather small
disturbances likely to buckle the shell or will it be able to with-
stand substantial unespected disturbances? To gain insight into
this question we examine the energy barrier to buckling at the
pressure in question.

To begin, consider a loading system which prescribes the pres-
sure p (also called pressure-control or dead loading); the other
limiting case when the internal volume of the shell is prescribed
(volume-control or rigid loading) will be discussed later. For any
prescribed p below the maximum pressure pmax there are two
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Fig. 4. Pressure versus volume change in the pre-buckling and post-buckling states
for a full, perfect sphere shell that buckles symmetrically with respect to the
equator and has R/t=200 and v=0.3. Loading conditions for prescribed pressure
(p/pc=1/3) and prescribed volume change (AV/AVc=1/3) are noted. The lower
limit of volume change, AV}, for which post-buckling solutions exist is also noted.
Under prescribed pressure the single equilibrium buckled state A, is unstable. For
prescribed volume change, with AV > AV, there is one unstable equilibrium buck-
led state Ay and one stable state By. The grey area sumarizes energy barrier differ-
ences as described later.

equilibrium states as illustrated in Figs. 1a and 4, the stable pre-
buckling state O and the unstable buckled state A,. State Ap is a
saddle point of the energy landscape of the shell/loading system.
If an extraneous loading or distrubance drives the system over this
saddle point, the shell will undergo dynamic snap buckling. The
energy barrier between states O and Ap, is the difference between
the free energy of the shell/loading system in the two states. For
prescribed p, the free energy is the strain energy in the shell plus
the potential energy of the pressure loading.

The complete solution for dimple buckling of perfect spheri-
cal shells deforming symmetrically with respect to their equators
given in Hutchinson and Thompson (2017a) allows us to provide
explicit results for the free energy and the energy barriers of inter-
est for the perfect shell. The solution for buckled state, & > 0, is
specified by

1—-vZAw,,,
% = f(&)withé = @ (2.5)
AV t . V3
U 1 t
DAV: = jf(‘f)z +CEQ(§) (2.7)

Here, AV is the volume decrease of the shell, U is the elastic
energy in the shell, and the inward buckling displacement at the
pole is Aw,je =Wp,, —Wo Where wy is the uniform inward nor-
mal displacement in the unbuckled state at pressure p. This solu-
tion fully captures the dependence on R/t and v and is accurate
for shells with R/t > 50 as long as & < 0.2R/t, as further discussed
in Hutchinson and Thompson (2017a) where the functions f, h and
q were first tabluated. For the readers convenience, Table 1 is in-
cluded below.

For the perfect shell under prescribed pressure, the difference
between the free energy in state Ap and that in the unbuckled state
0 is readily computed using the solution (2.5)-(2.7). The dimen-
sionless form of the energy barrier per dimple, W, for the perfect
spherical shell deforming symmetrically with respect to the equa-
tor is given by

w - _P
ThcACHR q(§) pch(é) (2.8)
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Table 1

Function values charactering dimple buckling of a perfect spherical shell deter-
mined in Hutchinson and Thompson (2017a) with & as the normalized pole deflec-
tion defined in (2.5). Cubic splines provide an accurate interpolation of the values
listed.

3 fi§) h(&) q(8)

0 1.0000 0.0000 0.0000
1 0.6280 0.1867 0.1405
2 0.4130 0.6782 0.3840
3 0.3127 1.515 0.6795
4 0.2592 2.747 1.027
5 0.2260 4.417 1.429
6 0.2031 6.557 1.886
7 0.1858 9.186 2395
8 01722 12.32 2.956
9 0.1612 15.97 3.563
10 0.1517 20.14 4.214
15 0.1209 48.92 8.058
20 0.1034 90.70 12.70
25 0.0918 145.0 17.97
30 0.0834 211.8 23.80
35 0.0770 290.8 30.12
40 0.0719 3823 36.92
45 0.0677 486.4 4417
50 0.0641 603.0 51.84
55 0.0611 7319 59.91
60 0.0584 873.2 68.34
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Fig. 5. The dimensionless energy barrier per dimple between the pre-buckling state
0 and the post-buckling state A, for prescribed pressure p is plotted on the hori-
zontal axis with the normalized pressure plotted on the vertical axis. Shown for
the perfect shell and five levels of imperfection as measured by §/t. The curve for
the perfect shell is computed using (2.8). Those for the imperfect shells have been
computed with R/t=200, v=0.3 and B=1.5, but these results are essentially inde-
pendent of R/t.

with £ determined from p/pc=f(§). The total energy barrier for
the full shell buckling symmetrically about the equator is defined
as 2Wand, thus, the barrier ‘per dimple’ is W. The energy barrier
(easily identified as an area in the pressure-volume graph) is plot-
ted as the upper curve in Fig. 5. A different normalization of W has
been used in (2.8) than that employed in Hutchinson and Thomp-
son 2017a,b. The earlier normalization is related to that in (2.8) by

J1 — 12
1-vIWR _ 8v/3- w (2.9)
27Dt TpcACt/R

The advantage of normalization in (2.8) is the transparent in-
sight it provides into the magnitude of the energy barrier: % DcAc
is the total elastic energy stored in the perfect shell at pc, while
the factor Ct/R scales with t/R due to the fact that the dimple
buckle width scales with +/fR and thus decreases relative to the
size of the shell for thinner and thinner shells. The new normaliza-

tion also has the nice feature that the dimensionless energy barrier
is of order unity or less in the range of interest.

Evkin and Lykhachova (2017), building on the earlier work
of Evkin et al, (2016), have also presented results for the en-
ergy barrier for dimple buckling of perfect spherical shells un-
der prescribed pressure in good agreement with the upper curve
in Fig. 5. The dimensionless energy barrier in their paper is
denoted by IT and is equal to dimensionless barrier in (2.8)
times the factor 4/,/3(1 — v2). The work presented in Evkin and
Lykhachova (2017) includes both finite element computations and
asymptotic analytical formulas for the energy barrier. As is being
argued in this paper, these authors asert that the trend for the en-
ergy barrier with p/pc provides a rationale for the design pressure
of roughly 20% of pc employed in many codes for thin spherical
shells under external pressure. These authors also present an illus-
tration of the insensitivity of dimple buckling to its location on the
shell by showing that a dimple in state A, that forms between the
pole and equator is identical to an axisymmetric dimple formed at
the pole. Of course, identical behavior must be expected given the
highly localized nature of dimple buckling, but it is reassuring to
see this emerge directly from one numerical analysis that is ax-
isymmetric and the other that is not.

Computation of the energy barrier with p prescribed for five
levels of imperfection are also shown in Fig. 5 providing compari-
son with the energy barrier for the perfect shell. These results, as
well as the previously unpublished results in Section 5, have been
computed using the numerical method detailed in Hutchinson and
Thompson (2017b) and Hutchinson (2016). Two features of the bar-
rier plots in Fig. 5 stand out. (1) For perfect or near perfect shells
the energy barrier at pressures in a substantial range below the
maximum below pmax remains very low. (2) For lower pressures
around p/pc=0.2 the energy barrier becomes large and, moreover,
is only weakly dependent on the imperfection amplitude. It seems
reasonable to assert that shells with small imperfections will not
be robust against buckling if loaded anywhere near the buckling
pressure while, conversely, shells loaded at pressures at about 20%
of pc will be quite robust and nearly independent of pmax as long
as pmax is not itself as low as 20% of pc.

As already noted, there are significants differences between
the post-buckling behavior in the two limiting loading cases, pre-
scribed pressure and prescribed volume change. Under prescribed
pressure the buckled shell snaps dynamically to a collasped state
with the two poles making contact (Hutchinson, 2016). By con-
trast, under prescribed volume change the shell snaps to a sta-
ble dimpled state (Hutchinson & Thompson, 2017a,b). In the lat-
ter case, the net pressure acting on the shell decreases abruptly
as the shell buckles thereby giving rise to a stable dimple buckle.
This difference is brought out in Fig. 4 where the pre-buckling and
post-buckling behavior is plotted in the form of pressure versus
change in volume for the perfect spherical shell. For the unbuck-
led shell, p/pc= AV|AV¢ in state O for both loading cases. As al-
ready discussed, under prescribed pressure there is only one equi-
librium buckled state, Ap, and it is unstable. Under prescribed vol-
ume change with AV > AV, there are two equilibrium states, Ay,
which is unstable, and, By, which is stable. When the shell buckles
under prescribed volume change it snaps to state By,.

Under prescribed volume change the free energy of the system
is simply the elastic energy in the shell, and the energy barrier to
buckling is the difference between the free energy in states Ay and
0. For the perfect shell, the energy barrier per dimple, W, can again
be computed using (2.5)-(2.7) with the result

W e AV 1ot ey
m =q(§) AVch(€)+ chh(E)

where & = &, is given in terms of AV/AV. by (2.6) as now de-
scribed. For any Ct/R there is a lower limit of AV/AV(, denoted

(2.10)
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Fig. 6. The R/t-dependence of three quantities for perfect spherical shells subject to
prescribed volume change: The upper curve is the prescribed volume change asso-
ciated with the Maxwell equal energy criterion and the lower curve is the associ-
ated pressure in the stable post-bucking equilibrium state. The middle curve is the
lower limit of prescribed volume change for which post-buckling equilibrium states
exist. These curves apply for shells deforming symmetrically about the equator with
equal dimple buckles at the top and bottom poles.

by AV;/AV¢ and plotted in Fig. 6, for which positive values of &
satisfying (2.6) exist. For prescribed AV > AV|, two values of &
satisfying (2.6) exist, one associated with state Ay, denoted by &,
and the other associated with By, denoted by&g. The energy bar-
rier for prescribed AV/AVc- computed from (2.10) with & = &, is
plotted for several values of Ct/R in Fig. 7a, in each case over the
relevant range AV, < AV < AVc. The limit for very thin shells,
Ct/R— 0, coincides with the result for prescribed pressure with
p/pc — AV|AV¢, as can be seen directly from (2.8), (2.10) and (2.6).

The difference between the energy in the stable dimple state By
and that in state O is denoted by Wp and is determined by (2.10)
with & =&p. Again, this energy difference is easily identified as an
area in the pressure-volume graph; it is plotted in Fig. 7b. Another

1 T T T T T
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08| AVe i
0.6 t_ 11 1 1 1
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0.2
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aspect of prescribed volume change brought out in Fig. 7b is the
existence of stable equilibrium buckled states By, with energy equal
to that in the unbuckled state O, i.e., Wz =0. These are the Maxwell
equal energy states. The prescribed volume change, AV, and as-
sociated pressure in the buckled state, py;, for the Maxwell states
are plotted as a function of R/Ct in Fig. 6. For AV < AV), the en-
ergy in the unbuckled state is less than that in state By, while for
AV > AVy, the energy in the unbuckled state is greater than that
in By. Elastic systems with these characteristics display hysteritic
behavior when loading histories are imposed causing the shell to
undergo cycles snapping back and forth between buckled and un-
buckled states. Such equal energy states do not exist under pre-
scribed pressure, assuming one excludes the collapsed states of the
shell.

An important conclusion to be drawn from these results is
that there is relatively little difference between the buckling en-
ergy barrier under prescribed volume change from that under pre-
scribed pressure, other than the existence of the lower limit of
prescribed volume change for which buckling can occur. Indeed,
the difference simply coresponds to the small grey-shaded area in
Fig. 4. The small difference is also clearly evident when one com-
pares the barrier curves in Fig. 7a with that in Fig. 5 for the perfect
shell. Anologous to the conclusion noted earlier regarding buckling
imperfection-sensitivity, the energy barrier for spherical shells un-
der external pressure is only weakly dependent on the compliance
of the system applying the pressure. These conclusions stem from
the fact that both the imperfection-sensitivity and the energy bar-
rier are established in the range of relatively small buckling deflec-
tions. By contrast, the advanced post-buckling behavior is vastly
different for the two cases with prescribed pressure producing col-
lapse and prescribed volume change giving rise to a stable, finite-
sized dimple. Finally it is worth noting that, due to the localized
nature of the dimple buckle and its relatively small size, the results
presented in the figures in this section can also be applied to a
clamped hemispherical shell with a single dimple at the pole or to
a full spherical shell with only one dimple buckle. For thin shells,
clamping at the equator has almost no influence on the dimple
buckle as long as it is well away from the equator, as has been
established here by numerical calculation of the two cases. Thus,
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Fig. 7. (a) Dimensionless energy barrier per dimple for the perfect shell for prescribed change of volume AV/AV¢ for various values of Ct/R. The lower limit AV;/AV¢
(plotted in Fig. 6) depends on CR/t. (b) The difference in the energy per dimple for prescribed volume change between the stable post-buckling state By and the pre-
buckling state O. The value of AV/AV, associated with the Maxwell state M at which the energy in states O and By are equal is marked (see also Fig. 6). These curves apply
for shells deforming symmetrically about the equator with equal dimple buckles at the top and bottom poles.
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Fig. 8. Perfect spherical shell loaded under prescribed pressure p and then subject to equal and oppositely-directed pole probe forces P. For pressures in the right hand plot
having p/pc > 0.14, the probe force becomes zero at the intersection with the pole deflection axis &. The deformations in this plot are axisymmetric. The zero crossing is
the unstable post-buckled equilibrium state A,. The work done by the probing force to reach A, (the area under the curve) is equal to the energy barrier W. The shell has
R/t=200 and v=0.3 but the curves are essentially independent of R/t. (from Hutchinson & Thompson (2017b).
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Fig. 9. For various levels of imperfection, the dimensionless additional pole deflection A&produced by the probing force at attainment of the unstable state A, in (a) and
the maximum probing force Pnax in (b). The associated energy barrier curves are presented in Fig. 5. These results have been computed for shells with R/t=200. v=0.3 and

B=1.5 but they are essentially independent of R/t.

all the results can be applied directly to the hemisphere with AV
and AV being half the values for the full shell. For full spherical
shells with one dimple buckle, the solution (2.5)-(2.6) continues to
hold if C is replaced by C/2, with a similar substitution in Fig. 6.

5. Probing the shell’s energy barrier and its shock-sensitivity
5.1. Numerical predictions

An example which illustrates the role of the energy barrier is
the effect of applying inward radially-directed probing forces P to
the poles of a spherical shell loaded to pressure p as analyzed by
Hutchinson and Thompson (2017b) and shown for a perfect spheri-
cal shell in Fig. 8. In this figure, for shells pre-loaded to p/pc > 0.14
with p subsequently held fixed (prescribed pressure), the probe
force increases to a maximum, Pnax, and then declines to zero. The
solution at P=0 with £ > 0 is the unstable post-buckling equilib-
rium point of the perfect shell at state A, given by p/pc=£(§); this
unstable state can be stabilized by a suitably controlled probe as

discussed thoroughly by Thompson and Sieber (2016). Moreover,
the work done by the probe force through the pole deflection is
precisely the energy barrier W given by (2.8). The probing behavior
for prescribed pressure satisfying p/pc > 0.14 is axisymmetric over
the entire range shown in Fig. 8. If p/pc < 0.14, the probing behav-
ior is more complicated with non-axisymmetric bifurcation occur-
ing prior to attainment of P=0 (Hutchinson & Thompson, 2017b).

Fig. 9 presents results for shells with identical dimple imper-
fections at each pole, loaded under prescribed pressure, and then
subject to equal and opposite probing forces at the poles at the
centers of the dimple imperfections. The additional dimensionless
pole deflection, A§ =&, — &p, due to the probe force at the point
where P=0 at state Ap is plotted in Fig. 9a, and the maximum
value attained by the probe force is presented in Fig. 9b. As in the
case of the perfect shell, the state at P=0 is the same unstable
post-buckled equilibrium state A, identified for the shell subject
to pressure alone. Thus, it follows that the work done by the prob-
ing force must necessarily equal the energy barrier W presented
in Fig. 5, as has indeed been verified. Like the energy barrier it-
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Fig. 10. Experimental measurement of the energy barrier by probing hemispher-
ical shells clamped at the equator that are subject to prescribed pressure p
(Marthelot et al., 2017). One shell is nearly perfect and the second shell has a man-
ufactured dimple imperfection at the pole with amplitude §/t=0.62 and B=1.92.
Further details are discussed in the text. The theoretical curves are computed with
R/t=120 and v=1/2.

self, the additional pole deflection of the probe required to trigger
buckling is small (less than a shell thickness) for shells with small
imperfections loaded to pressures within about 25% of the buckling
pressure. However, the pole deflection becomes relatively large and
nearly independent of the imperfection when p/p¢ is around 0.2.

5.2. Experimental results from probing the energy barrier

Systematic experimental results on probing loaded shell struc-
tures to trigger buckling have only recently been carried out. A
study probing axially loaded cylindrical shells has been carried
out by Virot et al., (2017) with a few of their preliminary results
previously reported by Hutchinson and Thompson (2017b). An ex-
tensive experimental study of the technique of probing spheri-
cal shells subject to external pressure has been performed by
Marthelot et al., (2017). Here we present the measured energy bar-
rier for two of the spherical shells probe tested by these authors.

The shells are elastomeric hemispheres clamped at their equa-
tors. The process of manufacturing the shells is described in
Lee et al., 2016b with details of how a precise dimple imperfec-
tion at the pole can be introduced described in Lee et al., (2016a).
The ‘perfect’ shells, manufactured with no deliberately introduced
imperfection, buckle in the range of 0.7pc to 0.8pc. A systematic
buckling imperfection-sensitivity study under pressure alone was
presented in Lee et al., (2016a). The two shells for which experi-
mental data is presented in Fig. 10 have R/t=120 and v =1/2. One
shell is ‘perfect’ in the sense described above which buckled un-
der pressure alone at 0.74pc with a dimple buckle occurring well
away from the pole. The other shell was manufactured to be im-
perfect with a dimple shape at the pole approximated by (2.1) with
8/t=0.62 and B;=10.8° (B=1.92). The experimental loading sys-
tem was designed to apply prescribed pressure while the probe
was applied under conditions of prescribed displacement. The ex-
perimentally measured energy barrier (e.g., the work done by the
probe to reach the unstable equilibrium state Ap) at various levels
of prescribed pressure is presented in Fig. 10 for each of the two
shells. Good agreement with numerical predictions computed for
these shells is evident. The predictions in Fig. 10 have been com-
puted for both clamped hemispheres and full spherical shells sub-

ject to symmetry conditions at the equator with no discernable dif-
ference between the two sets of results. An imperfection amplitude
§/t=0.16 produces a buckling load under pressure alone of 0.74pc
corresponding to that of the ‘perfect’ shell and a theoretical curve
for this imperfection is also shown.

The insensitivity to conditions at the equator emphasizes the
highly localized nature of dimple buckling for the spherical shell.
Further evidence of the localized nature of buckling is the fact
that under pressure alone the ‘perfect’ shell undergoes dimple
buckling well away from the pole, no doubt associated with
some small unidentified imperfection at that location. Neverthe-
less, Marthelot et al., (2017) report that for each of the five data
points in Fig. 10 for the ‘perfect’ shell the probe triggers a dimple
buckle at the pole not at that other location. The unidentified im-
perfection is probably too far from the pole to interact with the
probe.

5.3. Probing at locations remote from a dimple imperfection

For spherical shells under external pressure the energy barrier
for a shell with a dominant imperfection is only relevant if the
probe or other disturbance is applied sufficiently near the imper-
fection so as to trigger buckling at the imperfection. By analyzing
a simple example in this section, we will illustrate that a full shell
with a single dimple imperfection will behave as if it were a per-
fect shell at applied pressures below the buckling pressure when
probed well away from the imperfection. Because our present nu-
merical method is limited to axisymmetric deformations we con-
sider a full spherical shell with a single dimple imperfection at the
upper pole and otherwise perfect. This shell is then probed with
equal and opposite forces at the poles, and the work exerted by the
probe system to buckle the shell is computed. One case (shell B)
has equal and opposite concentrated forces at the poles, while the
other case (shell C) has a concentrated probing force at the lower
pole and a broadly distributed normal pressure with an equal and
opposite resultant force at the upper pole. The pressure at the up-
per pole for shell C is distributed in proportion to e~B/Bp” with
Bp =3P such that the additional pressure resisting the probe at
the upper pole is very small compared to the applied uniform
pressure p. Results for the energy barrier perfect shell (shell A) are
also included for comparison.

The shells in Fig. 11 have R/t=100 and v =0.3. The upper pole
imperfection of shells B and C have §/t=0.5 and B=1.5. Under
uniform pressure alone, shells B and C undergo dimple buckling
at the upper pole at a buckling pressure p/p=0.39. The curve for
the dimensionless energy barrier for shell B in Fig. 11 is essen-
tially identical to that presented for the energy barrier per dimple
in Fig. 5 for a shell with similar dimple imperfections at each pole
and undergoing symmetric buckling about the equator. The dimen-
sionless energy barrier of the perfect shell A in Fig. 11 is also es-
sentially identical to that for the perfect shell in Fig. 5 for the en-
ergy per dimple. For shell A, Wis taken to be the barrier at the up-
per pole. As noted earlier, if the perfect shell buckles symmetrically
respect to the equator with a buckle at each pole, as in the compu-
tations for Fig. 5, the total energy barrier is 2W. However, if a very
small imperfection triggers buckling first at the upper pole then
that buckle localizes and grows while a buckle at the lower pole
will not form; the energy barrier of the full perfect shell is then W
not 2W. This is the relevant barrier for the present comparison. At
prescribed pressures below the buckling pressure, i.e., p/p < 0.39,
probing of shell C causes buckling at the lower pole even though
the imperfection is at the upper pole. As seen in Fig. 11, the work
exerted by the probing system for shell C is essentially identical to
the energy barrier per dimple for the perfect shell. This behavior
is not unexpected because of the localized nature of the buckling
and because the probing system only increases the pressure at the
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Fig. 11. Energy barrier determined by probing three full spherical shells with
R/t=100 and v =0.3. Shell A is a perfect shell probed by equal and opposite forces
at the poles. For this case W is the barrier per pole—see further discussion the test.
Shells B and C have identical dimple imperfections (§/t=0.5 and B=1.5) at the up-
per pole with no imperfection at the lower pole. The buckling pressure for shells
B and C subject to pressure alone is indicated by the horizontal line at p/pc=0.39.
Shell B is probed by equal and opposite forces at the poles, and it buckles at the
upper pole with the energy barrier shown. Shell C is probed by a concentrated force
at the lower pole and is opposed by a broadly distributed pressure centered at the
top pole which has equal and opposite force resisting the probe force at the lower
pole (see text for details). At pressures below p/pc=0.39, shell C buckles at the
lower pole with an energy barrier identical to that of the perfect shell.

upper pole very slightly. Once the applied pressure p attains the
buckling pressure, p/p=0.39, the energy barrier vanishes and shell
C undergoes snap buckling at the upper pole.

An abrupt transition occurs between buckling at the lower pole
triggered by the probe and buckling at the upper pole produced
by the uniform applied pressure. We have not attempted to re-
solve this transition more finely that the plot in Fig. 11 reveals,
where the largest pressure for which buckling at the lower pole
was computed is p/pc=0.37. While the example in this section is
relatively simple, it highlights two lessons concerning probing and
energy barriers which are likely to be broadly relevant for shells.
The first lesson is the more positive of the two. When the probe
or disturbance is not directed sufficiently near the worst imper-
fection, the energy barrier for buckling is greater than the barrier
associated with buckling at the imperfection. The second lesson is
that if one’s aim is to use a probing technique to experimentally
measure the energy barrier by extrapolating to the buckling limit
using data at loads below the buckling limit, then one has to be
sure to probe sufficiently near the most dilatory imperfection if
one expects to measure the lowest energy barrier. Each of these
lessons stems from the localized nature of shell buckling for this
type of shell/loading system.

6. Energy barrier for cylindrical shells under axial compression

Significant efforts are currently underway in Europe, the United
States and in China to revise the design criteria for cylindrical
shells under axial compression to break away from use of the
NASA knockdown factor (3.3), which is regarded by many as being
too conservative for well-constructed shells. The new approaches
still make use of experimental verification but also employ a more
heavy reliance on computational buckling work, incorporating re-
alistic imperfections (Haynie et al.,, 2012; Krasovsky et al., 2011;
Wagner et al., 2017; Wang et al., 2013). Several avenues are being
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Fig. 12. Comparison between the energy barrier W to buckling of cylindrical shells
under axial compression (Horak et al., 2006) and spherical shells under external
pressure. The normalization of energy barrier plotted on the horizontal axis is the
same as that in (2.8) and in Figs. 5 and 7 with R as the radius of the sphere or
cylinder, respectively, and t as the shell thickness. The curve for cylindrical shells
was plotted by using (6.1) and reading values of V(A) from Fig. (4.3) in Horak et al.,
(2006).

pursued, including the use of lateral probing forces or displace-
ments as surrogate imperfections and attempts to identify and
compute a meaningful lower bound to the buckling load. Some of
these ideas derive from early buckling research carried out in the
former Soviet Union (e.g., Mossakovskiy et al., 1975; Evkin et al.,
1978). A number of aspects underlying these new approaches are
still in a state of flux and new design criteria for shell buckling are
not yet in place. Suffice it to say that the outstanding research is-
sues needed to advance the new criteria center, at least in part, on
imperfection-sensitivity and the role of probing.

The cylindrical shell energy barrier problem is more challeng-
ing than the spherical shell problem because the former is inher-
ently two-dimensional while the latter is axisymmetric for dimple
buckling and thus one-dimensional. A ground-breaking analysis of
the energy barrier for perfect, elastic cylindrical shells under ax-
ial compression has been carried out by Horak et al., (2006). For
perfect cylindrical shells of radius R and thickness t loaded to an
average compressive axial stress ¢ less than the classical buckling
stress, i.e., 6/0oc <1 with o¢ = Et/(y/3(1 — v2)R), these authors
computed the energy difference W between the energy in the un-
buckled state and that at the lowest saddle point, or ‘mountain
pass’ as the authors call it. This lowest mountain pass was shown
by a mathematical search routine to be associated with a dimple-
like buckle (localized both axially and circumferentially) having a
characteristic width and height of order vRt. The central result of
Horak et al., (2006) can be expressed as

(1) R
4 Et4 ~ 967

where, in their notation, A = 26 /o¢ and V(A) is plotted in their Fig.
4.3. The normalization of W in (6.1) is identical to that introduced
in (2.8) and used in Figs. 5 and 7 but expressed here directly in
terms of the shell and material parameters which hold for both
shells. As in the case of the results in the present study of spher-
ical shells there is no additional dependence on R/t or v for thin
shells. The energy barrier (6.1) for the cylindrical shell subject to
prescribed average axial compression is compared to the barrier
for the spherical shell subject to prescribed pressure in Fig. 12.

V(&) (6.1)
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The similarity of the energy barrier for the two shell/loading
systems seen in Fig. 12 is gratifying but not entirely unex-
pected given the long standing experience based on experimental
data for these two systems that their buckling behavior is simi-
larly imperfection-sensitive and catastrophic. Moreover, the NASA
knockdown factor (3.2) which was developed based on experi-
mental data for cylindrical shells is often applied to spherical
shells, notwithstanding that the experimental data set for spherical
shells is not as large. A further complication for cylindrical shells
versus spherical shells is the various choices of boundary condi-
tions which can be assumed for the cylindrical shell. Horak et al.,
(2006) invoke boundary conditions in their analysis which might
be described as being among the least stiff of conditions represen-
tative of tests used to generate experimental data or for structural
applications. For example, for the limit of prescribed displacement,
referred to as the constrained case by the authors, a uniform axial
displacement at the ends of the cylinder is not imposed, as would
be the most realistic assumption for modeling most test situations.
Instead, the authors impose the average axial displacement of the
ends allowing the axial displacement to become non-uniform at
the ends in the buckled shell. This end condition flexibility might
contribute to some relaxation of the in-plane compression experi-
enced by the dimple buckle and might even allow the shell ends
to tilt relative to one another. For the other limit, the average axial
stress (the axial load) is prescribed which is work conjugate to the
average axial displacement. For both these limiting cases, the au-
thors assume the shell is free to slide circumferentially at the ends.
Some influence of these boundary conditions on the energy bar-
rier plotted in Fig. 12 is expected, including the possibility that the
imposition of the average axial displacement rather than uniform
axial displacement may explain the fact that the energy barrier for
the cylindrical shell is somewhat larger than that of the spherical
shell.

Another interesting observation related to the work of
Horak et al., (2006) is their tentative conclusion, based on their
numerical results, that there appears to be no difference between
the energy barriers under prescribed axial load and prescribed
average end shortening. Recall that the present results for the
perfect spherical shell under the two limiting conditions of pre-
scribed pressure and prescribed volume change (c.f,, Eqs. (2.8) and
(2.10) and Figs. 5 and 7) have a small difference which van-
ishes as R/t— co. We expect similar behavior for the cylindrical
shell: a small difference due to the fact that under prescribed
end-shortening the average axial load diminishes as buckling oc-
curs. The analog to spherical shell buckling carries over to the ad-
vanced post-buckling behavior. Under prescribed axial load, buck-
ling should lead to complete collapse of the cylinder, while under
prescribed end shortening the shell is expected to snap to a sta-
ble state with one or more dimples. It is also reasonable to expect
that the effect of geometric imperfections on the energy barrier for
the cylindrical shell will be similar to that found here for spherical
shells.

In summary, as the remarks above on the buckling energy bar-
rier for the cylindrical shell under axial compression suggest, there
are open questions related to the boundary conditions that need
further resolution. The experimental boundary conditions of most
recent laboratory tests are probably represented most closely as
being clamped ends with prescribed uniform end-displacement,
and it is important that this limiting set of boundary conditions is
properly modeled in the energy barrier and probing simulations. A
recent analysis of the dimple buckle state at the mountain pass by
Kreilos and Schneider (2017) also invokes a set of boundary condi-
tions that is difficult to relate to conditions relevant to either lab-
oratory tests or to applications. For both the determination of en-
ergy barriers and probing responses, it is equally important that
attention be addressed to boundary conditions that are relevant

to applications such as launch vehicles for which fully clamped
ends with prescribed uniform end-shortening is almost certainly
an unrealistically stiff set of conditions. It is possible that the sta-
ble isolated dimples induced by probing that are observed in some
of the experiments employing the maximally stiff boundary con-
ditions may be unstable, or even non-existent, for other boundary
conditions, as illustrated in the case for the spherical shell for the
two limits of prescribed pressure and prescribed volume change.

7. Concluding remarks

Based on the numerical results for dimple buckling and asso-
ciated energy barriers of spherical shells subject to external pres-
sure, we have argued that for this system imperfections determine
the reduction of the buckling pressure below the classical buckling
pressure while the energy barrier determines the robustness, or
lack thereof, of the shell to unanticipated disturbances at pressure
loads below the buckling pressure. For perfect shells, or shells with
relatively small imperfections, the energy barrier is very small in
a substantial pressure range below the buckling pressure. The bar-
rier increases to much larger values for p/p¢ around 0.2. The energy
barrier trends in Fig. 5 have several implications. For example, even
if one could manufacture near-perfect spherical shells, one would
be reluctant to load them at pressures close to the buckling pres-
sure unless one were absolutely certain that the shell would not
experience unexpected disturbances. Conversely, even for spheri-
cal shells with modestly large imperfections, e.g., §/t=0.5 in Fig. 5,
one could still be confident that a shell loaded to p/pc=0.2 would
have substantial resistance to disturbances. Taken together these
two implications add to the rationale for the buckling knock-down
factor of ~ 0.2 widely adopted in the design of thin spherical
shells under external pressure. Evkin and Lykhachova (2017) make
a similar argument based on their energy barrier results for perfect
spherical shells.

An important finding is that the energy barrier to buckling of
the spherical shell under external pressure has only a weak de-
pendence on the compliance of the loading system applying the
pressure. The difference between the energy barriers in the lim-
iting cases of prescribed pressure and prescribed volume change
is quite small. In this regard, the energy barrier is similar to the
buckling pressure itself. The earlier calculations of Horak et al.,
(2006) for cylindrical shells under axial compression, although
somewhat more tentative on the issue, come to the same conclu-
sion.

Probing a loaded shell at the right location can be implemented
as an experimental technique to measure the energy barrier (Virot
et al., 2017; Marthelot et al., 2017). Moreover, in principle, it may
be possible to develop an experimental protocol to nondestruc-
tively measure the buckling load of the shell by carefully probing
at a sequence of load levels and then extrapolating to the point of
buckling. The example discussed in Section 5 cautions that devel-
oping such a protocol is not likely to be straightforward and it will
almost certainly depend critically on probing a shell near its most
vulnerable location.

To our knowledge, there are no results available for buckling
energy barriers for shell problems other than those discussed in
this paper. Stiffening generally reduces the imperfection-sensitivity
of shells in the sense that for common methods of manufacture
the reduction of the buckling load relative to that of the perfect
shell is often less than that for unstiffened shells. It would be in-
teresting to know if there is a corresponding increase in the en-
ergy barrier for stiffened shells at loads not far below the buck-
ling load. Insight to this question can be obtained in a simple,
straightforward manner for the bending stiffness enhancement as-
sociated with isotropic sandwich shells. For either the spherical
or cylindrical shell we will compare a monocoque shell with ra-
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dius R, thickness t, Young’s modulus E and Poisson’s ratio v with
an isotropic sandwich shell of the same radius, same areal mass
and whose material has the same Young's modulus and Pois-
son’s ratio. To keep things as simple as possible, we will assume
that the fraction of the material in the core of the sandwich can
be neglected such that each face sheet has thickness t/2. With
c as the distance between the inner surfaces of the two face
sheets, it is straightforward to show (assuming Kirchhoff-Euler-
Bernoulli kinematics apply) that the sandwich has the same bend-
ing and stretching stiffness as a monocoque shell with an effective

modulus Egrp = E/\/l +3(c/t) + 3>(c/t)2 and an effective thickness

teff = t\/l +3(c/t) +3(c/t)2. (Note that the limit with c— 0 are
those of the monocoque shell.) It follows, that all the results de-
rived for the monocoque shell in this paper apply to the isotropic
sandwich shell if E is replaced by Eey and ¢ is replaced by t.y. In
particular, using the dimensionless expression for the energy bar-
rier introduced in (2.8) and (6.1) and plotted in Figs. 10 and 12,
one finds the following comparison between the energy barrier for
sandwich and monocoque shells of the same mass at the same lev-
els of p/pc (or of 6 /o¢)

Vvsandwich c c\? "
Wmonocoque (1 +3<t) +3(t) ) (7.1)
The effect of the bending stiffening enhancement achieved via
sandwich construction on increasing the energy barrier is po-
tentially very large. In addition, there is an accompanying in-
crease in the buckling pressure pc or load of the perfect shell,
and the relevant normalization of the imperfection amplitude in
the imperfection-sensitivity plots becomes §/t.q in place of §/t. Of
course, a sandwich shell of the same mass as a monocoque shell
will be more susceptible to plastic yielding at the same level of
p/pc and, in addition, sandwich construction is likely to bring into
play local buckling modes not present in a monocoque shell. These
additional factors must be taken into account in any design involv-
ing stiffening. Nevertheless, the dramatic increase of the energy
barrier implied by (7.1) sheds further light on the role of stiffen-
ing.
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